
Extended Abstract: Building applications from
definition files with GenApp

Emre Brookes* and Alexey Savelyev
Department of Biochemistry, The University of Texas Health Science Center

at San Antonio, 7703 Floyd Curl Drive,
San Antonio, TX 78229-3900

*Corresponding author: email: emre@biochem.uthscsa.edu

Abstract: GenApp is a tool for rapid deployment
of applications. GenApp builds fully functioning
applications from collections of definition files and
libraries of code fragments. Each application
requires two global definition files, which describe
the application and the menu structure. There are
any number of module definition files. Each
module definition file fully describes the interface
to the underlying executable. Each target
language, equivalently the language of the
produced application, also has a definition file
which describes how the target language code
fragments are assembled and transformed into the
produced application. This structure enables
target language agnostic development, helping
insure preservation of underlying executables in
an ever changing software environment landscape.
Interesting questions arise about how best
interactivity can be defined in a module definition
file. To address interactivity, we have not only
included advanced field types such as plots and
atomic structures, but have also added calculated
relationships between fields and introduced the
concept of “repeaters”, which can provide
dynamic field content.

1. Introduction

The GenApp [1,2,3,4] framework is designed
to simplify creation and deployment of local GUI
and web based applications over a collection of
modules. GenApp was originally conceived as a
tool to build applications for the jointly NSF and
UK's EPSRC funded CCP-SAS project [5]
wrapping a variety of underlying codes [6,7,8].
GenApp is successfully used in these and other
cases. This presentation will describe details of the
structure of GenApp, how it builds applications
and how GenApp facilitates definition file based
interactivity.

2. GenApp Structure

2.1 Roles

GenApp defines four primary roles. These are,
in order of descending C.S. expertise, the
framework developer, the target language
developer, the application developer and the
module developer. These roles parallel the
organization of GenApp as shown in Fig. 1. The
framework developer develops and maintains the
generator tool. The target language developer is
responsible for the contents of one or more target
languages and implements and maintains them by
building up code fragments and defining their
assembly. The application developer organizes
modules in a menu definition file and runs the
GenApp generator to create working applications.
Finally, the module developer wraps executable
modules by writing a module definition file and
ensuring the wrapped executable accepts defined
input and produces defined output.

This structure segregates the application and
module developers, which require minimal CS
expertise from the framework and target language
developers, which require advanced CS expertise.
This enables a researcher, acting as an application
and module developer, with an executable that they
wish to expose to rapidly deploy advanced user
interfaces. If a new target language, variant or
feature is developed by a target language
developer, it becomes available to all application
and module developers and they can deploy the
new target.

2.2 Modules

A module is some defined executable within
GenApp. The module definition file (Fig. 1)
contains all information about the module. This, of
course, includes all input and output fields. Each
field is uniquely defined with an id. In addition, a

Presented at Gateways 2016, San Diego Supercomputer
Center, La Jolla, CA, November 2-3, 2016.
https://gateways2016.figshare.com/

https://gateways2016.figshare.com/

primary attribute for each field is the type, e.g.
“integer”, “text”, “plot”, “atomicstructure”, etc.

2.3 Repeaters

Early on, module developer requirements
presented the necessity to define input fields which
appear to the user based upon the values of other
input fields. The GenApp answer to this was the
repeater structure. For example, a “checkbox”
field could have the attribute of repeater,
subsequently, other fields could reference a repeat
on the repeater's id. This enables a field to be
displayed dynamically to the user based upon the
setting of the “checkbox”. Current repeater types
include “checkbox”, “integer” and “listbox”. The
“checkbox” repeater has been described and a
reverse logic “checkbox” repeater is also available.
The “integer” repeater will create some number of
instances of the dependent repeat fields. The
“listbox” repeater displays dependent fields based
upon the “listbox” choice. Repeaters can be
arbitrarily nested.

2.4 Calculated Fields

Another module developer requirement was
the calculated field. In this case, an input field is
computed based upon values in other input fields
based upon a mathematical equation. This puts the
computation work within the user interface which
dynamically updates values. Calculated fields can
be based upon values of other calculated fields and
calculations can occur under repeaters.

3. Conclusion

GenApp is a tool for rapid deployment of
applications. Wrapping an executable as a module
can help preserve the module for future target
languages. Each executable is defined in a module
file which can describe dynamic content handled
fully with the user interface.

4. Acknowledgments

This work is supported by the NSF SSI grant
CHE-1265817 to E. Brookes.

Fig. 1. An overview of the GenApp framework. Four roles are defined at the top as areas of
responsibility. The application and module developers are simple roles and are appropriate for
researchers without CS expertise. The target language and framework developers require a much higher
level of CS expertise. This separation allows researchers to rapidly deploy applications in a variety of
target languages and take advantage of new developments within the framework without effecting their
underlying executable.

5. References

[1] Brookes, E.H. 2014. An Open Extensible
Multi-Target Application Generation Tool for
Simple Rapid Deployment of Multi-Scale
Scientific Codes. XSEDE '14. ACM, doi:
10.1145/2616498.2616560

[2] Brookes, E.H., Anjum, N., Curtis, J.E., Marru,
S., Singh, R., and Pierce, M. (2015), The
GenApp framework integrated with Airavata
for managed compute resource submissions.
Concurrency Computat.: Pract. Exper.,
27(16):4292-4303, doi: 10.1002/cpe.3519.

[3] GenApp. http://genapp.rocks

[4] Brookes, E.H., Kapoor, A., Patra, P., Marru,
S., Singh, R., Pierce, M. (2015) GSoC 2015
student contributions to GenApp and
Airavata, Concurrency Computat.: Pract.
Exper., 28(7):1960-1970,
doi:10.1002/cpe.3689

[5] Perkins, S., Butler, P., CCP-SAS –
Collaborative Computational Project for
advanced analyzes of structural data in
chemical biology and soft condensed matter.
http://ccpsas.org

[6] Curtis, J. E, Raghunandan, S., Nanda, H., and
S. Krueger. (2012) SASSIE: A program to
study intrinsically disordered biological
molecules and macromolecular ensembles
using experimental restraints. Comp. Phys.
Comm.183:382-389.
http://www.smallangles.net/sassie

[7] Brookes, E., Demeler., B, and Rocco, M.
(2010). The implementation of SOMO
(SOlution MOdeller) in the UltraScan
analytical ultracentrifugation data analysis
suite: enhanced capabilities allow the
reliable hydrodynamic modeling of virtually
any kind of biomacromolecule. Eur. Biophys.
J, 2010 doi:10.1007/s00249-009-0418-0

[8] Wright, D. and Perkins, S., SCT software,
http://dww100.github.io/sct/

