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split-bidirectional-migration δaδi model

# splitbidirmig script in Demographics2Dmod.py

def split_bidirmig(params, ns, pts):

  """
  params = (nu1,nu2,T,m12,m21)
  ns = (n1,n2)

  Split into two populations of specified size, with bidirectional migration.

  nu1: Size of population 1 after split.
  nu2: Size of population 2 after split.
  T: Time in the past of split (in units of 2*Na generations)
  m12: Migration rate 2>>1
  m21: Migration rate 1>>2
  n1,n2: Sample sizes of resulting Spectrum
  pts: Number of grid points to use in integration.
  """
# modify params to include bidirectional gene flow
  nu1,nu2,T,m12,m21 = params

# use grid
  xx = Numerics.default_grid(pts)

# use the grid and split pops

  phi = PhiManip.phi_1D(xx)
  phi = PhiManip.phi_1D_to_2D(xx, phi)

# allow for gene flow between the pops bidirectional m12,m21

  phi = Integration.two_pops(phi, xx, T, nu1, nu2, m12=m12, m21=m21)

#calculate and return the spectra

  fs = Spectrum.from_phi(phi, ns, (xx,xx))
  return fs


The Python script used for the best-fit split-migration δaδi model, with associated parameters: 


# The basis for this script is from Kevin Hawkins, 5 Feb 2016. I added in a few comments.
# Numpy is the numerical library dadi is built upon from numpy import array

import dadi

# import the demographic model. 
import Demographics2D

# Load the data
data = dadi.Spectrum.from_file('buntings-UCEs-no-Zs-folded-spectrum.fs')
ns = data.sample_sizes
data.mask_corners()

# print number of samples to verify correct load
print ns

# Grid point settings will be used for extrapolation.
# Grid points need to be formated [n,n+10,n+20]. 
# Needs to be bigger than the number of samples you have (n>ns) and this will be a strong 
# determination as to how long your program will run.

pts_l = [50,60,70]

# Call particular model to run, the model choosen here is split.w.migration
func = dadi.Demographics2D.split_mig

#    params = (nu1,nu2,T,m)
#    ns = (n1,n2)
#
#    Split into two populations of specifed size, with migration.
#    nu1: Size of population 1 after split.
#    nu2: Size of population 2 after split.
#    T: Time in the past of split (in units of 2*Na generations) 
#    m: Migration rate between populations (2*Na*m)
#    n1,n2: Sample sizes of resulting Spectrum
#    pts: Number of grid points to use in integration.

# Now let's optimize parameters for this model.

# The upper_bound and lower_bound lists are for use in optimization.
# Occasionally the optimizer will try wacky parameter values. We in particular
# want to exclude values with very long times, very small population sizes, or
# very high migration rates, as they will take a long time to evaluate.
# Parameters are: (nu1,nu2,T,m)

#Set the upper and lower bounds to make sure that the boundaries are 
#there. Suggested time parameters: lower 0, upper 5, migration 
#parameters: lower 0, upper 10, size parameters: lower 1e-2, upper 100 
upper_bound = [6, 7, 2, 2]
lower_bound = [1e-1, 1e-1, 0, 0]

# This is our initial guess for the parameters, which is somewhat arbitrary.
p0 = [1,1,1,1]
# Make the extrapolating version of our demographic model function.
func_ex = dadi.Numerics.make_extrap_log_func(func)

# Perturb our parameters before optimization. This does so by taking each
# parameter up to a factor of two up or down.
p0 = dadi.Misc.perturb_params(p0, fold=2, upper_bound=upper_bound,
                              lower_bound=lower_bound)

print('Beginning optimization ************************************************')
popt = dadi.Inference.optimize_log(p0, data, func_ex, pts_l, 
                                   lower_bound=lower_bound,
                                   upper_bound=upper_bound,
                                   verbose=2)
# The verbose argument controls how often progress of the optimizer should be
# printed. It's useful to keep track of optimization process.
print('Finished optimization **************************************************')

print('Best-fit parameters: {0}'.format(popt))

# Calculate the best-fit model AFS.
model = func_ex(popt, ns, pts_l)

# Likelihood of the data given the model AFS.
ll_model = dadi.Inference.ll_multinom(model, data)
print('Maximum log composite likelihood: {0}'.format(ll_model))

# The optimal value of theta given the model.
theta = dadi.Inference.optimal_sfs_scaling(model, data)
print('Optimal value of theta: {0}'.format(theta))
print pts_l, upper_bound, lower_bound

# Plot a comparison of the resulting fs with the data.
import pylab
pylab.figure(1)
dadi.Plotting.plot_2d_comp_multinom(model, data, vmin=0.1, resid_range=1,
                                    pop_ids =('hyperboreus','nivalis'))

# This ensures that the figure pops up. It may be unnecessary if you are using
# ipython.
pylab.show()
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