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Need for Technical 
Simplicity

(the perils of infinite employment prospects)

MOTIVATION



“Do Feynman rules represent a 
useful solution??”

trees: semi-classical

loops: increasing 
quantum corrections

Complexity of Carrying Unphysical Information
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Textbook approach crumbles:

A single 3 
loop diagram:

5 loop diagram:
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TERMS

~1026   
TERMS

4 loop diagram:

BUT FINAL EXPRESSIONS ARE TRACTABLE

Feynman rules for a graviton: 171 terms per vertex
3 terms per edge

Vast majority of terms: unphysical freedom that must cancel
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MOST SYMMETRIC 4D
THEORY, N=8 SUGRA
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Generic multiloop methods and application to N = 4 super-Yang-Mills 32
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Figure 18. Three-loop four-point cubic graphs considered in the main text. The
external momenta is outgoing and the shaded (red) edges mark the application of
kinematic Jacobi relations used in (55). Note that only graphs (a)–(l) contribute to
the N = 4 sYM amplitude where the duality between color and kinematics is made
manifest.

5.3. Three-loop example

In this section we reexamine the four-point three-loop N = 4 sYM amplitude using

the duality between color and kinematics [28]. This amplitude was originally given in

[26, 27] in terms of nine cubic diagrams. For this exercise we start by considering a

larger set of 25 graphs, which are related to any of the original nine diagrams by a

single application of a kinematic Jacobi relation. However, eleven of these diagrams
contain triangle subgraphs, which the no-triangle property of N = 4 sYM [1] suggests

will not contribute. After removing those with one-loop triangle subgraphs we have the

14 graphs depicted in figure 18. We will see that this set of diagrams is sufficiently large

to admit a manifest representation of the duality.

Now we will introduce the kinematic Jacobi relations that the numerators of each

diagram must satisfy. Each numerator depends on three independent external momenta

add all other particles

Bern, JJMC, Dixon, Kosower, Roiban ’07
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Physical (on-shell) tree-level amplitudes contain all the information 
necessary to build all loop-level amplitudes

Bern, Dixon, and Kosower (‘96)
Bern, Dixon, Dunbar, and Kosower (‘94,’95)

Some secrets obscured in the Lagrangian

Physical (on-shell) three-vertices contain all the information necessary 
to build all tree-level amplitudes Britto, Cachazo, Feng, and Witten (’05)

Calculate with physical (on-shell) quantities:



Physical gluon 3-vertex:

= x

Physical graviton 3-vertex:
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JJMC,  Johansson (2011)

Five point 1-loop (no triangles, no bubbles)

Complexity of Insisting on 
Local Representations



Five point 2-loop (no triangles, no bubbles)
JJMC,  Johansson (2011)



JJMC,  Johansson (to appear)Five point 3-loop (no bubbles, no triangles)
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VERIFIABILITY



Unitarity

Bern, Dixon, and 
Kosower (‘96)

Bern, Dixon, Dunbar, 
and Kosower (‘94,’95)

Britto, Cachazo, and 
Feng (’04)



SPANNING CUTSMethod of Maximal Cuts
Developed in: arXiv:0705.1864, Z.Bern, JJMC, H. Johansson, D. Kosower.  

applied to 3-loop SUGRA: arXiv:0808.4112 Z. Bern, JJMC, L. Dixon, H. Johansson, D. Kosower, R. Roiban.
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On the Relationship between Yang-Mills Theory and Gravity
and its Implication for Ultraviolet Divergences

Z. Bern⋆,1, L. Dixon†,2, D.C. Dunbar♯,3, M. Perelstein†,2 and J.S. Rozowsky⋆,1

⋆Department of Physics, University of California at Los Angeles, Los Angeles, CA 90095-1547

†Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

♯Department of Physics, University of Wales Swansea, Swansea, SA2 8PP, UK

Abstract

String theory implies that field theories containing gravity are in a certain sense ‘products’ of
gauge theories. We make this product structure explicit up to two loops for the relatively simple
case of N = 8 supergravity four-point amplitudes, demonstrating that they are ‘squares’ of N = 4
super-Yang-Mills amplitudes. This is accomplished by obtaining an explicit expression for the D-
dimensional two-loop contribution to the four-particle S-matrix for N = 8 supergravity, which we
compare to the corresponding N = 4 Yang-Mills result. From these expressions we also obtain the
two-loop ultraviolet divergences in dimensions D = 7 through D = 11. The analysis relies on the
unitarity cuts of the two theories, many of which can be recycled from a one-loop computation.
The two-particle cuts, which may be iterated to all loop orders, suggest that squaring relations
between the two theories exist at any loop order. The loop-momentum power-counting implied
by our two-particle cut analysis indicates that in four dimensions the first four-point divergence
in N = 8 supergravity should appear at five loops, contrary to the earlier expectation, based on
superspace arguments, of a three-loop counterterm.

