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Abstract. Misinterpretation and abuse of statistical tests, confidence intervals, and statistical power have 

been decried for decades, yet remain rampant. A key problem is that there are no interpretations of these 

concepts that are at once simple, intuitive, correct, and foolproof. Instead, correct use and interpretation 

of these statistics requires an attention to detail which seems to tax the patience of working scientists. 

This high cognitive demand has led to an epidemic of shortcut definitions and interpretations that are 

simply wrong, sometimes disastrously so – and yet these misinterpretations dominate much of the 

scientific literature.  

In light of this problem, we provide definitions and a discussion of basic statistics that are more 

general and critical than typically found in traditional introductory expositions. Our goal is to provide a 

resource for instructors, researchers, and consumers of statistics whose knowledge of statistical theory 

and technique may be limited but who wish to avoid and spot misinterpretations. We emphasize how 

violation of often unstated analysis protocols (such as selecting analyses for presentation based on the P-

values they produce) can lead to small P-values even if the declared test hypothesis is correct, and can 

lead to large P-values even if that hypothesis is incorrect. We then provide an explanatory list of 25 

misinterpretations of P-values, confidence intervals, and power. We conclude with guidelines for 

improving statistical interpretation and reporting. 

Keywords: Confidence intervals, Hypothesis testing, Null testing, P-value, Power, Significance 

tests, Statistical testing 
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Introduction 

Misinterpretation and abuse of statistical tests has been decried for decades, yet it remains so 

rampant that some scientific journals discourage use of “statistical significance” (classifying results as 

“significant” or not based on a P-value) (Lang et al., 1998). One journal now bans all statistical tests and 

mathematically related procedures such as confidence intervals (Trafimow and Marks, 2015), which has 

led to considerable discussion and debate about the merits of such bans (e.g., Ashworth, 2015; Flanagan, 

2015).  

Despite such bans, we expect that the statistical methods at issue will be with us for many 

years to come. We thus think it imperative that basic teaching as well as general understanding of 

these methods be improved. Toward that end, we attempt to explain the meaning of significance 

tests, confidence intervals, and statistical power in a more general and critical way than is 

traditionally done, and then review 25 common misconceptions in light of our explanations. We also 

discuss a few more subtle but nonetheless pervasive problems, explaining why it is important to 

examine and synthesize all results relating to a scientific question, rather than focus on individual 

findings. We further explain why statistical tests should never constitute the sole input to inferences 

or decisions about associations or effects. Among the many reasons are that, in most scientific 

settings, the arbitrary classification of results into “significant” and “non-significant” is unnecessary 

for and often damaging to valid interpretation of data; and that estimation of the size of effects and 

the uncertainty surrounding our estimates will be far more important for scientific inference and 

sound judgment than any such classification. 

More detailed discussion of the general issues can be found in many articles, chapters, and 

books on statistical methods and their interpretation (e.g., Altman et al., 2000; Atkins & Jarrett, 

1979; Cox, 1977, 1982; Cox & Hinkley, 1974; Freedman et al., 2007; Gigerenzer et al., 1990, Ch. 3; 

Harlow et al., 1997; Hogben, 1957; Kaye and Freedman, 2011; Morrison & Henkel, 1970; Oakes, 

1986; Pratt, 1965; Rothman et al., 2008, Ch. 10; Ware et al., 2009; Ziliak & McCloskey, 2008). 

Specific issues are covered at length in these sources and in the many peer-reviewed articles that 

critique common misinterpretations of null-hypothesis testing and “statistical significance” (e.g., 

Altman & Bland, 1995; Anscombe, 1990; Bakan, 1966; Bandt & Boen 1972; Berkson, 1942; Bland 

& Altman, 2015; Chia, 1997; Cohen, 1994; Evans et al., 1988; Fidler & Loftus, 2009; Gardner & 

Altman, 1986; Gelman, 2013; Gelman & Loken, 2014; Gelman & Stern, 2006; Gigerenzer, 2004; 

Gigerenzer & Marewski, 2015; Goodman, 1992, 1993, 1999, 2008; Greenland, 2011, 2012ab; 

Greenland & Poole, 2011, 2013ab; Grieve, 2015; Harlow et al., 1997; Hoekstra et al., 2006;  
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Hurlburt & Lombardi, 2009; Kaye, 1986; Lambdin, 2012; Lang et al., 1998; Langman, 1986; 

LeCoutre et al., 2003; Lew, 2012; Loftus, 1996; Matthews & Altman, 1996a; Pocock & Ware, 2009; 

Pocock et al., 1987; Poole, 1987ab, 2001; Rosnow & Rosenthal, 1989; Rothman, 1978, 1986; 

Rozeboom, 1960; Salsburg, 1985; Schmidt, 1996; Schmidt and Hunter, 2002; Sterne and Davey 

Smith, 2001; Thompson, 1987; Thompson 2004; Wagenmakers, 2007; Walker, 1986; Wood et al., 

2014).  

 

Statistical tests, P-values, and confidence intervals: A caustic primer 

Statistical models, hypotheses, and tests 

Every method of statistical inference depends on a complex web of assumptions about how 

data were collected and analyzed, and how the analysis results were selected for presentation. The 

full set of assumptions is embodied in a statistical model that underpins the method. Many problems 

arise because this statistical model often incorporates unrealistic or at best unjustified assumptions. 

This is true even for so-called “non-parametric” methods, which (like other methods) depend on 

assumptions of random sampling or randomization. These assumptions are often deceptively simple 

to write down mathematically, yet in practice are difficult to satisfy and verify, as they may depend 

on successful completion of a long sequence of actions (such as identifying, contacting, obtaining 

consent from, obtaining cooperation of, and following up subjects, as well as adherence to study 

protocols for treatment allocation, masking, and data analysis).  

There is also a serious problem of defining the scope of a model, in that it should allow not 

only for a good representation of the observed data but also of hypothetical alternative data that 

might have been observed. The reference frame for data that “might have been observed” is often 

unclear, for example if multiple outcome measures or multiple predictive factors have been 

measured, and many decisions surrounding analysis choices have been made after the data were 

collected – as is invariably the case (Gelman & Loken, 2014).  

