
Science Gateway Patterns and Practices: Experiences
Deploying Web Portals for Science at the NERSC

Supercomputing Center

Shreyas Cholia*, Annette Greiner and Rollin Thomas
Lawrence Berkeley National Laboratory

*Corresponding author address: 1 Cyclotron Road MS 943-2239, Lawrence Berkeley National
Laboratory, Berkeley, CA, 94609, USA; email: scholia@lbl.gov

Abstract: In this work we catalog patterns,

practices and trends we have seen from our
experiences deploying science gateways at the
NERSC supercomputing center. We cover the
following topics: Sharing Data Over The Web,
Web Frameworks for Science, Web IDEs and
Interactive HPC, HTTP APIs, Federated Identity
and Single Sign-On, Edge Services, Data Transfer
Services, Cloud Hosted Portals, and Containers.
This is our attempt to share what we have learned
with the community, and to identify key aspects of
science gateway deployment and development.

1. Introduction
Science gateways that enable web access to

high performance computing and data resources
have played a key role in enabling scientific
discovery at the National Energy Research
Scientific Computing Center (NERSC). NERSC is
the primary scientific computing facility for U.S.
Department of Energy Office of Science
researchers. Science gateways provide an
abstraction layer for users that don’t need or want
to deal with backend middleware, UNIX command
lines and batch scripts. Web interfaces create
science-centric views to data and enable new
discoveries and insights through collaborative tools
and rich interfaces. Our work over the last few
years has focused on building and deploying
science gateways and related infrastructure that can
interact with scientific data and computation at
NERSC.

Through our experiences, we have learned a
number of useful lessons, developed several best
practices and identified patterns that seem to be

Proceedings of Gateways 2017, University of Michigan,
Ann Arbor, MI; October 23-25, 2017.
https://gateways2017.figshare.com/.

repeated in many of the applications that we have
worked on. This paper is an attempt to enumerate
and describe some of the trends, patterns and
practices that we have come across so that others
in the community may benefit from our
experience.

2. Patterns and Practices
2.1 Sharing Data Over The Web

For a significant number of our users, simple
web access to data stored at NERSC is a huge win.
Since science is now a collaborative effort,
involving large teams of people, the ability to
simply share data easily with collaborators, as well
as with the broader community becomes critical.
To ensure a broad reach, it is also important to do
this without requiring special software on part of
the end user.

At NERSC we offer scientific users the ability
to make files easily available over HTTP by simply
placing them in a special directory in their project
space. Files placed in this directory are
automatically visible over the web at a project
URL - this is the simplest way to create web access
to data with no administrator intervention, but it
enables a wide range of scientific sharing and
collaboration. For example, the ATLAS
experiment at CERN takes advantage of this
simple but scalable method of data sharing.

For public data, we typically mount the file-
system in read-only mode on the web server to
prevent unauthorized writing to the files.

With the advent of rich JavaScript and Static
HTML sites, this model also allows for more
sophisticated sites built using the JAM (JavaScript,
APIs, and Markup) Stack [1] since the web-
enabled directories can serve up HTML and
JavaScript as well.

2.2 Web Frameworks for Science
To truly leverage the power of the web, we

expect science gateways to go provide more
advanced tools that go beyond static data sharing.
More complex web portals often require the use of
web frameworks that provide full-stack web
application functionality. A number of web
applications that we see at NERSC are built using
a variant of the Model-View-Controller pattern,
and make use of common open-source frameworks
like Django or Flask (for Python), Ruby on Rails
(Ruby) or Angular or Ember (JavaScript). These
frameworks provide a separation of concerns
between the data store (typically called the
“model”), the front end (the “view”) and the
business logic (typically called the “controller”).

Beyond the MVC model, we also see higher-
level frameworks that also provide tools and
functionality for developing scientific applications
and integration with HPC. For instance, tools like
Galaxy [2] allow users to build workflows into
their scientific applications. HubZero [3] enables
full-featured scientific portals, with hooks to run
jobs or manage data on backend resources.

