
Extended Abstract: GenApp: Extensible Tool for Rapid
Generation of Web and Native GUI Applications

Alexey Savelyev and Emre Brookes,*
Department of Biochemistry and Structural Biology,

The University of Texas Health Science Center
at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900

*Corresponding author: email: emre@biochem.uthscsa.edu

Abstract: GenApp is a universal and extensible tool
for rapid deployment of applications. GenApp builds
fully functioning science gateways and standalone GUI
applications from collections of definition files and
libraries of code fragments. Among the main features
are the minimal technical expertise requirement for the
end user and an open-end design ensuring
sustainability of generated applications. Because of the
conceptual simplicity of use, GenApp is ideally suited to
scientists who are not professional developers, to
disseminate their theoretical and experimental expertise
as embodied in their code to their communities by
rapidly deploying advanced applications.

1. Introduction

GenApp (Generalized Application Framework)
[1,2,3,4] is designed to simplify creation and
deployment of local GUI and web based
applications over a collection of modules. GenApp
was originally conceived during NSF and UK's
EPSRC funded CCP-SAS project [5] to provide a
web-based GUI for advanced analyses of structural
data in chemical biology and soft condensed matter
[6,7,8]. Over time, GenApp's capabilities were
significantly enhanced and broadened driven by
other multiple science cases, transforming it into
an established framework. Currently, GenApp
supports a growing number of web portals
primarily, but not exclusively, in the small-angle
scattering (SAS) community.

Unlike conventional approaches to web
development which often require a large team of
computer scientists working on a project, GenApp
greatly simplifies the work of users and system
administrators by utilizing libraries of fragments
and user defined modules as directed by definition
files (see below). GenApp's simplicity, as seen
from the user perspective, is manifested by the fact
that these definition files are the only input (apart
from the scientific code intended to be deployed)
necessary for building final application. As

elaborated below, GenApp effectively divorces the
user from having to develop software environment
specific user interfaces and provides an extensible
collection of application environment targets.

2. Significance

Quite often scientific codes developed in a
typical research laboratory become unsustainable
(“dark” codes) beyond the lifetime of funding or
shortly after staff rotation. Hiring expensive CS
expertise diverts scarce resources from the lab's
primary goals and often translates the problem
without resolving it. The diversity and continually
changing nature of software environments
compounds the issue. GenApp can readily address
the issue to insure preservation1 of scientific codes
and to enhance the level of their usability and
recognition by producing fully functional science
gateways and native GUI applications in multiple
target languages. The scientific community would
greatly benefit and be better served if the tools and
infrastructure provided by GenApp were available
to enable and maintain the work of talented
developers worldwide.

Another important aspect of GenApp broadly
impacting the scientific community is the potential
of its use as a versatile and powerful educational
tool. In particular, not only GenApp can carry a
“research” component (scientific code), but also a
rich educational and demonstration content
accompanying main application, including
supporting manuals, images, videos, use examples,
and the like. An XSEDE/ECSS project utilizing
GenApp is currently using these capabilities [9].
Thus, GenApp directly addresses points mandated

1Forcing the module developer to uniformly define inputs and
outputs and modify their code to accept inputs and outputs as defined,
by itself, helps insure preservation since any competent programmer
can utilize these definitions minimal effort. Additionally, within the
GenApp framework itself, future target languages can be developed
which will automatically wrap the code into an application.

Presented at Gateways 2016, San Diego Supercomputer
Center, La Jolla, CA, November 2-3, 2016.
https://gateways2016.figshare.com/

https://gateways2016.figshare.com/

by funding agencies such as improved education,
increased public scientific literacy and public
engagement with science and technology and
creating enhanced infrastructure for research and
education.

3. GenApp Structure, Technical Details

3.1 Roles

GenApp defines four primary roles. These are,
in order of descending C.S. expertise, the
framework developer, the target language
developer, the application developer and the
module developer. These roles parallel the
organization of GenApp as shown in Fig. 1. The
framework developer develops and maintains the
generator tool. The target language developer is
responsible the contents of one or more target
languages and implements and maintains them by
building up code fragments and defining their
assembly. The application developer organizes
modules in a menu definition file and runs the
GenApp generator to create working applications.
Finally, the module developer wraps executable
modules by writing a module definition file and
ensuring the wrapped executable accepts defined
input and produces defined output (see Fig. 2).

