Comments on the “ASA Statement on Statistical Significance
and P-values” and marginally significant p-values

Valen E. Johnson

February 18, 2016

The ASA statement on statistical significance and p-values addresses a number of im-
portant issues regarding the interpretation of p-values and statistical hypothesis testing.
In this note, I comment further on one of those issues, namely the assertion that “a p-value
near 0.05 taken by itself offers only weak evidence against the null hypothesis.”

To provide a context for this statement, it is useful to consider what is perhaps the
most elementary of statistical hypothesis tests, that of testing whether the mean u of a
normal population is 0 when the variance is known to be o2, based on a random sample
(1,...,xy,) of size n from that population. If the alternative hypothesis requires that
i > 0 (so that a one-side test is performed), then the null hypothesis is rejected at the
5% level of significance in the uniformly most powerful test if the sample mean Z exceeds
1.6450 /y/n. If T = 1.6450/+/n, then the p-value of the test is 0.05.

The “weakness of evidence” provided by this p-value is revealed when one examines
the likelihood ratio of the sampling density of the data under the null hypothesis to the
maximum of the sampling density of the data under the alternative hypothesis. If ¢(z|u, o)
denotes the normal density function with mean p and variance o2 evaluated at x, then the
minimum likelihood ratio equals
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In other words, the sampling density of the data under the null hypothesis is at least 1/4
as large as it is under any alternative hypothesis. If the null and alternative hypotheses are
regarded as being equally likely a priori (or from a repeated sampling context, if one-half
of tested null hypotheses are true), then the probability that the null hypothesis is true
when p = 0.05 is at least 20%.

This fact is not new, of course, and an extended discussion of this “paradox” was
provided over 50 years ago by Edwards, Lindman and Savage (1963). This paradox is not
specific to z-tests or one-sided tests, and it is not caused by the specification of a point null
hypothesis to conveniently represent the notion that the mean p is close to a specified null
value.



To see that the latter claim is true, it is useful to view the hypothesis testing problem
from a Bayesian perspective and replace the null hypothesis that ;1 = 0 by the assumption
that p is drawn from a prior density function mo(p) that is symmetric around 0 and is
positive only when |u| < 1.6450 /4/n. Then the marginal likelihood of the data is evaluated
by averaging over this interval, i.e.,
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If 1 (p) is the prior density for p assumed under the alternative hypothesis and
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then the ratio A in (1) can be replaced with the Bayes factor!
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When p=0.05, it again follows that BFpy;(Z) will be larger than 0.258, no matter what prior
density 71 (u) one choses for i, even when the point null hypothesis has been replaced by
a “small interval” null hypothesis.

Similar comments apply to the case of p-values in two-sided z tests. In that setting,
p=0.05 if £ = +1.960/y/n. To account for the fact that the null hypothesis is rejected for
both large positive and large negative values of Z, it makes sense to assume that the prior
density on p is symmetrically distributed around the null value of p = 0. If one accepts this
assumption, then the ratio of the sampling density of the data under the null hypothesis
to the average sampling density of the data under the alternative hypothesis, obtained by
averaging over any prior distribution on g that is symmetric around 0, exceeds 0.29. If the
null hypothesis is assumed be at least as likely as the alternative hypothesis a priori, then
the posterior probability that the null hypothesis is true when p=0.05 in a two-sided z-test
is at least 0.226 (Berger and Sellke, 1987).

The one-sample z-test is a special case of a null hypothesis significance test (NHST) in a
one parameter exponential family model (1PEF). The Neyman-Pearson lemma guarantees
the existence of uniformly most powerful tests (UMPTs) for many NHSTs in 1PEFs. As
it happens, it is also possible to define uniformly most powerful Bayesian tests (UMPBTS)
in the same setting by choosing the alternative hypothesis in a NHST so as to maximize
the probability that the Bayes factor of the test exceeds a specified threshold (Johnson,
2013a). Furthermore, the threshold of a UMPBT can be chosen so that the Bayesian test
has the same type I error as the classical UMPT.
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In general, the Bayes factor of a test can be viewed from a classical perspective as an integrated
likelihood ratio, integrated with respect to the prior densities on the unknown parameters.



The correspondence between UMPTs and UMPBTSs (matched by appropriately cho-
sen test sizes and evidence thresholds) makes it straightforward to extend the analysis
of marginally significant p-values beyond simple z-tests to more general NHSTs. Again
assuming the null hypothesis is assigned prior probability of 0.5 (as it might in the case
when the evidence in “a p-value near 0.05 is taken by itself”), Fig. 1 displays a plot of
p-values for common normal and binomial tests versus the posterior probability that the
null hypothesis is true. The posterior probabilities displayed in this plot were obtained by
using the UMPBT that corresponds to the size 0.05 one-sided test. Similar plots can also
be constructed for two sided tests, other 1PEF tests, and (using approximate UMPBTS) ¢
tests (Johnson, 2013b).

The red box in Fig. 1 highlights the posterior probabilities of null hypotheses based on
p-values of 0.05. Under the mild assumptions described above, this box shows that the
posterior probability of the null hypotheses for p-values near 0.05 range between 0.20 and
about 0.35. Note that when p=0.05, higher posterior probabilities would be assigned to
the null hypothesis for any alternative hypotheses other than the UMPBT.

The blue box in Fig. 1 highlights posterior probabilities for p=0.005, and shows that the
corresponding posterior probabilities of null hypotheses for these z-tests and binomial tests
range between approximately 1/20 and 1/12. At this level of significance, the posterior
probability of the null hypotheses has fallen to the level of evidence that many scientists
implicitly believe that p=0.05 represents. Which begs the question, “should p=0.005 be
the new p=0.057" (Johnson, 2013b).

In summary, simple calculations of likelihood ratios and Bayes factors suggest that p-
values near 0.05, by themselves, provide very little evidence against a null hypothesis in
NHSTs. For likelihood ratios, the ratio of the data density under the null hypothesis to
the data density under the alternative hypothesis exceeds 0.20 when p=0.05 for common
hypothesis tests. Similarly, from a Bayesian perspective using alternative hypotheses that
are chosen so as to minimize the probability assigned to the null, the posterior probability
of the null hypotheses typically exceeds 0.20 when p=0.05 (provided that both hypotheses
are assigned equal probability a priori.)

As the ASA statement asserts, “a p-value near 0.05 taken by itself offers only weak
evidence against the null hypothesis.”
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Figure 1: P-values versus posterior probabilities of null hypotheses. The curves in this
plot were constructed using UMPBT alternative hypotheses and by assigning equal prior
probability to the null and alternative hypotheses. Tests labeled Bin(0.5,n) test a null
hypothesis that a success probability is 0.5 based on a sample size of n. All tests are
one-sided. Both axes are scaled logarithmically.
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