The difficulty of understanding and assessing underlying assumptions is exacerbated by the 

fact that the statistical model is usually presented in a highly compressed and abstract form – if 

presented at all. As a result, many assumptions go unremarked and are often unrecognized by users 

as well as consumers of statistics.  Nonetheless, all statistical methods and interpretations are 

premised on the model assumptions; that is, on an assumption that the model provides a valid 

representation of the variation we would expect to see across data sets, faithfully reflecting the 

circumstances surrounding the study and phenomena occurring within it.  
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In most applications of statistical testing, one assumption in the model is a hypothesis that a 

particular effect has a specific size, and has been targeted for statistical analysis. (For simplicity, we 

use the word “effect” when “association or effect” would arguably be better in allowing for 

noncausal studies such as surveys.) This targeted assumption is called the study hypothesis or test 

hypothesis, and the statistical methods used to evaluate it are called statistical hypothesis tests. Most 

often, the targeted effect size is a “null” value representing zero effect (e.g., that the study treatment 

makes no difference in average outcome), in which case the test hypothesis is called the null 

hypothesis. Nonetheless, it is also possible to test other effect sizes. We may also test hypotheses that 

the effect does or does not fall within a specific range; for example, we may test the hypothesis that 

the effect is no greater than a particular amount, in which case the hypothesis is said to be a one-

sided or dividing hypothesis (Cox, 1977, 1982). 

Much statistical teaching and practice has developed a strong (and unhealthy) focus on the 

idea that the main aim of a study should be to test null hypotheses. In fact most descriptions of 

statistical testing focus only on testing null hypotheses, and the entire topic has been called “Null 

Hypothesis Significance Testing” (NHST). This exclusive focus on null hypotheses contributes to 

misunderstanding of tests. Adding to the misunderstanding is that many authors (including R.A. 

Fisher) use “null hypothesis” to refer to any test hypothesis, even though this usage is at odds with 

other authors and with ordinary English definitions of “null” – as are statistical usages of 

“significance” and “confidence.” 

 

Uncertainty, probability, and statistical significance 

A more refined goal of statistical analysis is to provide an evaluation of certainty or 

uncertainty regarding the size of an effect. It is natural to express such certainty in terms of 

“probabilities” of hypotheses. In conventional statistical methods, however, “probability” refers not 

to hypotheses, but to quantities that are hypothetical frequencies of data patterns under an assumed 

statistical model. These methods are thus called frequentist methods, and the hypothetical 

frequencies they predict are called “frequency probabilities.” Despite considerable training to the 

contrary, many statistically educated scientists revert to the habit of misinterpreting these frequency 

probabilities as hypothesis probabilities. (Even more confusingly, the term “likelihood of a 

parameter value” is reserved by statisticians to refer to the probability of the observed data given the 

parameter value; it does not refer to a probability of the parameter taking on the given value.) 
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Nowhere are these problems more rampant than in applications of a hypothetical frequency 

called the P-value, also known as the “observed significance level” for the test hypothesis. Statistical 

“significance tests” based on this concept have been a central part of statistical analyses for centuries 

(Stigler, 1986). The focus of traditional definitions of P-values and statistical significance has been 

on null hypotheses, treating all other assumptions used to compute the P-value as if they were known 

to be correct. Recognizing that these other assumptions are often questionable if not unwarranted, we 

will adopt a more general view of the P-value as a statistical summary of the compatibility between 

the observed data and what we would predict or expect to see if we knew the entire statistical model 

(all the assumptions used to compute the P-value) were correct.  

Specifically, the distance between the data and the model prediction is measured using a test 

statistic (such as a t-statistic or a chi-squared statistic). The P-value is then the probability that the 

chosen test statistic would have been at least as large as its observed value if every model 

assumption were correct, including the test hypothesis. This definition embodies a crucial point lost 

in traditional definitions: In logical terms, the P-value tests all the assumptions about how the data 

were generated (the entire model), not just the targeted hypothesis it is supposed to test (such as a 

null hypothesis). Furthermore, these assumptions include far more than what are traditionally 

presented as modeling or probability assumptions – they include assumptions about the conduct of 

the analysis, for example that intermediate analysis results were not used to determine which 

analyses would be presented. 

Now it is true that the smaller the P-value, the more unusual the data would be if every single 

assumption were correct; but a very small P-value does not tell us which assumption is incorrect. For 

example, the P-value may be very small because the targeted hypothesis is false; but it may instead 

(or in addition) be very small because the study protocols were violated, or because it was selected 

for presentation based on its small size. Conversely, a large P-value indicates only that the data are 

not unusual under the model, but does not imply that the model or any aspect of it (such as the 

targeted hypothesis) is correct; it may instead (or in addition) be large because (again) the study 

protocols were violated, or because it was selected for presentation based on its large size. 

The general definition of a P-value may help one to understand why statistical tests tell us 

much less than what many think they do: Not only does a P-value not tell us whether the hypothesis 

targeted for testing is true or not; it says nothing specifically related to that hypothesis unless we can 

be completely assured that every other assumption used for its computation is correct – an assurance 

that is lacking in far too many studies. 
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Nonetheless, the P-value can be viewed as a continuous measure of the compatibility 

between the data and the entire model used to compute it, ranging from 0 for complete 

incompatibility to 1 for perfect compatibility, and in this sense may be viewed as measuring the fit of 

the model to the data. Too often, however, the P-value is degraded into a dichotomy in which results 

are declared “statistically significant” if P falls below a cut-off (usually 0.05) and declared 

“nonsignificant” otherwise. The terms “significance level” and “alpha level” (α) are often used to 

refer to the cut-off; however, the term “significance level” invites confusion of the cut-off with the 

P-value itself. Their difference is profound: the cut-off value α is supposed to be fixed in advance 

and is thus part of the study design, unchanged in light of the data. In contrast, the P-value is a 

number computed from the data and thus an analysis result, unknown until it is computed. 