1Research supported in part by the US Department of Energy under grant DE-FG03-91ER40662
2Research supported by the US Department of Energy under grant DE-AC03-76SF00515.
3Research supported in part by the Leverhulme Foundation.
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∑

N=4 states

Atree
5 (ℓ1, 1, 2, ℓ3, ℓ2)A

tree
5 (−ℓ3, 3, 4,−ℓ1,−ℓ2) = −i st Atree

4 (1, 2, 3, 4)

×
[ s

(ℓ1 − k4)2(ℓ3 + k2)2(ℓ1 + ℓ2)2(ℓ2 + ℓ3)2
+

s

(ℓ3 − k3)2(ℓ1 + k1)2(ℓ1 + ℓ2)2(ℓ2 + ℓ3)2

+
t

(ℓ3 − k3)2(ℓ1 − k4)2(ℓ3 + k2)2(ℓ1 + k1)2

]

.

(5.13)

This equation actually holds even before carrying out the loop-momentum (or phase-space) integral.

In the calculations used to derive the results of ref. [17] eq. (5.13) was obtained at the level of the

integrands, with all states carrying four-dimensional momenta and helicities, but then it was argued

that the light-cone superspace power-counting of Mandelstam [53] ruled out corrections coming from

the (−2ϵ)-dimensional components of the loop momenta. Since this argument is based on superspace

cancellations it applies to the integrands before integration over loop momenta, and works for D-

dimensional external states as well. (A similar argument is also applied in appendix B.4.)

The second sum over N = 4 states is similar, but more complicated, involving three different

cuts of planar double-boxes and ten of non-planar ones,
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(ℓ1 + k1)2(ℓ3 + k2)2(ℓ1 − k4)2(ℓ3 − k3)2

−
u

(ℓ2 + k1)2(ℓ3 + k2)2(ℓ1 − k4)2(ℓ2 − k3)2
−

s

(ℓ1 + ℓ3)2(ℓ2 + k1)2(ℓ3 − k3)2(ℓ1 − k4)2

+
t

(ℓ2 + k1)2(ℓ3 + k2)2(ℓ3 − k3)2(ℓ1 − k4)2
−

s

(ℓ1 + ℓ3)2(ℓ1 + k1)2(ℓ3 + k2)2(ℓ2 − k4)2

−
u

(ℓ1 + k1)2(ℓ2 + k2)2(ℓ3 − k3)2(ℓ2 − k4)2
+

t

(ℓ1 + k1)2(ℓ3 + k2)2(ℓ3 − k3)2(ℓ2 − k4)2

+
t

(ℓ2 + k1)2(ℓ3 + k2)2(ℓ3 − k3)2(ℓ2 − k4)2

]

.

(5.14)

The complete N = 8 result is given by simply inserting the N = 4 results (5.13) and (5.14) into

eq. (5.12).

This may be compared with the s-channel three-particle cuts of eq. (4.2). Taking all s-channel
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Satisfies planar 3-particle color-ordered cut:

(parts of) the N = 4 Yang-Mills and N = 8 supergravity four-point amplitudes to all loop orders,

extending the tree and one-loop relationships summarized in figs. 1 and 2.

Using the two-loop N = 4 Yang-Mills amplitudes discussed in the previous section, we can im-

mediately obtain candidate expressions for the corresponding N = 8 amplitudes simply by dropping

the color factors and squaring the coefficients and numerators of every scalar integral. In section 5.2

we will verify that this procedure is valid to all loop orders for the entirely two-particle constructible

terms. For the two-loop case, in section 5.3 we also evaluate the three-particle cuts, allowing for

a complete reconstruction of this amplitude, proving that the squaring procedure gives the correct

two-loop results. (Direct evaluations of the two- and three-particle cuts using the four-dimensional

helicity basis may be found in appendices A and B.)

