[bookmark: _GoBack]Scripts unique to this study.

split-bidirectional-migration δaδi model

splitbidirmig script in Demographics2Dmod.py

def split_bidirmig(params, ns, pts):

 """
 params = (nu1,nu2,T,m12,m21)
 ns = (n1,n2)

 Split into two populations of specified size, with bidirectional migration.

 nu1: Size of population 1 after split.
 nu2: Size of population 2 after split.
 T: Time in the past of split (in units of 2*Na generations)
 m12: Migration rate 2>>1
 m21: Migration rate 1>>2
 n1,n2: Sample sizes of resulting Spectrum
 pts: Number of grid points to use in integration.
 """
modify params to include bidirectional gene flow
 nu1,nu2,T,m12,m21 = params

use grid
 xx = Numerics.default_grid(pts)

use the grid and split pops

 phi = PhiManip.phi_1D(xx)
 phi = PhiManip.phi_1D_to_2D(xx, phi)

allow for gene flow between the pops bidirectional m12,m21

 phi = Integration.two_pops(phi, xx, T, nu1, nu2, m12=m12, m21=m21)

#calculate and return the spectra

 fs = Spectrum.from_phi(phi, ns, (xx,xx))
 return fs

The Python script used for the best-fit split-migration δaδi model, with associated parameters:

The basis for this script is from Kevin Hawkins, 5 Feb 2016. I added in a few comments.
Numpy is the numerical library dadi is built upon from numpy import array

import dadi

import the demographic model.
import Demographics2D

Load the data
data = dadi.Spectrum.from_file('buntings-UCEs-no-Zs-folded-spectrum.fs')
ns = data.sample_sizes
data.mask_corners()

print number of samples to verify correct load
print ns

Grid point settings will be used for extrapolation.
Grid points need to be formated [n,n+10,n+20].
Needs to be bigger than the number of samples you have (n>ns) and this will be a strong
determination as to how long your program will run.

pts_l = [50,60,70]

Call particular model to run, the model choosen here is split.w.migration
func = dadi.Demographics2D.split_mig

params = (nu1,nu2,T,m)
ns = (n1,n2)
#
Split into two populations of specifed size, with migration.
nu1: Size of population 1 after split.
nu2: Size of population 2 after split.
T: Time in the past of split (in units of 2*Na generations)
m: Migration rate between populations (2*Na*m)
n1,n2: Sample sizes of resulting Spectrum
pts: Number of grid points to use in integration.

Now let's optimize parameters for this model.

The upper_bound and lower_bound lists are for use in optimization.
Occasionally the optimizer will try wacky parameter values. We in particular
want to exclude values with very long times, very small population sizes, or
very high migration rates, as they will take a long time to evaluate.
Parameters are: (nu1,nu2,T,m)

#Set the upper and lower bounds to make sure that the boundaries are
#there. Suggested time parameters: lower 0, upper 5, migration
#parameters: lower 0, upper 10, size parameters: lower 1e-2, upper 100
upper_bound = [6, 7, 2, 2]
lower_bound = [1e-1, 1e-1, 0, 0]

This is our initial guess for the parameters, which is somewhat arbitrary.
p0 = [1,1,1,1]
Make the extrapolating version of our demographic model function.
func_ex = dadi.Numerics.make_extrap_log_func(func)

Perturb our parameters before optimization. This does so by taking each
parameter up to a factor of two up or down.
p0 = dadi.Misc.perturb_params(p0, fold=2, upper_bound=upper_bound,
 lower_bound=lower_bound)

print('Beginning optimization **')
popt = dadi.Inference.optimize_log(p0, data, func_ex, pts_l,
 lower_bound=lower_bound,
 upper_bound=upper_bound,
 verbose=2)
The verbose argument controls how often progress of the optimizer should be
printed. It's useful to keep track of optimization process.
print('Finished optimization **')

print('Best-fit parameters: {0}'.format(popt))

Calculate the best-fit model AFS.
model = func_ex(popt, ns, pts_l)

Likelihood of the data given the model AFS.
ll_model = dadi.Inference.ll_multinom(model, data)
print('Maximum log composite likelihood: {0}'.format(ll_model))

The optimal value of theta given the model.
theta = dadi.Inference.optimal_sfs_scaling(model, data)
print('Optimal value of theta: {0}'.format(theta))
print pts_l, upper_bound, lower_bound

Plot a comparison of the resulting fs with the data.
import pylab
pylab.figure(1)
dadi.Plotting.plot_2d_comp_multinom(model, data, vmin=0.1, resid_range=1,
 pop_ids =('hyperboreus','nivalis'))

This ensures that the figure pops up. It may be unnecessary if you are using
ipython.
pylab.show()

1

