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Abstract: In this work we catalog patterns, 

practices and trends we have seen from our 
experiences deploying science gateways at the 
NERSC supercomputing center. We cover the 
following topics: Sharing Data Over The Web, 
Web Frameworks for Science, Web IDEs and 
Interactive HPC, HTTP APIs, Federated Identity 
and Single Sign-On, Edge Services, Data Transfer 
Services, Cloud Hosted Portals, and Containers. 
This is our attempt to share what we have learned 
with the community, and to identify key aspects of 
science gateway deployment and development.  

1. Introduction 
Science gateways that enable web access to 

high performance computing and data resources 
have played a key role in enabling scientific 
discovery at the National Energy Research 
Scientific Computing Center (NERSC). NERSC is 
the primary scientific computing facility for U.S. 
Department of Energy Office of Science 
researchers. Science gateways provide an 
abstraction layer for users that don’t need or want 
to deal with backend middleware, UNIX command 
lines and batch scripts. Web interfaces create 
science-centric views to data and enable new 
discoveries and insights through collaborative tools 
and rich interfaces. Our work over the last few 
years has focused on building and deploying 
science gateways and related infrastructure that can 
interact with scientific data and computation at 
NERSC. 

Through our experiences, we have learned a 
number of useful lessons, developed several best 
practices and identified patterns that seem to be 
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repeated in many of the applications that we have 
worked on. This paper is an attempt to enumerate 
and describe some of the trends, patterns and 
practices that we have come across so that others 
in the community may benefit from our 
experience.  

2. Patterns and Practices 
2.1 Sharing Data Over The Web 

For a significant number of our users, simple 
web access to data stored at NERSC is a huge win. 
Since science is now a collaborative effort, 
involving large teams of people, the ability to 
simply share data easily with collaborators, as well 
as with the broader community becomes critical. 
To ensure a broad reach, it is also important to do 
this without requiring special software on part of 
the end user.  

At NERSC we offer scientific users the ability 
to make files easily available over HTTP by simply 
placing them in a special directory in their project 
space. Files placed in this directory are 
automatically visible over the web at a project 
URL - this is the simplest way to create web access 
to data with no administrator intervention, but it 
enables a wide range of scientific sharing and 
collaboration. For example, the ATLAS 
experiment at CERN takes advantage of this 
simple but scalable method of data sharing. 

For public data, we typically mount the file-
system in read-only mode on the web server to 
prevent unauthorized writing to the files.   

With the advent of rich JavaScript and Static 
HTML sites, this model also allows for more 
sophisticated sites built using the JAM (JavaScript, 
APIs, and Markup) Stack [1] since the web-
enabled directories can serve up HTML and 
JavaScript as well.  



2.2 Web Frameworks for Science 
To truly leverage the power of the web, we 

expect science gateways to go provide more 
advanced tools that go beyond static data sharing. 
More complex web portals often require the use of 
web frameworks that provide full-stack web 
application functionality. A number of web 
applications that we see at NERSC are built using 
a variant of the Model-View-Controller pattern, 
and make use of common open-source frameworks 
like Django or Flask (for Python), Ruby on Rails 
(Ruby) or Angular or Ember (JavaScript). These 
frameworks provide a separation of concerns 
between the data store (typically called the 
“model”), the front end (the “view”) and the 
business logic (typically called the “controller”). 

Beyond the MVC model, we also see higher-
level frameworks that also provide tools and 
functionality for developing scientific applications 
and integration with HPC. For instance, tools like 
Galaxy [2] allow users to build workflows into 
their scientific applications. HubZero [3] enables 
full-featured scientific portals, with hooks to run 
jobs or manage data on backend resources. 

These frameworks can be hosted in a number 
of different ways – we describe some of the 
deployment models later in sections 2.6, 2.8 and 
2.9 (edge service nodes, cloud deployments and 
containers) 

2.3 Web IDEs and Interactive HPC 
An interesting and increasingly popular 

method to interact with scientific resources is 
through interactive web consoles and notebooks. 
These give users the power of a full programming 
language environment with the convenience and 
usability of the web. 