4.1 Two-Loop N = 8 Supergravity Amplitudes

We now obtain the two-loop N = 8 four-graviton amplitudes by squaring the corresponding coef-

ficients appearing in the N = 4 four-point amplitudes (3.1), after stripping away the color factors.

The N = 8 amplitudes are thus expected to be,

M2-loop
4 (1, 2, 3, 4) = −i

(κ

2

)6
[s12s23 Atree

4 (1, 2, 3, 4)]2
(

s2
12 I

2-loop,P
4 (s12, s23) + s2

12 I
2-loop,P
4 (s12, s24)

+ s2
12 I

2-loop,NP
4 (s12, s23) + s2

12 I
2-loop,NP
4 (s12, s24) + cyclic

)

.

(4.1)

Here Atree
4 is the N = 4 Yang-Mills four-gluon tree amplitude, the integrals are defined in eq. (3.2)

(see fig. 3) and ‘+ cyclic’ instructs one to add the two cyclic permutations of (2,3,4), just as in

eq. (3.1). Using eq. (2.20) we may re-express the overall coefficient in terms of the gravity tree

amplitude to obtain the final form for the amplitude,

M2-loop
4 (1, 2, 3, 4) =

(κ

2

)6
s12s23s13 M tree

4 (1, 2, 3, 4)
(

s2
12 I

2-loop,P
4 (s12, s23) + s2

12 I
2-loop,P
4 (s12, s24)

+ s2
12 I

2-loop,NP
4 (s12, s23) + s2

12 I
2-loop,NP
4 (s12, s24) + cyclic

)

.

(4.2)

Figure 7: The expected relationship between two-loop contributions to N = 8 four-graviton amplitudes and
N = 4 four-gluon amplitudes: the graviton coefficients are squares of the gluon coefficients. The N = 4 and
N = 8 contributions depicted here are to be multiplied respectively by factors of −g6stAtree

4 (dropping the
group theory factor) and −i(κ/2)6[stAtree

4 ]2.
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integral of

∑

N=4 states

Atree
5 (ℓ1, 1, 2, ℓ3, ℓ2)A

tree
5 (−ℓ3, 3, 4,−ℓ1,−ℓ2) = −i stAtree

4 (1, 2, 3, 4)

×
[ s

(ℓ1 − k4)2(ℓ3 + k2)2(ℓ1 + ℓ2)2(ℓ2 + ℓ3)2
+

s

(ℓ3 − k3)2(ℓ1 + k1)2(ℓ1 + ℓ2)2(ℓ2 + ℓ3)2

+
t

(ℓ3 − k3)2(ℓ1 − k4)2(ℓ3 + k2)2(ℓ1 + k1)2

]

.

(5.13)

This equation actually holds even before carrying out the loop-momentum (or phase-space) integral.

In the calculations used to derive the results of ref. [17] eq. (5.13) was obtained at the level of the

integrands, with all states carrying four-dimensional momenta and helicities, but then it was argued

that the light-cone superspace power-counting of Mandelstam [53] ruled out corrections coming from

the (−2ϵ)-dimensional components of the loop momenta. Since this argument is based on superspace

cancellations it applies to the integrands before integration over loop momenta, and works for D-

dimensional external states as well. (A similar argument is also applied in appendix B.4.)

The second sum over N = 4 states is similar, but more complicated, involving three different

cuts of planar double-boxes and ten of non-planar ones,

∑

N=4 states

Atree
5 (1, ℓ1, ℓ3, 2, ℓ2)A

tree
5 (3,−ℓ3,−ℓ1, 4,−ℓ2) = −i stAtree

4 (1, 2, 3, 4)