This structure segregates the application and
module developers, which require minimal CS
expertise from the framework and target language
developers, which require advanced CS expertise.
This enables a researcher, acting as an application

and module developer with an executable that they
wish to expose, to rapidly deploy advanced user
interfaces. If a new target language, variant or
feature is developed by a target language
developer, it becomes available to all application

Fig. 1 An overview of the GenApp framework. Four
roles are defined at the top as areas of responsibility
(see the text). Separation of C.S. and researcher
expertise allows researchers to rapidly deploy
applications in a variety of target languages and take
advantage of new developments within the framework
without affecting their underlying executable.

Fig. 2 An example python code intended to be deployed, GenApp module definition file, and the corresponding
application output. Definition file is a JSON text file describing input and output.

and module developers and they can deploy the
new or modified target.

3.2 Modules

A module is some defined executable within
GenApp. The module definition file (Figs. 1 and 2)
contains all information about the module. This, of
course, includes all input and output fields. Each
field is uniquely defined with an id. In addition, a
primary attribute for each field is the type, e.g.
“integer”, “text”, “plot”, “atomicstructure”, etc.

3.3 Repeaters

Early on, module developer requirements
presented the necessity to define input fields which
appear to the user based upon the values of other
input fields. The GenApp answer to this was the
repeater structure. For example, a “checkbox”
field could have the attribute of repeater,
subsequently, other fields could reference a repeat
on the repeater's id. This enables a field to be
displayed dynamically to the user based upon the
setting of the “checkbox”. Current repeater types
include “checkbox”, “integer” and “listbox”. The
“checkbox” repeater has been described and a
reverse logic “checkbox” repeater is also available.
The “integer” repeater will create some number of
instances of the dependent repeat fields. The
“listbox” repeater displays dependent fields based
upon the “listbox” choice. Repeaters can be
arbitrarily nested.

3.4 Summary of Main Features

Currently developed GenApp's target
languages include web [HTML5+Javascript+Php]
and native GUI [Java, Qt4, Qt5] fragment
collections. GenApp generated science gateways
include the following features: user management
and statistics; job managements with multiple
simultaneous reattachment to job running or run; a
“cloud” file system; caching of results; integrated
feedback mechanism which links full failed job
information for easy debugging. Additional
features are added as needed by use cases.
Websites generated are typically hosted on a VM,
be it on a developer's laptop, dedicated host, or
cloud resources such as NSF/Jetstream or AWS.
The extensible variety of current execution models
include running on local or managed compute
resources such as those available from
NSF/XSEDE. Recently, GenApp integration with
Apache Airavata for the application execution has

been prototyped [2]. Apache Airavata [10] is a
software framework that enables one to compose,
manage, execute, and monitor large scale
applications and workflows on distributed
computing resources such as local clusters,
supercomputers, computational grids and clouds.

4. Applications

 The prototype of GenApp was first applied to
create SASSIE-web [6] by the CCP-SAS
consortium [5]. This has had a significant positive
impact on SAS user community with over 300
registered users and 3900 jobs submitted in the
first six months of the current year. Over 40 known
publications have been produced.

During past several months, we have
extensively used the GenApp framework to build a
number of web portals for other SAS related
applications, including SoMo [7], Willitfit [11],
Quafit [12], Genfit [13], MULCh [14], Denfert [15]
and BayesApp [16]. Additionally, we have recently
prototyped a web portal, ParamMD [17], for
parameterizing and simulating physical systems by
means of Molecular Dynamics (MD) using
different computational models (e.g. CHARMM,
GROMOS atomistic force fields) and highly
scalable simulation engines (NAMD, LAMMPS).
A GenApp generated gateway, NAMDrunner [18],
which allows execution of multi-scale NAMD
based MD simulations, is currently in alpha
testing.

The above mentioned and newly developed
portals will be continually updated with new
features, including new models, analysis tools,
advanced methods for parametrization and setup of
models of different resolution (all-atom vs. coarse-
grained) and others. These requirements demand
corresponding advancements to GenApp, which
can be exemplified by generating more dynamic
UI content, introducing complex functional
dependencies among various input fields, enabling
sophisticated workflows and execution staging.