 

Moving from tests to estimates 

We can vary the test hypothesis while leaving other assumptions unchanged, to see how the 

P-value differs across competing test hypotheses. Usually, these test hypotheses specify different 

sizes for a targeted effect; for example, we may test the hypothesis that the average difference 

between two treatment groups is zero (the null hypothesis), or that it is 20 or −10 or any size of 

interest. The effect size whose test produced P=1 is the size most compatible with the data (in the 

sense of predicting what was in fact observed) if all the other assumptions used in the test (the 

statistical model) were correct, and provides a point estimate of the effect under those assumptions. 

The effect sizes whose test produced P>0.05 will typically define a range of sizes (e.g., from 11.0 to 

19.5) that would be considered more compatible with the data (in the sense of the observations being 

closer to what the model predicted) than sizes outside the range – again, if the statistical model were 

correct. This range corresponds to a 1−0.05 = 0.95 or 95% confidence interval, and provides a 

convenient way of summarizing the results of hypothesis tests for many effect sizes. Confidence 

intervals are examples of interval estimates. 

Neyman (1937) proposed the construction of confidence intervals in this way because they 

have the following property:  If one calculates, say, 95% confidence intervals repeatedly in valid 

applications, 95% of them, on average, will contain (i.e., include or cover) the actual effect.  Hence, 

the specified confidence level is called the coverage probability.  As Neyman stressed repeatedly, 

this coverage probability is a property of a long sequence of confidence intervals computed from 

valid models, rather than a property of any single confidence interval.  
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Many journals now require confidence intervals, but most textbooks and studies discuss P-

values only for the null hypothesis of no effect. This exclusive focus on null hypotheses in testing 

not only contributes to misunderstanding of tests and underappreciation of estimation, but also 

obscures the close relationship between P-values and confidence intervals, as well as the weaknesses 

they share.  

 

What P-values, confidence intervals, and power calculations don’t tell us 

Much distortion arises from basic misunderstanding of what P-values and their relatives 

(such as confidence intervals) do not tell us. Therefore, based on the articles in our reference list, we 

review prevalent P-value misinterpretations as a way of moving toward defensible interpretations 

and presentations. We adopt the format of Goodman (2008) in providing a list of misinterpretations 

that can be used to critically evaluate conclusions offered by research reports and reviews. Every one 

of the bolded statements in our list has contributed to statistical distortion of the scientific literature, 

and we add the emphatic “No!” to underscore statements that are not only fallacious but also not 

“true enough for practical purposes.”  

 

Common misinterpretations of single P-values 

1. The P-value is the probability that the test hypothesis is true; for example, if a test of 

the null hypothesis gave P=0.01, the null hypothesis has only a 1% chance of being true; 

if instead it gave P=0.40, the null hypothesis has a 40% chance of being true. – No! The 

P-value assumes the test hypothesis is true – it is not a hypothesis probability and may be far 

from any reasonable probability for the test hypothesis. The P-value simply indicates the 

degree to which the data conform to the pattern predicted by the test hypothesis and all the 

other assumptions used in the test (the underlying statistical model). Thus P=0.01 would 

indicate that the data are not very close to what the statistical model (including the test 

hypothesis) predicted they should be, while P=0.40 would indicate that the data are much 

closer to the model prediction, allowing for chance variation.  

2. The P-value for the null hypothesis is the probability that chance alone produced the 

observed association; for example, if the P-value for the null hypothesis is 0.08, there is 

an 8% probability that chance alone produced the association. – No! This is a common 

variation of the first fallacy and it is just as false. To say that chance alone produced the 

observed association is logically equivalent to asserting that every assumption used to 
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compute the P-value is correct, including the null hypothesis. Thus to claim that the null P-

value is the probability that chance alone produced the observed association is completely 

backwards: The P-value is a probability computed assuming chance was operating alone. The 

absurdity of the common backwards interpretation might be appreciated by pondering how 

the P-value, which is a probability deduced from a set of assumptions (the statistical model), 

can possibly refer to the probability of those assumptions.   

Note: One often sees “alone” dropped from this description (becoming “the P-value for the 

null hypothesis is the probability that chance produced the observed association”), so that the 

statement is more ambiguous, but just as wrong. 

3. A significant test result (P≤0.05) means that the test hypothesis is false or should be 

rejected. – No! A small P-value simply flags the data as being unusual if all the assumptions 

used to compute it (including the test hypothesis) were correct; it may be small because there 

was a large random error or because some assumption other than the test hypothesis was 

violated (for example, the assumption that this P-value was not selected for presentation 

because it was below 0.05). P≤0.05 only means that a discrepancy from the hypothesis 

prediction (e.g., no difference between treatment groups) would be as large or larger than 

that observed less than 5% of the time if only chance were creating the discrepancy (as 

opposed to a violation of the test hypothesis or a mistaken assumption). 

4. A nonsignificant test result (P>0.05) means that the test hypothesis is true or should be 

accepted. – No! A large P-value only suggests that the data are not unusual if all the 

assumptions used to compute the P-value (including the test hypothesis) were correct. The 

same data would also not be unusual under many other hypotheses. Furthermore, even if the 

test hypothesis is wrong, the P-value may be large because it was inflated by a large random 

error or because of some other erroneous assumption (for example, the assumption that this 

P-value was not selected for presentation because it was above 0.05). P>0.05 only means that 

a discrepancy from the hypothesis prediction (e.g., no difference between treatment groups) 

would be as large or larger than that observed more than 5% of the time if only chance were 

creating the discrepancy. 

5. A large P-value is evidence in favor of the test hypothesis. – No! In fact, any P-value less 

than 1 implies that the test hypothesis is not the hypothesis most compatible with the data, 

because any other hypothesis with a larger P-value would be even more compatible with the 

data. A P-value cannot be said to favor the test hypothesis except in relation to those 
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hypotheses with smaller P-values. Furthermore, a large P-value often indicates only that the 

data are incapable of discriminating among many competing hypotheses (as would be seen 

immediately by examining the range of the confidence interval).  For example, many authors 

will misinterpret P=0.70 from a test of the null hypothesis as evidence for no effect, when in 

fact it indicates that, even though the null hypothesis is compatible with the data under the 

assumptions used to compute the P-value, it is not the hypothesis most compatible with the 

data – that honor would belong to a hypothesis with P=1.  But even if P=1, there will be 

many other hypotheses that are highly consistent with the data, so that a definitive conclusion 

of “no association” cannot be deduced from a P-value, no matter how large. 