×
[

−
s

(ℓ1 + ℓ3)2(ℓ3 + k2)2(ℓ1 + k1)2(ℓ2 − k3)2
+

t

(ℓ1 + k1)2(ℓ2 + k2)2(ℓ2 − k3)2(ℓ1 − k4)2

+
t

(ℓ1 + k1)2(ℓ3 + k2)2(ℓ1 − k4)2(ℓ2 − k3)2
−

s

(ℓ1 + ℓ3)2(ℓ2 + k2)2(ℓ3 − k3)2(ℓ1 − k4)2

+
t

(ℓ1 + k1)2(ℓ2 + k2)2(ℓ1 − k4)2(ℓ3 − k3)2
+

t

(ℓ1 + k1)2(ℓ3 + k2)2(ℓ1 − k4)2(ℓ3 − k3)2

−
u

(ℓ2 + k1)2(ℓ3 + k2)2(ℓ1 − k4)2(ℓ2 − k3)2
−

s

(ℓ1 + ℓ3)2(ℓ2 + k1)2(ℓ3 − k3)2(ℓ1 − k4)2

+
t

(ℓ2 + k1)2(ℓ3 + k2)2(ℓ3 − k3)2(ℓ1 − k4)2
−

s

(ℓ1 + ℓ3)2(ℓ1 + k1)2(ℓ3 + k2)2(ℓ2 − k4)2

−
u
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+

t

(ℓ1 + k1)2(ℓ3 + k2)2(ℓ3 − k3)2(ℓ2 − k4)2

+
t

(ℓ2 + k1)2(ℓ3 + k2)2(ℓ3 − k3)2(ℓ2 − k4)2

]

.

(5.14)

The complete N = 8 result is given by simply inserting the N = 4 results (5.13) and (5.14) into

eq. (5.12).

This may be compared with the s-channel three-particle cuts of eq. (4.2). Taking all s-channel
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Satisfies non-planar 3-particle color-ordered cut:



Lecture 4 Slides -JJMC



Color-Kinematics and 
Double Copy Construction



Consider a Villanelle















•Minimal information in.

•Relations propagate this 
information to a full solution.

What’s going on?



Consider an Amplitude



Original solution of 
three-loop four-point 

N=4 sYM and N=8 sugra

Bern, JJMC, Dixon, Kosower, Johansson, Roiban ’07
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Original solution of 
three-loop four-point 

N=4 sYM and N=8 sugra

Bern, JJMC, Dixon, Kosower, Johansson, Roiban ’07



Bern, JJMC, 
Johansson, ‘10



Bern, JJMC, 
Johansson, ‘10



Bern, JJMC, 
Johansson, ‘10



Color and Kinematics dance together.

Solving Yang-Mills theories means 
solving Gravity theories.

Bern, JJMC, Johansson (’08,’10)



Color factors and 
numerator factors 

satisfy similar lie algebra 
properties

Color-Kinematic Duality!

Jacobi

Vertex 
Antisymmetry

= +

= -

Bern, JJMC, Johansson (’08,’10)

Generic D-dimensional YM theories have a 
fascinating structure at tree-level

Atreem =
X

G2cubic

c(G)n(G)
D(G)



Bern, JJMC, Johansson (’08,’10)

�iM tree
n =

X

G2cubic

n(G)ñ(G)
D(G)

YM’s Color-Kinematic duality makes 
manifest gravitational double copy structure:

Generic D-dimensional YM theories have a 
fascinating structure at tree-level

Atreem =
X

G2cubic

c(G)n(G)
D(G)



GR = YM^2



(`i)L
gn`2+2L

Aloop=
X

G2cubic

Z LY

l=1

dDpl
(2ı)D

1

S(G)
n(G)c(G)
D(G)

Valid multi-loop generalization?
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CONJECTURE: for all graphs, can impose CK on every edge:

Consequence of unitarity: double copy structure holds.
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CONJECTURE: for all graphs, can impose CK on every edge:

(`i)L+1
(»=2)n`2+2L

Mloop

=

X

G2cubic

Z LY

l=1

dDpl
(2ı)D

1

S(G)
n(G)~n(G)
D(G)

Consequence of unitarity: double copy structure holds.



Double-copy
Numerator
Algebra

The scattering amplitudes of many  
relativistic theories admit a: 

This points to previously 
hidden structure in many 

theories.

Structure yet to be generally 
understood at the level of 

the action.
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Many theories amplitudes are double copy!



Double-copy
Numerator
Algebra

The scattering amplitudes of many  
relativistic theories admit a: 

This points to previously 
hidden structure in many 

theories.

Structure yet to be generally 
understood at the level of 

the action.



Bi-Adjoint Scalar: color

spin-1

(S)Gr (…(S)Einstein-YM…):

NLSM / Chiral Lagrangian: “color”

(S)Born-Infeld:

⌦
⌦
⌦
⌦
⌦

(S)YM (…(S)QCD…):

Open String:

Closed String:

spin-1

even-spin-0

color

color

spin-1

even-spin-0spin-1

⌦Special Galileon: even-spin-0even-spin-0

MANY Theories are Double CopiesKey Point:

BCJ (’08) Bjerrum-Bohr, Damgaard, Vanhove; Steiberger; Feng et al; Mafra, Schlotterer, (’08-’11); Johansson, Ochirov

