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Goals
• Review key points presented throughout the week
• Begin to integrate the statistics and data theme 

with the dynamic models and model structures
theme
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Where do 
parameters come 

from?
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A priori parameterization
• Use external data to determine values for 

the parameters in your model

CASCADE
study

Time since infection (years)
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A priori parameterization
• Use external data to determine values for 

the parameters in your model
• eg, time from seroconversion to death

• Plug estimates into models to determine 
expected dynamics
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Fitting models to data

• A priori parameterization
• Use external data to determine values for the 

parameters in your model
• Rarely possible for all model parameters
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Fitting models to data

• A priori parameterization
• Use external data to determine values for the 

parameters in your model
• Rarely possible for all model parameters

• Trajectory matching

• Feature matching
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Likelihood of prevalence
(given data)

Observation model
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Likelihood of prevalence
trajectory (given data)
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Why do we fit models 
to data in infectious 

disease 
epidemiology?
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Koopman’s Inference 
Robustness Assessment  
Framework

Koopman et al. 2014. Slide courtesy of JS Koopman (with modification).
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1. Select the policy inference to be pursued

Koopman et al. 2014. Slide courtesy of JS Koopman (with modification).
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Inference Differs Across 
Parameter Space
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sources of available data 
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new data collection to 

justify getting new data.

1. Select the policy inference to be pursued
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Koopman’s Inference 
Robustness Assessment  
Framework

4. Make inference across 
parameter space

Inference Same Across 
Parameter Space

5. Relax Assumptions 
with More Realistic 

Model

Inference Robustness
Assessment Loop

Koopman et al. 2014. Slide courtesy of JS Koopman (with modification).
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Koopman’s Inference 
Robustness Assessment  
Framework

3. Constrain Parameter 
Space with Data 

4. Make inference across 
parameter space

Inference Differs Across 
Parameter Space

6. Find other types and 
sources of available data 
OR study cost benefit of 
new data collection to 

justify getting new data.

Inference 
Identifiability
Assessment 

Loop

Koopman et al. 2014. Slide courtesy of JS Koopman (with modification).
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• Assess inference robustness to realistic 
relaxation of simplifying model assumptions

Koopman’s Inference 
Robustness Assessment  
Framework

Koopman et al. 2014. Slide courtesy of JS Koopman (with modification).
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• Assess inference robustness to realistic 
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• Assess inference robustness to realistic 
relaxation of simplifying model assumptions

• Pursue complexity that matters by keeping 
models as simple as possible but not so simple 
that they lead to an incorrect inference

Koopman’s Inference 
Robustness Assessment  
Framework

Validate the inference!
not (just) the model or method you’re working with

Koopman et al. 2014. Slide courtesy of JS Koopman (with modification).



0

Summary
• Model parameters can be estimated directly or fit 

to a dynamic model
• Integration of models and data is essential to make 

sure our models are grounded in the real world
• Simple models are easily understood but make 

strong assumptions
• Models can inform data collection priorities
• Add complexity gradually, to increase 

understanding and validate the policy inference



0
0
0

Consequences of 
Heterogeneity

Public Health, 
Epidemiology, and Models

Introduction to Dynamics 
of Infectious Diseases

Foundations of Dynamic 
Modeling

(Hidden) Assumptions of 
Simple ODE’s

Breaking 
Assumptions!

Difference Equations and 
Discrete Time Intervals

Discrete Individuals and 
Finite Populations

Non-exponential Waiting 
Times

Heterogeneity tutorial

Introduction to Thinking 
about Data

Introduction to Infectious 
Disease Data

Thinking about Data II: 
Confounding, bias, and 

noise

Working with Data and 
Databases (Data 

Wrangling)

Formulating Research 
Questions

Creating a Model World

Study Design and Analysis: 
Epi methods & RCTs

Introduction to Statistical 
Philosophy

Variability, Sampling 
Distributions, and 

Simulation

HIV in Harare tutorial

Integration!

Introduction to Likelihood

Fitting Dynamic Models I -
III

Modeling for Policy

Model Assessment

Gillespie, Stochastic R-F, 
Chain Binomial Models

Decision Tree Framework 
for Trial Designs

Stochastic Modelling II
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