6. A null P-value greater than 0.05 means that no effect was observed, or that absence of 

an effect was shown or demonstrated. – No! Observing P>0.05 for the null hypothesis only 

means that the null is one among the many hypotheses that have P>0.05. Thus, unless the 

point estimate (observed association) equals the null value exactly, it is a mistake to conclude 

from P>0.05 that a study found “no association” or “no evidence” of an effect.  If the null P-

value is less than 1 some association must be present in the data, and one must look at the 

point estimate to determine the effect size most compatible with the data under the assumed 

model.  

7. Statistical significance indicates a scientifically or substantively important relation has 

been detected. – No! Especially when a study is large, very minor effects or small 

assumption violations can lead to statistically significant tests of the null hypothesis. Again, a 

small null P-value simply flags the data as being unusual if all the assumptions used to 

compute it (including the null hypothesis) were correct; but the way the data are unusual 

might be of no clinical interest. One must look at the confidence interval to determine which 

effect sizes of scientific or other substantive (e.g., clinical) importance are relatively 

compatible with the data, given the model.   

8. Lack of statistical significance indicates that the effect size is small. − No! Especially 

when a study is small, even large effects may be “drowned in noise” and thus fail to be 

detected as statistically significant by a statistical test. A large null P-value simply flags the 

data as not being unusual if all the assumptions used to compute it (including the test 

hypothesis) were correct; but the same data will also not be unusual under many other 

models and hypotheses besides the null. Again, one must look at the confidence interval to 

determine whether it includes effect sizes of importance. 
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9. The P-value is the chance of our data occurring if the test hypothesis is true; for 

example, P=0.05 means that the observed association would occur only 5% of the time 

under the test hypothesis. – No! The P-value refers not only to what we observed, but also 

observations more extreme than what we observed (where “extremity” is measured in a 

particular way). And again, the P-value refers to a data frequency when all the assumptions 

used to compute it are correct. In addition to the test hypothesis, these assumptions include 

randomness in sampling, treatment assignment, loss, and missingness, as well as an 

assumption that the P-value was not selected for presentation based on its size or some other 

aspect of the results.   

10. If you reject the test hypothesis because P≤0.05, the chance you are in error (the chance 

your “significant finding” is a false positive) is 5%. − No! To see why this description is 

false, suppose the test hypothesis is in fact true. Then, if you reject it, the chance you are in 

error is 100%, not 5%. The 5% refers only to how often you would reject it, and therefore be 

in error, over very many uses of the test across different studies when the test hypothesis and 

all other assumptions used for the test are true. It does not refer to your single use of the test, 

which may have been thrown off by assumption violations as well as random errors. This is 

yet another version of misinterpretation #1.  

11. P=0.05 and P≤0.05 mean the same thing. − No! This is like saying reported height=2 

meters and reported height≤2meters are the same thing: “height=2 meters” would include 

few people and those people would be considered tall, whereas “height≤2 meters” would 

include most people including small children. Similarly, P=0.05 would be considered a 

borderline result in terms of statistical significance, whereas P≤0.05 lumps borderline results 

together with results very incompatible with the model (e.g., P=0.001) thus rendering its 

meaning vague, for no good purpose.  

12. P values are properly reported as inequalities (e.g., report “P<0.02” when P=0.015). − 

No! This is bad practice because it makes it difficult or impossible for the reader to 

accurately interpret the statistical result. Only when the P-value is very small (e.g.,  under 

0.001) does an inequality become justifiable (e.g., there is little practical difference among 

very small P-values; the assumptions used to compute P-values are not known with enough 

certainty to justify such precision; and most methods for computing P-values are not 

numerically accurate below a certain point).  
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13. Statistical significance is a property of the phenomenon being studied, and thus 

statistical tests detect significance.  – No! This misinterpretation is promoted when 

researchers state that they have or have not found “evidence of” a statistically significant 

effect. The effect being tested either exists or does not exist. “Statistical significance” is a 

dichotomous description of a P-value (that it is below the chosen cut-off) and thus is a 

property of a result of a statistical test; it is not a property of the effect or population being 

studied. 

14. One should always use two-sided P-values. − No! Two-sided P-values are designed to test 

hypotheses that the targeted effect measure equals a specific value (e.g., zero), and is neither 

above nor below this value. When however the test hypothesis of scientific or practical 

interest is a one-sided (dividing) hypothesis, a one-sided P-value is appropriate. For example, 

consider the practical question of whether a new drug is at least as good as the standard drug 

for increasing survival time. This question is one-sided, so testing this hypothesis calls for a 

one-sided P-value. Nonetheless, because two-sided P-values are the usual default, it will be 

important to note when and why a one-sided P-value is being used instead.   

There are other interpretations of P values that are controversial, in that whether a categorical “No!” 

is warranted depends on one’s philosophy of statistics and the precise meaning given to the terms 

involved. The disputed claims deserve recognition if one wishes to avoid such controversy.  

For example, it has been argued that P-values overstate evidence against test hypotheses, 

based on directly comparing P-values against certain quantities (likelihood ratios and Bayes factors) 

that play a central role as evidence measures in Bayesian analysis (Edwards et al., 1963; Berger & 

Sellke, 1987; Edwards, 1992; Goodman & Royall, 1988; Royall, 1997; Sellke et al., 2001; 

Goodman, 1992, 2005; Wagenmakers, 2007). Nonetheless, many other statisticians do not accept 

these quantities as gold standards, and instead point out that P-values summarize crucial evidence 

needed to gauge the error rates of decisions based on statistical tests (even though they are far from 

sufficient for making those decisions). Thus, from this frequentist perspective, P-values do not 

overstate evidence and may even be considered as measuring one aspect of evidence (Cox, 1977, 

1982; Lehman, 1986; Senn, 2001, 2002a; Mayo & Cox, 2006), with 1−P measuring evidence against 

the model used to compute the P-value.   