These frameworks can be hosted in a number
of different ways – we describe some of the
deployment models later in sections 2.6, 2.8 and
2.9 (edge service nodes, cloud deployments and
containers)

2.3 Web IDEs and Interactive HPC
An interesting and increasingly popular

method to interact with scientific resources is
through interactive web consoles and notebooks.
These give users the power of a full programming
language environment with the convenience and
usability of the web.

In particular, the Jupyter platform has been
extremely popular as a means for exposing
scientific computing through web-based
notebooks. These notebooks combine narrative
inline documentation, live code and interactive
visualizations in a single interface and can make
for a very powerful tool to enable iterative human-
in-the-loop analysis, as well as to serve as a live
document of the scientific process. Originally built
around Python, Jupyter now supports over 100
different language kernels [4].

At NERSC we have deployed the Jupyterhub
platform to enable a multi-user notebook
environment, with direct access to the underlying

HPC system, compute jobs and large datasets
stored on NERSC filesystems [5]. Similarly, we
have also deployed R-Studio - a full IDE for the R
programming language that can give users the
power of a programming environment directly over
the web, with access to the HPC environment. This
means that users no longer need to think about sub-
setting and downloading data and pulling it down
on their local machines. Instead, the analysis and
programming tools operate on the data directly at
the HPC center over the web.

2.4 HTTP APIs
The past decade has seen rapid growth in the

web services model, where web applications
interact with backend services through a
programmatic interface delivered over HTTP.
REST [6] and other similar models for exposing
data over a programmatic API have become
ubiquitous. We also see this trend in Science
Gateway services, where the gateway front end
communicates with a REST API layer that
provides most of the core functionality for
interfacing with scientific data and compute
resources.

Functionality is exposed via HTTP URI
endpoints that encapsulate resources in conjunction
with HTTP verbs (GET, PUT, POST, DELETE,
HEAD etc.) and request parameters, with results
being returned in a structured data object such as
JSON. This makes it possible to capture common
pieces of functionality used by multiple gateways
under a single programmatic API.

At NERSC we have deployed the NEWT [7]
service to provide a REST API for HPC. NEWT
enables key features like file transfer, querying of
data, scientific computations, job workflow
management, user information through a common
web API. We also see this pattern in similar tools
at other sites, such as the Agave [8] platform and
the Apache Airavata [9] framework.

Web APIs facilitate another pattern that we
often find helpful for making large datasets
available. That is, they allow for downloading or
working with subsets of the full dataset. In the
context of shared datasets for download, one can
allow the user to specify a specific slice through an
HDF5 file using tools like PyDAP [10], for
example. In a web application, one can enable user
interactions that work with relatively small subsets
of the data at a time or that leverage HPC resources

to operate on larger data chunks. Rather than
requiring the user to download a very large file
over HTTP and attempt to manipulate it locally,
one can operate on a subset on the HPC side and
send only the result to the client. This improves the
perceived performance of the application and the
network.

The Advanced Light Source SPOT portal [17]
illustrates the power of APIs as a means to interact
with large scientific resources where the science
gateway communicates with the a common REST
API to submit jobs, browse datasets and visualize
results in real-time.

2.5 Federated Identity and Single Sign-On
Single Sign-On in conjunction with Federated

Identity implement common authentication and
authorization services for science gateways,
especially in the academic and governmental
research space where users typically belong to a
“home” institution like a university or national
laboratory. In this context, it makes a lot of sense
for the science gateway to delegate authentication
back to the home institution and to simply
consume the identity, along with appropriate
authorization privileges. It also means that the
science gateway no longer needs to implement its
own custom authentication or store sensitive
information.

The Shibboleth framework and InCommon
federation [11] have greatly simplified this
process, as most major universities and national
laboratories are part of this federation. Tools like
CILogon [12] facilitate the use of a common X509
credential, using Shibboleth as the underlying
framework that can be used for accessing backend
resources.