Bern, de Freitas, Wong (’99); Bern, Dennen, Huang; Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O’Connell

KLT(’86); BCJ (’08); Chiodaroli, Gunaydin, Johansson, Roiban; Johansson, Ochirov; Johansson, Kälin, Mogull

Chen, Du ’13

Cachazo, He, Yuan ’14

Broedel, Schlotterer, Stieberger

Broedel, Schlotterer, Stieberger; 

⌦ spin-1↵0Cachazo, He, Yuan ’14

⌦spin-1 corrected spin-1↵0

Z-theory:
Broedel, Schlotterer, Stieberger; JJMC, Mafra, Schlotterer

⌦ “color”↵0

Cachazo, He, Yuan ’14 Cheung, Shen ’16

Cheung, Shen ’16



color

MANY Theories are Double CopiesKey Point:

spin 0,1/2,1

↵0

Bi-Adjoint Scalar (S)Gr  
(…(S)Einstein-YM…)

(S)Born-Infeld

(S)YM  
(…(S)QCD…)

Open String Closed String

NLSM

Ingredients:

Z-theory

Special Galileon

For all these theories:



Physics = Geometry
(the best polytopes are graphs of graphs!)

a geometric guide to color-kinematics 



t̂

û

Color-Kinematics
c(g)

n(g)

Convenient language: graphs of graphs
JJMC



Graphs contributing to an ordered tree (color-stripped), 
generate the 1-skeleton of Stasheff polytopes joined only by 
t̂

t̂ Note: same color-order!

(these polytopes are also called associahedra)

5pt example

JJMC



You might think you need (m-2)! of these color-ordered 
amplitudes to capture everything because this is what 

is required to touch every vertex at least once:

JJMC



In fact, such a choice is the KK-basis, proven sufficient by 
Del Duca, Dixon, and Maltoni

You might think you need (m-2)! of these color-ordered 
amplitudes to capture everything because this is what 

is required to touch every vertex at least once:

JJMC



 But notice, because of color-kinematics, only (m-2)! 
nodes are needed to specify both the color factors and 

numerator factors of everyone

JJMC



 But notice, because of color-kinematics, only (m-2)! 
nodes are needed to specify both the color factors and 

numerator factors of everyone

JJMC



This reduces the set of necessary color-ordered 
amplitudes (associahedra) to (m-3)! : “BCJ” relations

 But notice, because of color-kinematics, only (m-2)! 
nodes are needed to specify both the color factors and 

numerator factors of everyone

JJMC



(these polytopes are called permutahedra)

 At every multiplicity the masters can be chosen to form 
the 1-skeleton of a polytope related by on every internal 
edge of the relevant scattering graphs

û

123

213

231

321

312

132

x y z

45

û

û

û û

û

û

JJMC



(generalized gauge freedom)

Can linearly solve for the (m-2)! numerators of the masters 
in terms of the (m-3)! “BCJ” independent color-ordered 
amplitudes. In fact you get (m-3)! numerators in terms of the 
color-ordered amplitudes and (m-3)(m-3)! free functions.

JJMC



Building blocks at 6-points:

color-ordered amplitude

associahedron

set of masters

permutahedron

JJMC



105 
cubic graphs at 6 pt 

JJMC



x y z

56

w
masters fixed by 6

set of masters full amplitude

JJMC



1. Gauge invariant building blocks that speak to 
the theory: color-ordered amplitudes, associahedra 

2. CK means only need to specify the boundary 
data: the master graphs, given by the relevant 
permutahedron 

3. Can solve for the full amplitude efficiently in 
terms of the (n-3)! independent associohedra

TREE-LEVEL SUMMARY

physics <—> geometry

= f( )
(linear)

JJMC



Full YM:

Atreem =
X

G2cubic

c(G)n(G)
D(G)

spin-1⌦color

color-stripped YM

Atree
m (⇢) =

X

G2⇢

n(G)
D(G)

(same as kinematic-
stripped gravity 

 �iM tree
n =

X

G2cubic

n(G)ñ(G)
D(G) )

kinematic-stripped YM

Ctree
m (⇢) =

X

G2⇢

c(G)
D(G)

(same as color-stripped 
Bi-Adjoint Scalar 

 
)Ctree

m (⇢) =
X

G2cubic

c(G)c̃(G)
D(G)

Can (pseudo) invert:
= f( )
(linear)

n(G) =
X

⇢

D(G|⇢)A(⇢)



Can only (pseudo) invert iff A(1,2,   ) aren’t independent 

n(G) =
X

⇢

D(G|⇢)A(⇢)

�

This means additional relations giving (n-3)! BCJ relations:

A(1, 2,�) =
X

�,⇢

f�,⇢A(1, 2, ⇢, n)

If assume A’s proportional to gen. Park-Taylor factors 
can derive the scattering equations.