 

Common misinterpretations of P-value comparisons and predictions 
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Some of the most severe distortions of the scientific literature produced by statistical testing 

involve erroneous comparison and synthesis of results from different studies or study subgroups. 

Among the worst are: 

15. When the same hypothesis is tested in different studies and none or a minority of the 

tests are statistically significant (all P>0.05), the overall evidence supports the 

hypothesis. – No! This belief is often used to claim that a literature supports no effect when 

the opposite is case. It reflects a tendency of researchers to “overestimate the power of most 

research” (Hedges and Olkin, 1980). In reality, every study could fail to reach statistical 

significance and yet when combined show a statistically significant association and 

persuasive evidence of an effect. For example, if there were five studies each with P=0.10, 

none would be significant at 0.05 level; but when these P-values are combined using the 

Fisher formula (Cox & Hinkley, 1974, p. 80), the overall P value would be 0.01. There are 

many real examples of persuasive evidence for important effects when few studies or even no 

study reported “statistically significant” associations (e.g., Chalmers and Lau, 1996; 

Maheshwari et al, 2007).  Thus, lack of statistical significance of individual studies should 

not be taken as implying that the totality of evidence supports no effect.  

16. When the same hypothesis is tested in two different populations and the resulting P-

values are on opposite sides of 0.05, the results are conflicting. – No! Statistical tests are 

sensitive to many differences between study populations that are irrelevant to whether their 

results are in agreement, such as the sizes of compared groups in each population. As a 

consequence, two studies may provide very different P-values for the same test hypothesis 

and yet be in perfect agreement (e.g., may show identical observed associations). For 

example, suppose we had two randomized trials A and B of a treatment, identical except that 

trial A had a known standard error of 2 for the mean difference between treatment groups 

whereas trial B had a known standard error of 1 for the difference. If both trials observed a 

difference between treatment groups of exactly 3, the usual normal test would produce 

P=0.13 in A but P=0.003 in B. Despite their difference in P-values, the test of the hypothesis 

of no difference in effect across studies would have P=1, reflecting the perfect agreement of 

the observed mean differences from the studies.  Differences between results must be 

evaluated by directly estimating and testing those differences to produce a confidence 

interval and a P-value comparing the results (often called analysis of heterogeneity, 

interaction, or modification). 
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17. When the same hypothesis is tested in two different populations and the same P-values 

are obtained, the results are in agreement. – No! Again, tests are sensitive to many 

differences between populations that are irrelevant to whether their results are in agreement. 

Two different studies may even exhibit identical P-values for testing the same hypothesis yet 

also exhibit clearly different observed associations. For example, suppose randomized 

experiment A observed a mean difference between treatment groups of 3.00 with standard 

error 1.00, while B observed a mean difference of 12.00 with standard error 4.00. Then the 

standard normal test would produce P=0.003 in both; yet the test of the hypothesis of no 

difference in effect across studies gives P=0.03, reflecting the large difference (12.00 − 3.00 

= 9.00) between the mean differences.    

18. If one observes a small P-value, there is a good chance that the next study will produce 

a small P-value for the same hypothesis.  – No! This is false even under the ideal condition 

that both studies are independent and all assumptions including the test hypothesis are correct 

in both studies. In that case, if (say) one observes P = 0.03, the chance that the new study will 

show P≤0.03 is only 3%; thus the chance the new study will show a P-value as small or 

smaller (the “replication probability”) is exactly the observed P-value! If on the other hand 

the small P-value arose solely because the true effect exactly equaled its observed estimate, 

there would be a 50% chance that a repeat experiment of identical design would have a larger 

P-value (Goodman, 1992). In general, the size of the new P-value will be extremely sensitive 

to the study size and the extent to which the test hypothesis or other assumptions are violated 

in the new study (Senn, 2002a); in particular, P may be very small or very large depending 

on whether the study and the violations are large or small.  

Finally, although it is (we hope obviously) wrong to do so, one sometimes sees the null hypothesis  

compared with another (alternative) hypothesis using a two-sided P-value for the null and a one-

sided P-value for the alternative. This comparison is biased in favor of the null in that the two-sided 

test will falsely reject the null only half as often as the one-sided test will falsely reject the 

alternative (again, under all the assumptions used for testing). 

 

Common misinterpretations of confidence intervals  

Most of the above misinterpretations translate into an analogous misinterpretation for 

confidence intervals. For example, another misinterpretation of P>0.05 is that it means the test 
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hypothesis has only a 5% chance of being false, which in terms of a confidence interval becomes the 

common fallacy: 

19. The specific 95% confidence interval presented by a study has a 95% chance of 

containing the true effect size. – No! A reported confidence interval is a range between two 

numbers. The frequency with which an observed interval (e.g., 0.72 to 2.88) contains the true 

effect is either 100% if the true effect is within the interval or 0% if not; the 95% refers only 

to how often 95% confidence intervals computed from very many studies would contain the 

true size if all the assumptions used to compute the intervals were correct. Now, it is possible 

to compute an interval that can be interpreted as having 95% probability of containing the 

true value; however, such computations require not only the assumptions used to compute the 

confidence interval, but also further assumptions about the size of effects in the model. These 

further assumptions are summarized in what is called a prior distribution, and the resulting 

intervals are usually called Bayesian posterior (or credible) intervals to distinguish them 

from confidence intervals (e.g., see Rothman et al., 2008, Ch. 13 and 18). 

Symmetrically, the misinterpretation of a small P-value as disproving the test hypothesis could be 

translated into: 

20. An effect size outside the 95% confidence interval has been refuted (or excluded) by the 

data. – No! As with the P-value, the confidence interval is computed from many 

assumptions, the violation of which may have led to the results. Thus it is the combination of 

the data with the assumptions, along with the somewhat arbitrary 95% criterion, that are 

needed to declare an effect size outside the interval is in some way incompatible with the 

observations. Even then, judgements as extreme as saying the effect size has been refuted or 

excluded will require even stronger conditions.  