In particular, the Jupyter platform has been 
extremely popular as a means for exposing 
scientific computing through web-based 
notebooks. These notebooks combine narrative 
inline documentation, live code and interactive 
visualizations in a single interface and can make 
for a very powerful tool to enable iterative human-
in-the-loop analysis, as well as to serve as a live 
document of the scientific process. Originally built 
around Python, Jupyter now supports over 100 
different language kernels [4]. 

At NERSC we have deployed the Jupyterhub 
platform to enable a multi-user notebook 
environment, with direct access to the underlying 

HPC system, compute jobs and large datasets 
stored on NERSC filesystems [5]. Similarly, we 
have also deployed R-Studio - a full IDE for the R 
programming language that can give users the 
power of a programming environment directly over 
the web, with access to the HPC environment. This 
means that users no longer need to think about sub-
setting and downloading data and pulling it down 
on their local machines. Instead, the analysis and 
programming tools operate on the data directly at 
the HPC center over the web. 

2.4 HTTP APIs 
The past decade has seen rapid growth in the 

web services model, where web applications 
interact with backend services through a 
programmatic interface delivered over HTTP. 
REST [6] and other similar models for exposing 
data over a programmatic API have become 
ubiquitous. We also see this trend in Science 
Gateway services, where the gateway front end 
communicates with a REST API layer that 
provides most of the core functionality for 
interfacing with scientific data and compute 
resources. 

Functionality is exposed via HTTP URI 
endpoints that encapsulate resources in conjunction 
with HTTP verbs (GET, PUT, POST, DELETE, 
HEAD etc.) and request parameters, with results 
being returned in a structured data object such as 
JSON. This makes it possible to capture common 
pieces of functionality used by multiple gateways 
under a single programmatic API. 

At NERSC we have deployed the NEWT [7] 
service to provide a REST API for HPC. NEWT 
enables key features like file transfer, querying of 
data, scientific computations, job workflow 
management, user information through a common 
web API. We also see this pattern in similar tools 
at other sites, such as the Agave [8] platform and 
the Apache Airavata [9] framework. 

Web APIs facilitate another pattern that we 
often find helpful for making large datasets 
available. That is, they allow for downloading or 
working with subsets of the full dataset. In the 
context of shared datasets for download, one can 
allow the user to specify a specific slice through an 
HDF5 file using tools like PyDAP [10], for 
example. In a web application, one can enable user 
interactions that work with relatively small subsets 
of the data at a time or that leverage HPC resources 



to operate on larger data chunks. Rather than 
requiring the user to download a very large file 
over HTTP and attempt to manipulate it locally, 
one can operate on a subset on the HPC side and 
send only the result to the client. This improves the 
perceived performance of the application and the 
network. 

The Advanced Light Source SPOT portal [17] 
illustrates the power of APIs as a means to interact 
with large scientific resources where the science 
gateway communicates with the a common REST 
API to submit jobs, browse datasets and visualize 
results in real-time. 

2.5 Federated Identity and Single Sign-On 
Single Sign-On in conjunction with Federated 

Identity implement common authentication and 
authorization services for science gateways, 
especially in the academic and governmental 
research space where users typically belong to a 
“home” institution like a university or national 
laboratory. In this context, it makes a lot of sense 
for the science gateway to delegate authentication 
back to the home institution and to simply 
consume the identity, along with appropriate 
authorization privileges. It also means that the 
science gateway no longer needs to implement its 
own custom authentication or store sensitive 
information. 

The Shibboleth framework and InCommon 
federation [11] have greatly simplified this 
process, as most major universities and national 
laboratories are part of this federation. Tools like 
CILogon [12] facilitate the use of a common X509 
credential, using Shibboleth as the underlying 
framework that can be used for accessing backend 
resources.  