Single sign-on is not just limited to academic
federations. We also see commercial single-sign-
on services like Janrain and Auth0 provide
mechanisms for users to login via external
identities (such as Google or Facebook accounts).
Protocols like OAuth and OpenID Connect have
become commonplace, providing a secure
underlying mechanism for facilitation and
delegation of authentication tokens.

2.6 Edge Services
In the context of the HPC center, an edge

service is a component, which is exposed to the
public Internet that acts as a gateway to the internal

platform (i.e., high-performance computing
systems and data resources). The web portals we
deploy are common examples of these services, but
the portal ecosystem often required interactions
with other edge service systems such as database
services, message queues, continuous integration
services, data transfer nodes, web-services/APIs
etc. The concept of the edge service node becomes
important in the deployment and planning of HPC
centers and network configurations that wish to
deploy science gateways.

Edge services often live in what is referred to
as the “Science DMZ” [13] and act as the bridge
between external facing services and internal
resources. These nodes may have some access to
the internal network, but they only expose
resources through well-defined and narrowly
scoped interfaces.

2.7 Data Transfer Services
While data sharing over HTTP is very popular,

there is also a need for managed high-performance
data transfer mechanisms. This is typically done
via a data transfer node that is tuned for high-
performance transfers over the WAN and resides
in the Science DMZ portion of the center’s
network.

In particular, the cloud-based Globus [14]
service has offered gateway providers an effective
way to leverage the data transfer node concept.
Globus exposes a REST API and single-sign-on
service that can be integrated with a science
gateway. It allows users to upload and download
files through a Globus Connect or GridFTP server,
while the Globus service manages the actual
transfer.

2.8 Cloud Hosted Portals
With the advent of REST APIs that can

capture all interactions with the HPC center, we
are seeing an increase in web gateways hosted in
the cloud. Under this model the entire application
portal is hosted on an external cloud platform like
Amazon Web Services, while communication with
the HPC Center happens directly from the client
via a REST API.

This allows the developer a significant amount
of freedom from policy constraints placed by the
HPC center, while maintaining full functionality,
since all useful interactions with the HPC side are
still available. Client-side JavaScript with the

appropriate Cross-Origin Resource sharing
(CORS) [15] can be used to create powerful
applications that can communicate with the cloud
portal as well as the HPC REST service.

A single-sign-on system with a common
federated identity plays an important role in
facilitating this type of access in a seamless
manner.

2.9 Containers
Container technologies like Docker [16] have

created a new paradigm shift in this space.
Containers enable a lightweight form of
virtualization where the user can bundle the entire
application stack, including the underlying OS,
into a virtual container. This means that the service
provider no longer needs to maintain complex
software dependencies and versions for various
stacks. Instead users can simply create a container
with all the appropriate software dependencies in a
self-contained environment that is isolated from
other containers. The science gateway provider
runs a Docker orchestration service, which can
then run the user-supplied container.

The added benefit of containers is that this
provides portability across multiple environments,
since the same container can run on different
platforms as long as they can run Docker. Thus
users can develop a containerized application on
their laptops, and the app can then be run at an
HPC center (using tools like Shifter [18] or
Singularity [19]) or in a cloud-based Docker
service.

This also provides an easy path to horizontal
scaling, as the same container can simply be
cloned to provide more instances of the service.
NERSC has deployed a Docker platform called
SPIN that can run user-supplied Docker containers
(such as the Sloan Digital Sky Survey Mirrors),
that also provides access to filesystem and HPC
resources.

3. Conclusion
We hope that our work in identifying common

science gateways patterns, practices and trends
proves to be useful to the community at large and
can serve to inform future gateway deployments
and development efforts. Web technologies move
very rapidly and we do not expect this to be a static
list. As we move forward we fully expect new

additions to this catalog that will allow us to track
ongoing developments in this space.

