
LATEX TikZposter

Identification of SHACL Constraints
from a Knowledge Graph

Erhard Eibl, Siyabend Sakik, Niels Schneider,
Oya Beyan, Nils Lukas

Identification of SHACL Constraints
from a Knowledge Graph

Erhard Eibl, Siyabend Sakik, Niels Schneider,
Oya Beyan, Nils Lukas

Overview
This project is about finding patterns in Knowledge Graphs and to generate SHACL con-
straints for entities. The goal is to maintain and improve consistency for instance in collab-
orative databases. Our premise is that entities and property patterns prevalent among them
in a given graph can be used for generalization and categorization of new entities added into
a graph. Therefore the algorithm is able to identify missing or false data with a certain confi-
dence value. This is useful to automatically ensure compliance to a schema that is implicitly
present in a database. For example, if every former president of the United States had a
name, the algorithm assumes that having a name is a necessary condition for being president
of the United States.

Why SHACL?
SHACL (Shapes Constraint Language) is designed to specify schemas for entities more con-
veniently than for example with OWL. A shape specifies targets, which correspond to the
nodes to be constrained and the constraints make up a basic schema that these nodes should
satisfy. Using conformance checking tools you can validate a graph against a schema. A
graph passes a validation if and only if all instances conform to all set constraints. We are
able to generate shape files automatically based on a statistical data mining approach and we
define targets using the SHACL-SPARQL extension, which allows us to constrain arbitrary
groups of instances.

Limitations
The main limitation of a statistical approach concerns the distinction between valid and
invalid outliers. For instance, in a scenario where most people have exactly two names (e.g.
first and last), but one person incorrectly has 100 names. Naively counting ”min” and "max”
without outlier detection will not constrain the names to exactly two attributes, but instead
to a range between 2 and 100 attributes. This could be mitigated by pruning the data on both
sides but this gets incresingly difficult with higher variance data or multimodal distrubtions.

Our implementation is agnostic to the type of the data, meaning that a categorization into
cities with a certain number of inhabitants will not be discovered. That would be useful to
have, but it requires a deeper analysis of the involved literals.

Acknowledgement
This work is conducted as part of the Knowledge Graphs
Praktikum offered by RWTH Aachen University Informatik
5 department in collaboration with OSTHUS. We thank
OSTHUS for defining research goals and requirements
from the industry perspective, and providing student travel
grants.

Category discovery
In order to extract meaningful and implicit information about similar entities in a given
Knowledge Graph, the available data has to be clustered into categories in a fitting way.
Simply using OWL classes would be an intuitive starting point, but such a categorization
is unlikely to be optimal because classes are managed by the database provider making
information to be extracted very dependant on the resources invested. Furthermore, it is
unlikely that a given Knowledge Graph contains classes for every imaginable category meaning
various implicit and unobvious categories remain undiscovered. Inspired by natural language,
we decided to use an approach based on predicate-object pairs, so called ”descriptions”.
Compare the sentences ”Apple is a type of Fruit” and ”Banana is a type of Fruit.” Obviously
”Apple” and ”Banana” are similar in some regards even if we have no information what an
”Apple” might be. In this particular example, ”Apple” and ”Banana” would probably fall into
the same OWL class ”Fruit” but with this approach we are able to find other, less obviously
similar entities such as things that are of color yellow.

Feature mining
In our implementation, the actual category discovery occurs by considering each predicate-
object pair that is prevalent in the database, make it into a category and prune this set
heuristically. Categories that contain fewer than 50 instances are ignored. This is an arbitrary
threshold. Subsequently, for each discovered category all contained instances are compared
by counting which other predicates are set. For example, every Person that has been a
president of the United States is queried for a wife, a dog, a date of death and so forth. This
information is stored in n-dimensional feature vectors, where n is the number of predicates in
the database. In our current implementation we track how many times properties are set at
least (min) and at most (max). Furthermore, a confidence value (conf) is computed stating
the relative probability that a property is set at all. The confidence value is a smoothed
percentage value that includes a potential bias when there is too little data. For the sake of
illustration it is represented by a purely relative amount.

References
[1] Top Quadrant https://www.topquadrant.com/2017/09/13/shacl/

[2] Melo, André, and Heiko Paulheim. "Learning SHACL Constraints for Validation of Relation Assertions in Knowledge Graphs.