5. Acknowledgments

This work is supported by the NSF grant CHE-
1265817 to E. Brookes. We are grateful to
application developers and their users for their
valuable feedback and suggestions.

6. References

[1] Brookes, E.H. 2014. An Open Extensible
Multi-Target Application Generation Tool for
Simple Rapid Deployment of Multi-Scale
Scientific Codes. XSEDE '14. ACM, doi:
10.1145/2616498.2616560

[2] Brookes, E.H., Anjum, N., Curtis, J.E., Marru,
S., Singh, R., and Pierce, M. (2015), The
GenApp framework integrated with Airavata
for managed compute resource submissions.
Concurrency Computat.: Pract. Exper.,
27(16):4292-4303, doi: 10.1002/cpe.3519.

[3] GenApp. http://genapp.rocks

[4] Brookes, E.H., Kapoor, A., Patra, P., Marru, S.,
Singh, R., Pierce, M. (2015) GSoC 2015
student contributions to GenApp and
Airavata, Concurrency Computat.: Pract.
Exper., 28(7):1960-1970,
doi:10.1002/cpe.3689

[5] Perkins, S., Butler, P., CCP-SAS –
Collaborative Computational Project for
advanced analyzes of structural data in
chemical biology and soft condensed matter.
http://ccpsas.org

[6] Curtis, J. E, Raghunandan, S., Nanda, H., and
S. Krueger. (2012) SASSIE: A program to
study intrinsically disordered biological
molecules and macromolecular ensembles
using experimental restraints. Comp. Phys.
Comm.183:382-389.
http://www.smallangles.net/sassie

[7] Brookes, E., Demeler., B, and Rocco, M.
(2010). The implementation of SOMO
(SOlution MOdeller) in the UltraScan
analytical ultracentrifugation data analysis
suite: enhanced capabilities allow the
reliable hydrodynamic modeling of virtually
any kind of biomacromolecule. Eur. Biophys.
J, 2010 doi:10.1007/s00249-009-0418-0,
http://somo.uthscsa.edu

[8] Wright, D. and Perkins, S., SCT software,
http://dww100.github.io/sct/

[9] http://gw165.iu.xsede.org/vortexshedding

[10] Marru S., Gunathilake L., et al. 2011. Apache
airavata: a framework for distributed
applications and computational workflows.

Proc. Workshop Gateway computing
environments. ACM

[11] Pedersen M. C., Arleth L. and Mortensen K.,
“WillItFit: a framework for fitting of
constrained models to small-angle scattering
data” J. Appl. Cryst. 46, 1894–1898, 2013

[12] Spinozzi F. and Beltramini M., “QUAFIT: A
Novel Method for the Quaternary Structure
Determination from Small-Angle Scattering
Data”, Biophys. J. 103, 511-521, 2012

[13] Spinozzi F. et al,“GENFIT: software for the
analysis of small-angle X-ray and neutron
scattering data of macromolecules in
solution”, J. Appl. Cryst. 47, 1132–1139,
2014

[14] Whitten A. E., Cai S., and Trewhella J.
“MULCh: ModULes for the Analysis of
Small-angle Neutron Contrast Variation Data
from Biomolecular Complexes.” J. Appl.
Cryst. 41, 222-226, 2008

[15] Koutsioubas, A. & Pérez, J. (2013).
“Incorporation of a hydration layer in the
`dummy atom' ab initio structural modelling
of biological macromolecules” J. Appl. Cryst.
46, 1884-1888

[16] Hansen, S. (2012). “BayesApp: a web site for
indirect transformation of small-angle
scattering data”. J. Appl. Cryst. 45, 566–567.

[17] https://somo.chem.utk.edu/parammd/ http://js-
170-47.jetstream-cloud.org/namdrunner/

http://js-170-47.jetstream-cloud.org/namdrunner/
http://js-170-47.jetstream-cloud.org/namdrunner/
https://somo.chem.utk.edu/parammd/
http://gw165.iu.xsede.org/vortexshedding
http://dww100.github.io/sct/
http://somo.uthscsa.edu/
http://www.smallangles.net/sassie
http://ccpsas.org/
http://genapp.rocks/

	1. Introduction
	2. Significance
	3. GenApp Structure, Technical Details
	4. Applications
	5. Acknowledgments
	6. References