4. Acknowledgments
This research used resources of the National

Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

5. References
[1] https://jamstack.org/
[2] Enis Afgan, Dannon Baker, Marius van den Beek,

Daniel Blankenberg, Dave Bouvier, Martin Čech, John
Chilton, Dave Clements, Nate Coraor, Carl Eberhard,
Björn Grüning, Aysam Guerler, Jennifer Hillman-
Jackson, Greg Von Kuster, Eric Rasche, Nicola
Soranzo, Nitesh Turaga, James Taylor, Anton
Nekrutenko, and Jeremy Goecks. The Galaxy platform
for accessible, reproducible and collaborative
biomedical analyses: 2016 update. Nucleic Acids
Research (2016) 44(W1): W3-W10
doi:10.1093/nar/gkw343

[3] M. McLennan, R. Kennell, "HUBzero: A Platform for
Dissemination and Collaboration in Computational
Science and Engineering," Computing in Science and
Engineering, 12(2), pp. 48-52, March/April, 2010.

[4] https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
[5] Rollin Thomas, Shane Canon, Shreyas Cholia, Lisa

Gerhardt, and Evan Racah, “Toward Interactive
Supercomputing at NERSC with Jupyter”, CUG 2017
Proceedings

[6] Fielding, R. T. (2000). REST: Architectural Styles and
the Design of Network-based Software
Architectures.

[7] S. Cholia, D. Skinner and J. Boverhof, "NEWT: A
RESTful service for building High Performance
Computing web applications," 2010 Gateway
Computing Environments Workshop (GCE), New
Orleans, LA, 2010, pp. 1-11.J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp. 68-73.

[8] Dooley, Rion, et al. “Software-as-a-Service: The iPlant
Foundation API”, 5th IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS).
IEEE, 2012.

[9] Suresh Marru, Lahiru Gunathilake, Chathura Herath,
Patanachai Tangchaisin, Marlon Pierce, Chris
Mattmann, Raminder Singh, Thilina Gunarathne, Eran
Chinthaka, Ross Gardler, Aleksander Slominski, Ate
Douma, Srinath Perera, and Sanjiva Weerawarana.
2011. Apache airavata: a framework for distributed
applications and computational workflows.
In Proceedings of the 2011 ACM workshop on Gateway
computing environments (GCE '11). ACM, New York,
NY, 21-28. http://dx.doi.org/10.1145/2110486.2110490

[10] http://pydap.readthedocs.io/en/latest/
[11] https://www.incommon.org/

[12] Jim Basney, Terry Fleury, and Jeff Gaynor. 2013.
CILogon: a federated X.509 certification authority for
cyberinfrastructure logon. In Proceedings of the
Conference on Extreme Science and Engineering
Discovery Environment: Gateway to
Discovery (XSEDE '13). ACM, New York, NY,
http://dx.doi.org/10.1145/2484762.2484791

[13] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester,
and Jason Zurawski. 2013. The Science DMZ: a
network design pattern for data-intensive science.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis (SC '13). ACM, New York, NY, USA, Article
85 , 10 pages. https://doi.org/10.1145/2503210.2503245

[14] Ian Foster. 2011. Globus Online: Accelerating and
Democratizing Science through Cloud-Based Services.
IEEE Internet Computing 15, 3 (May 2011), 70-73.
http://dx.doi.org/10.1109/MIC.2011.64

[15] https://www.w3.org/TR/cors/
[16] Dirk Merkel. 2014. Docker: lightweight Linux

containers for consistent development and
deployment. Linux J. 2014, 239, pages.

[17] SPOT Suite Portal for Light-Source Data and
Simulations. https://spot.nersc.gov/

[18] Jacobsen, D. M., and R. S. Canon. "Shifter: Containers
for HPC." Cray Users Group Conference (CUG’16).
2016.

[19] Souza, P., G. M. Kurtzer, C. Gomez-Martin, and PM
Cruz e Silva. "HPC Containers with Singularity." In
Third EAGE Workshop on High Performance
Computing for Upstream. 2017.