As with P-values, naïve comparison of confidence intervals can be highly misleading: 

21. If two confidence intervals overlap, the difference between two estimates or studies is 

not significant. – No! The 95% confidence intervals from two subgroups or studies may 

overlap substantially and yet the test for difference between them may still produce P<0.05. 

Suppose for example, two 95% confidence intervals for means from normal populations with 

known variances are (1.04, 4.96) and (4.16, 19.84); these intervals overlap, yet the test of the 

hypothesis of no difference in effect across studies gives P=0.03. As with P-values, 

comparison between groups requires statistics that directly test and estimate the differences 
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across groups. It can, however, be noted that if the two 95% confidence intervals fail to 

overlap, then when using the same assumptions used to compute the confidence intervals we 

will find P<0.05 for the difference; and if one of the 95% intervals contains the point 

estimate from the other group or study, we will find P>0.05 for the difference. 

Finally, as with P-values, the replication properties of confidence intervals are usually 

misunderstood: 

22. An observed 95% confidence interval predicts that 95% of the estimates from future 

studies will fall inside the observed interval. – No! This statement is wrong in several 

ways. Most importantly, under the model, 95% is the frequency with which other unobserved 

intervals will contain the true effect, not how frequently the one interval being presented will 

contain future estimates. In fact, even under ideal conditions the chance that a future estimate 

will fall within the current interval will usually be much less than 95%. For example, if two 

independent studies of the same quantity provide unbiased normal point estimates with the 

same standard errors, the chance that the 95% confidence interval for the first study contains 

the point estimate from the second is 83% (which is the chance that the difference between 

the two estimates is less than 1.96 standard errors). Again, an observed interval either does or 

does not contain the true effect; the 95% refers only to how often 95% confidence intervals 

computed from very many studies would contain the true effect if all the assumptions used to 

compute the intervals were correct. 

23. If one 95% confidence interval includes the null value and another excludes that value, 

the interval excluding the null is the more precise one.  – No! When the model is correct, 

precision of statistical estimation is measured directly by confidence interval width 

(measured on the appropriate scale). It is not a matter of inclusion or exclusion of the null or 

any other value.  Consider two 95% confidence intervals for a difference in means, one with 

limits of 5 and 40, the other with limits of ‒5 and 10.  The first interval excludes the null 

value of 0, but is 30 units wide. The second includes the null value, but is half as wide and 

therefore much more precise. 

In addition to the above misinterpretations, 95% confidence intervals force the 0.05-level cutoff on 

the reader, lumping together all effect sizes with P>0.05, and in this way are as bad as presenting P- 

values as dichotomies. Nonetheless, many authors agree that confidence intervals are superior to 

tests and P-values because they allow one to shift focus away from the null hypothesis, toward the 
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full range of effect sizes compatible with the data – a shift recommended by many authors and a 

growing number of journals. Another way to bring attention to non-null hypotheses is to present 

their P-values; for example, one could provide or demand P-values for those effect sizes that are 

recognized as scientifically reasonable alternatives to the null. 

As with P-values, further cautions are needed to avoid misinterpreting confidence intervals as 

providing sharp answers when none are warranted. The hypothesis which says the point estimate is 

the correct effect will have the largest P-value (P=1 in most cases), and hypotheses inside a 

confidence interval will have higher P-values than hypotheses outside the interval. The P-values will 

vary greatly, however, among hypotheses inside the interval, as well as among hypotheses on the 

outside. Also, two hypotheses may have nearly equal P-values even though one of the hypotheses is 

inside the interval and the other is outside. Thus, if we use P-values to measure compatibility of 

hypotheses with data and wish to compare hypotheses with this measure, we need to examine their 

P-values directly, not simply ask whether the hypotheses are inside or outside the interval. This need 

is particularly acute when (as usual) one of the hypotheses under scrutiny is a null hypothesis. 

 

Common misinterpretations of power 

The power of a test to detect a correct alternative hypothesis is the pre-study probability that 

the test will reject the test hypothesis (e.g., the probability that P will be less than a pre-specified cut-

off such as 0.05). (The corresponding pre-study probability of failing to reject the test hypothesis 

when the alternative is correct is one minus the power, also known as the Type-II or beta error rate; 

see Lehmann, 1986.) As with P-values and confidence intervals, this probability is defined over 

repetitions of the same study design and so is a frequency probability. One source of reasonable 

alternative hypotheses are the effect sizes that were used to compute power in the study proposal. 

Pre-study power calculations do not however measure the compatibility of these alternatives with the 

data actually observed, while power calculated from the observed data is a direct (if obscure) 

transformation of the null P-value and so provides no test of the alternatives. Thus presentation of 

power does not obviate the need to provide interval estimates and direct tests of the alternatives. 

For these reasons, many authors have condemned use of power to interpret estimates and 

statistical tests (e.g., Cox, 1958; Smith & Bates, 1992; Goodman, 1994; Goodman & Berlin, 1994; 

Hoenig & Heisey, 2001; Senn, 2002b; Greenland, 2012a), arguing that (in contrast to confidence 

intervals) it distracts attention from direct comparisons of hypotheses and introduces new 

misinterpretations, such as:  
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24. If you accept the null hypothesis because the null P-value exceeds 0.05 and the power of 

your test is 90%, the chance you are in error (the chance that your finding is a false 

negative) is 10%. − No! If the null hypothesis is false and you accept it, the chance you are 

in error is 100%, not 10%. Conversely, if the null hypothesis is true and you accept it, the 

chance you are in error is 0%. The 10% refers only to how often you would be in error over 

very many uses of the test across different studies when the particular alternative used to 

compute power is correct and all other assumptions used for the test are correct in all the 

studies. It does not refer to your single use of the test or your error rate under any alternative 

effect size other than the one used to compute power. 