Single sign-on is not just limited to academic 
federations. We also see commercial single-sign-
on services like Janrain and Auth0 provide 
mechanisms for users to login via external 
identities (such as Google or Facebook accounts). 
Protocols like OAuth and OpenID Connect have 
become commonplace, providing a secure 
underlying mechanism for facilitation and 
delegation of authentication tokens.  

2.6 Edge Services  
In the context of the HPC center, an edge 

service is a component, which is exposed to the 
public Internet that acts as a gateway to the internal 

platform (i.e., high-performance computing 
systems and data resources). The web portals we 
deploy are common examples of these services, but 
the portal ecosystem often required interactions 
with other edge service systems such as database 
services, message queues, continuous integration 
services, data transfer nodes, web-services/APIs 
etc. The concept of the edge service node becomes 
important in the deployment and planning of HPC 
centers and network configurations that wish to 
deploy science gateways.  

Edge services often live in what is referred to 
as the “Science DMZ” [13] and act as the bridge 
between external facing services and internal 
resources. These nodes may have some access to 
the internal network, but they only expose 
resources through well-defined and narrowly 
scoped interfaces. 

2.7 Data Transfer Services 
While data sharing over HTTP is very popular, 

there is also a need for managed high-performance 
data transfer mechanisms. This is typically done 
via a data transfer node that is tuned for high-
performance transfers over the WAN and resides 
in the Science DMZ portion of the center’s 
network.  

In particular, the cloud-based Globus [14] 
service has offered gateway providers an effective 
way to leverage the data transfer node concept. 
Globus exposes a REST API and single-sign-on 
service that can be integrated with a science 
gateway. It allows users to upload and download 
files through a Globus Connect or GridFTP server, 
while the Globus service manages the actual 
transfer. 

2.8 Cloud Hosted Portals 
With the advent of REST APIs that can 

capture all interactions with the HPC center, we 
are seeing an increase in web gateways hosted in 
the cloud. Under this model the entire application 
portal is hosted on an external cloud platform like 
Amazon Web Services, while communication with 
the HPC Center happens directly from the client 
via a REST API.  

This allows the developer a significant amount 
of freedom from policy constraints placed by the 
HPC center, while maintaining full functionality, 
since all useful interactions with the HPC side are 
still available. Client-side JavaScript with the 



appropriate Cross-Origin Resource sharing 
(CORS) [15] can be used to create powerful 
applications that can communicate with the cloud 
portal as well as the HPC REST service. 

A single-sign-on system with a common 
federated identity plays an important role in 
facilitating this type of access in a seamless 
manner.  

2.9 Containers 
Container technologies like Docker [16] have 

created a new paradigm shift in this space. 
Containers enable a lightweight form of 
virtualization where the user can bundle the entire 
application stack, including the underlying OS, 
into a virtual container. This means that the service 
provider no longer needs to maintain complex 
software dependencies and versions for various 
stacks. Instead users can simply create a container 
with all the appropriate software dependencies in a 
self-contained environment that is isolated from 
other containers. The science gateway provider 
runs a Docker orchestration service, which can 
then run the user-supplied container. 

The added benefit of containers is that this 
provides portability across multiple environments, 
since the same container can run on different 
platforms as long as they can run Docker. Thus 
users can develop a containerized application on 
their laptops, and the app can then be run at an 
HPC center (using tools like Shifter [18] or 
Singularity [19]) or in a cloud-based Docker 
service. 

This also provides an easy path to horizontal 
scaling, as the same container can simply be 
cloned to provide more instances of the service. 
NERSC has deployed a Docker platform called 
SPIN that can run user-supplied Docker containers 
(such as the Sloan Digital Sky Survey Mirrors), 
that also provides access to filesystem and HPC 
resources.  

3. Conclusion 
We hope that our work in identifying common 

science gateways patterns, practices and trends 
proves to be useful to the community at large and 
can serve to inform future gateway deployments 
and development efforts. Web technologies move 
very rapidly and we do not expect this to be a static 
list. As we move forward we fully expect new 

additions to this catalog that will allow us to track 
ongoing developments in this space.   
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