Scattering equations [see also Dolan’s talk]

Universal, independent of dim or theory: scattering equations

Ea :=
nX

b=1
b 6=a

sa b
�a � �b

= 0, 8a 2 {1, 2, . . . , n}.

key idea: auxiliary space that “knows” locality & unitarity

I kinematic space of n massless particles Kn

I moduli space of n-punctured Riemann spheres M0,n

I the equations map singularities in Kn to those of M0,n

) massless tree amps from solutions of the equations on M0,n

Cachazo, He, Yuan

Gross, Mende 

Witten ; Roiban, Spradlin, Volovich

High energy strings:
4D connected prescription twistor strings:

D-dimensions YM+Grav+….

Foundation of the powerful and elegant CHY formalism. 



color-kinematics KLT-type relations
Bern, JJMC, Johansson (2008)

Field theory KLT-type matrix Bern, Dixon, Perelstein, Rozowsky (1999)

/ momentum kernel
Bjerrum-Bohr, Damgaard,Sondergaard, Vanhove (2011)

Bjerrum-Bohr, Damgaard, Feng, Sondergaard (2010)

Mtree
m =

X

G2cubic

n(G)ñ(G)
D(G)

=
X

g2cubic,⇢,⌧

(D(g, ⇢)A(⇢))(D(g, ⌧)Ã(⌧))

D(g)

=
X

⇢,⌧

A(⇢)

0

@
X

g2cubic

D(g, ⇢)D(g, ⌧)

D(g)

1

A Ã(⌧))

=
X

⇢,⌧

A(⇢)S0(⇢|⌧)Ã(⌧)



⇢2 ⇢n�1

1 n

c(⇢) =

color-kinematicsKLT-type relations

=
X

⇢

A(⇢)c(⇢)  Del Duca, Dixon, Maltoni (1999)

Atree
m (⇢)=

X

G2cubic

n(G)c(G)
D(G)

=
X

⇢,⌧

A(⇢)S0(⇢|⌧)C(⌧)
⇢3

color weights of permutahedron:
relies only on color-Jacobi satisfaction

c(⇢) =
X

⌧

S0(⇢|⌧)C(⌧) D(g(⇢)|⌧) = S0(⇢|⌧)



⇢2 ⇢n�1

1 n

⇢3

kinematic weights of permutahedron:
relies only on kinematic-Jacobi satisfaction

Mtree
m (⇢)=

X

G2cubic

n(G)ñ(G)
D(G)

=
X

⇢,⌧

A(⇢)S0(⇢|⌧)Ã(⌧)

=
X

⇢

A(⇢)ñ(⇢) ñ(⇢) =

DDM basis for 
Gravity!

Closed form (non-local) color-dual numerators:

ñ(⇢) =
X

⌧

S0(⇢|⌧)Ã(⌧) Kiermier; Bjerrum-Bohr, Damgaard, 
Sondergaard, Vanhove (2010)

color-kinematicsKLT-type relations



By introducing ansatze. 

By introducing massive over-redundancy in graphs:

He, Schlotterer, Zhang By recycling forward limits & CHY formalism:

JJMC

Can generalize c/k numerators to off-shell multi-loop:

By exploiting BRST invariance of pure-spinor superstrings: Mafra, 
Schlotterer

BCJ; BCDJR; CJ; Bern, Davies, Dennen, Huang, 
Nohle; Johansson, Ochirov; Mogull, O’Connell; 
Johanson, Kälin, Mogull; . . .

Can generalize BCJ amp relns at loops: Vanhove, Tourkine; Hohenegger, 
Stieberger; He, Schlotterer; Boels, 
Isermann 

Can take CHY tree-rep to loop integrand via ambitwistor string:
Adamo, Casali, Skinner; Geyer, Monteiro, Mason, Tourkine; He, Yuan; 

Baadsgaard, Bjerrum-Bohr, Bourjaily, Damgaard, Feng 

(FIRST 5-loop N=8 SG Calc: Form Factor!!!!)Yang