It can be especially misleading to compare results for two hypotheses by presenting a test or P-value 

for one and power for the other. For example, testing the null by seeing whether P≤0.05 with a 

power less than 1−0.05 = 0.95 for the alternative (as done routinely) will bias the comparison in 

favor of the null because it entails a lower probability of incorrectly rejecting the null (0.05) than of 

incorrectly accepting the null when the alternative is correct. Thus claims about relative support or 

evidence need to be based on direct and comparable measures of support or evidence for both 

hypotheses, otherwise mistakes like the following will occur: 

25. If the null P-value exceeds 0.05 and the power of this test is 90% at an alternative, the 

results support the null over the alternative. – This claim seems intuitive to many, but 

counterexamples are easy to construct in which the null P-value is between 0.05 and 0.10, 

and yet there are alternatives whose own P-value exceeds 0.10 and for which the power is 

0.90. Parallel results ensue for other accepted measures of compatibility, evidence, and 

support, indicating that the data show lower compatibility with and more evidence against the 

null than the alternative, despite the fact that the null P-value is “not significant” at the 0.05 

alpha level and the power against the alternative is “very high” (Greenland, 2012a).    

Despite its shortcomings for interpreting current data, power can be useful for designing studies and 

for understanding why replication of “statistical significance” will often fail even under ideal 

conditions. Studies are often designed or claimed to have 80% power against a key alternative when 

using a 0.05 significance level, although in execution often have less power due to unanticipated 

problems such as low subject recruitment. Thus, if the alternative is correct and the actual power of 

two studies is 80%, the chance that the studies will both show P≤0.05 will at best be only 0.80(0.80) 

= 64%; furthermore, the chance that one study shows P≤0.05 and the other does not (and thus will be 
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misinterpreted as showing conflicting results) is 2(0.80)0.20 = 32% or about 1 chance in 3. Similar 

calculations taking account of typical problems suggest that one could anticipate a “replication 

crisis” even if there were no publication or reporting bias, simply because current design and testing 

conventions treat individual study results as dichotomous outputs of “significant”/”nonsignificant” 

or “reject”/”accept.” 

 

The statistical model is much more than an equation with Greek letters 

The above list could be expanded by reviewing the research literature. We will however now 

turn to direct discussion of an issue that has been receiving more attention of late, yet is still widely 

overlooked or interpreted too narrowly in statistical teaching and presentations: That the statistical 

model used to obtain the results is correct. 

Too often, the full statistical model is treated as a simple regression or structural equation in 

which effects are represented by parameters denoted by Greek letters. “Model checking” is then 

limited to tests of fit or testing additional terms for the model. Yet these tests of fit themselves make 

further assumptions that should be seen as part of the full model. For example, all common tests and 

confidence intervals depend on assumptions of random selection for observation or treatment and 

random loss or missingness within levels of controlled covariates. These assumptions have gradually 

come under scrutiny via sensitivity and bias analysis (e.g., Lash et al., 2014), but such methods 

remain far removed from the basic statistical training given to most researchers.  

Less often stated is the even more crucial assumption that the analyses themselves were not 

guided toward finding nonsignificance or significance (analysis bias), and that the analysis results 

were not reported based on their nonsignificance or significance (reporting bias and publication 

bias). Selective reporting renders false even the limited ideal meanings of statistical significance, P-

values, and confidence intervals. Because author decisions to report and editorial decisions to 

publish results often depend on whether the P-value is above or below 0.05, selective reporting has 

been identified as a major problem in large segments of the scientific literature (Dwan et al., 2013; 

Page et al. 2014; You et al., 2012).  

Although this selection problem has also been subject to sensitivity analysis, there has been a 

bias in studies of reporting and publication bias: It is usually assumed that these biases favor 

significance. This assumption is of course correct when (as is often the case) researchers select 

results for presentation when P≤0.05, a practice that tends to exaggerate associations (Button et al., 
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2013; Eyding et al., 2010; Land, 1980; Land 1981). Nonetheless, bias in favor of reporting P≤0.05 is 

not always plausible let alone supported by evidence or common sense. For example, one might 

expect selection for P>0.05 in publications funded by those with stakes in acceptance of the null 

hypothesis (a practice which tends to understate associations); in accord with that expectation, some 

empirical studies have observed smaller estimates and “nonsignificance” more often in such 

publications than in other studies (Eyding et al., 2010; Greenland, 2009; Xu et al., 2013).  

Addressing such problems would require far more political will and effort than addressing 

misinterpretation of statistics, such as enforcing registration of trials, along with open data and 

analysis code from all completed studies (as in the AllTrials initiative, http://www.alltrials.net/). In 

the meantime, readers are advised to consider the entire context in which research reports are 

produced and appear when interpreting the statistics and conclusions offered by the reports. 

 

Conclusions 

Upon realizing that statistical tests are usually misinterpreted, one may wonder what if 

anything these tests do for science. They were originally intended to account for random variability 

as a source of error, thereby sounding a note of caution against overinterpretation of observed 

associations as true effects or as stronger evidence against null hypotheses than was warranted. But 

before long that use was turned on its head to provide fallacious support for null hypotheses in the 

form of “failure to achieve” or “failure to attain” statistical significance.  

We have no doubt that the founders of modern statistical testing would be horrified by 

common treatments of their invention. In their first paper describing their binary approach to 

statistical testing, Neyman and Pearson (1928) wrote that “it is doubtful whether the knowledge that 

[a P-value] was really 0.03 (or 0.06), rather than 0.05...would in fact ever modify our judgment” and 

that “The tests themselves give no final verdict, but as tools help the worker who is using them to 

form his final decision.”  Pearson (1955) later added, “No doubt we could more aptly have said, ‘his 

final or provisional decision’.” Fisher (1956, p. 42) went further, saying “No scientific worker has a 

fixed level of significance at which from year to year, and in all circumstances, he rejects 

hypotheses; he rather gives his mind to each particular case in the light of his evidence and his 

ideas.” Yet fallacious and ritualistic use of tests continued to spread, including beliefs that whether P 

was above or below 0.05 was a universal arbiter of discovery. Thus by 1965, Hill (1965) lamented 
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that “too often we weaken our capacity to interpret data and to take reasonable decisions whatever 

the value of P. And far too often we deduce ‘no difference’ from ‘no significant difference’.”  

In response, it has been argued that some misinterpretations are harmless in tightly controlled 

experiments on well-understood systems in which testing theory developed, where the test 

hypothesis may have special support from established theories (e.g., Mendelian genetics) and in 

which every other assumption (such as random allocation) is forced to hold by careful design and 

execution of the study. But it has long been asserted that the harms of statistical testing in more 

uncontrollable and amorphous research settings (such as social-science, health, and medical fields) 

have far outweighed its benefits, leading calls for banning such tests in research reports – and again 

has led one journal to ban the reporting of P-values and confidence intervals as well as statistical 

tests (Trafimow & Marks, 2015).  

Given, however, the deep entrenchment of statistical testing, as well as the absence of 

generally accepted alternative methods, there have been many attempts to salvage P-values by 

detaching them from their use in significance tests. One approach is to focus on P-values as 

continuous measures of compatibility, as described earlier. Although this approach has its own 

limitations (see misconceptions 1, 2, 5, 9, 15, 18, 19), it avoids comparison of P-values with 

arbitrary criteria such as 0.05, which lead to many of the misconceptions we have tried to explain 

(see 3, 4, 6-8, 10-13, 16, 17, 22, 24, 25 and 26). Another approach is to teach and use correct 

relations of P-values to hypothesis probabilities. For example, under common statistical models, 

one-sided P-values can provide lower bounds on probabilities for hypotheses about effect directions 

(Casella & Berger, 1987ab; Greenland & Poole, 2013ab). Whether such reinterpretations can 

eventually replace common misinterpretations to good effect remains to be seen.   

A shift in emphasis from hypothesis testing to estimation has been promoted as a simple and 

relatively safe way to improve practice (Yates, 1951; Rothman, 1978; Altman et al., 2000; Poole, 

2001; Cumming, 2011), resulting in increasing use of confidence intervals and editorial demands for 

them; nonetheless, this shift has brought to the fore misinterpretations of intervals such as 19-23 

above (Morey et al., 2015). Other approaches combine tests of the null with further calculations 

involving both null and alternative hypotheses (Rosenthal & Rubin, 1994; Mayo & Spanos, 2006); 

such calculations may, however, may bring with them further misinterpretations similar to those 

described above for power, as well as greater complexity.   
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Meanwhile, in the hopes of minimizing harms of current practice, we can offer several 

guidelines for users and readers of statistics, and re-emphasize some key warnings from our list of 

misinterpretations:  

a) Correct and careful interpretation of statistical tests demands examining the sizes of effect 

estimates and confidence limits, as well as precise P-values (not just whether P-values are 

above or below 0.05 or some other threshold).     

b) Careful interpretation also demands critical examination of the assumptions and conventions 

used for the statistical analysis – not just the usual statistical assumptions, but also the 

hidden assumptions about how results were generated and chosen for presentation.  

c) It is simply false to claim that statistically nonsignificant results support a test hypothesis, 

because the same results may be even more compatible with alternative hypotheses – even if 

the power of the test is high for those alternatives.  

d) Interval estimates aid in evaluating whether the data are capable of discriminating among 

various hypotheses about effect sizes, or whether statistical results have been misrepresented 

as supporting one hypothesis when those results are better explained by other hypotheses 

(see points 4-6). We caution however that confidence intervals are often only a first step in 

these tasks. To compare hypotheses in light of the data and the statistical model it may be 

necessary to calculate the P-value (or relative likelihood) of each hypothesis. We further 

caution that confidence intervals provide only a best-case measure of the uncertainty or 

ambiguity left by the data, insofar as they depend on an uncertain statistical model. 

e) Correct statistical evaluation of multiple studies requires a pooled analysis or meta-analysis 

(Whitehead, 2002; Borenstein et al., 2009; Chen & Peace, 2013; Cooper et al., 2009; Petitti, 

2000; Schmidt & Hunter, 2014; Sterne, 2009). Even when this is done, however, all the 

earlier cautions apply. Furthermore, the outcome of any statistical procedure is but one of 

many considerations that must be evaluated when examining the totality of evidence. In 

particular, statistical significance is neither necessary nor sufficient for determining the 

scientific or practical significance of a set of observations. This view was affirmed 

unanimously by the U.S. Supreme Court, (Matrixx Initiatives, Inc., et al. v. Siracusano et al. 

No. 09–1156.  Argued January 10, 2011, Decided March 22, 2011), and can be seen in our 

earlier quotes from Neyman and Pearson.    

f) Any opinion offered about the probability, likelihood, certainty, or similar property for a 

hypothesis cannot be derived from statistical methods alone. In particular, significance tests 
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and confidence intervals do not by themselves provide a logically sound basis for 

concluding an effect is present or absent with certainty or a given probability. This point 

should be borne in mind whenever one sees a conclusion framed as a statement of 

probability, likelihood, or certainty about a hypothesis. Information about the hypothesis 

beyond that contained in the analyzed data and in conventional statistical models (which 

give only data probabilities) must be used to reach such a conclusion; that information 

should be explicitly acknowledged and described by those offering the conclusion. Bayesian 

statistics offers methods that attempt to incorporate the needed information directly into the 

statistical model; they have not however achieved the popularity of P-values and confidence 

intervals, in part because of philosophical objections and in part because no conventions 

have become established for their use.  

g) All statistical methods (whether frequentist or Bayesian, or for testing or estimation, or for 

inference or decision) make extensive assumptions about the sequence of events that led to 

the results presented – not only in the data generation, but in the analysis choices. Thus, to 

allow critical evaluation, research reports (including meta-analyses) should describe in detail 

the full sequence of events that led to the statistics presented, including the motivation for 

the study, its design, the original analysis plan, the criteria used to include and exclude 

subjects (or studies) and data, and a thorough description of all the analyses that were 

conducted.  

In closing, we note that no statistical method is immune to misinterpretation and misuse, but prudent 

users of statistics will avoid approaches especially prone to serious abuse.  In this regard, we join 

others in singling out the degradation of P-values into the “significant” and “nonsignificant” as an 

especially pernicious statistical practice (Weinberg, 2001).  
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