
Supplementary Materials

A.1 Observable Implications of Assumption 3

In this section, we derive the two observable implications of Assumption 3 described in Section 3.3.

First, Assumption 3 implies,

E[Yi(a)|Ci = a] = E[Yi(a)|Si = a], (10)

for all a ∈ A. This relationship directly implies equation (2) under Assumptions 1 and 2. Second, note

that equation (10) also implies,

E[Yi(a)|Ci = a] = E[Yi(a)|Ci = a, Si = a] Pr(Ci = a|Si = a)

+ E[Yi(a)|Ci 6= a, Si = a] Pr(Ci 6= a|Si = a)

⇔ E[Yi(a)|Ci 6= a, Si = a] =
E[Yi|Ci = a,Di = 0]− E[Yi|Ci = Si = a,Di = 0]Pr(Ci = a|Si = a,Di = 0)

1− Pr(Ci = a|Si = a,Di = 0)

for all a ∈ A. Setting the unobserved term in the left-hand side to its theoretical maximum and minimum

yields equation (3).

A.2 Derivation of Equation (4)

First, consider E[Yi(a)|Ci = c]. Assumptions 1 and 2 imply Pr(Ci = c, Si = s) = Pr(Ci = c, Si =

s|Di = 0), E[Yi(c)|Ci = c, Si = s] = E[Yi|Ci = c, Si = s,Di = 0], E[Yi(a)] = E[Yi|Ai = a,Di = 1],

and E[Yi(a)|Si = s] = E[Yi|Si = s, Ai = a,Di = 1]. Now, note that

E[Yi|Ai = a,Di = 1] = E[Yi(a)] =
J−1∑
c′=0

E[Yi(a)|Ci = c′] Pr(Ci = c′),

by Assumptions 1, 2 and the law of total expectation. Substituting observed outcomes from the free-

choice group and rearranging terms, we have

E[Yi(a)|Ci = c] =
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


1



because of Assumptions 1 and 2. By the same token,

E[Yi(a
′)|Ci = c] =

1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a′, Di = 1]

−E[Yi|Ci = a′, Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ci = c′|Di = 0)


The quantity of interest is therefore

τ(a, a′|c) =
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


− 1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a′, Di = 1]

−E[Yi|Ci = a′, Di = 0]Pr(Ci = a′|Di = 0)

−
∑

c′ 6∈{a′,c} E[Yi(a′)|Ci = c′] Pr(Ci = c′|Di = 0)


for any a, a′ and c. Thus, under Assumptions 1 and 2, we have 2(J − 2) terms that remain unidentified

when a 6= a′ 6= c. When a′ = c, the above simplifies to

τ(a, c|c) = E[Yi(a)|Ci = c]− E[Yi|Ci = c,Di = 0]

=
1

Pr(Ci = c|Di = 0)


E[Yi|Ai = a,Di = 1]

−E[Yi|Ci = a,Di = 0]Pr(Ci = a|Di = 0)

−
∑

c′ 6∈{a,c} E[Yi(a)|Ci = c′] Pr(Ci = c′|Di = 0)


− E[Yi|Ci = c,Di = 0]

and J − 2 terms remain unidentified.

A.3 Proof of Proposition 1

We begin by establishing several lemmas.

Lemma .1 Let Γa(y, c|s, a) = Pr(Yi(a) ≤ y, Ci ≤ c|Si = s, Ci 6= a). Under Assumptions 1 and 2, the

sharp upper and lower bounds on Γa(y, c|s, a), denoted by Γ+
a (y, c|s, a) and Γ−a (y, c|s, a) respectively,

are identified as follows.

Γ+
a (y, c|s, a) = min

{
H(c|s, a, 0),

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)

}
,

Γ−a (y, c|s, a) = max

{
0, H(c|s, a, 0) +

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)
− 1

}
,
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for y ∈ Y , a, c, s ∈ A and d ∈ {0, 1}, where H(c|s, a, 0) = Pr(Ai ≤ c|Si = s, Ai 6= a,Di = 0) and

F (y|s, a, d) and P (a|s, 0) are as defined in Proposition 1.

Proof. By the Fréchet-Hoeffding theorem, the sharp upper and lower bounds of the bivariate joint distri-

bution function Γa(y, c|s, a) are given by,

Γ+
a (y, c|s, a) = min {Γa(∞, c|s, a),Γa(y,∞|s, a)} , (11)

Γ−a (y, c|s, a) = max {0,Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1} . (12)

Under Assumption 1, Γa(∞, c|s, a) = Pr(Ci ≤ c|Si = s, Ci 6= a) = Pr(Ai ≤ c|Si = s, Ai 6= a,Di =

0) = H(c|s, a, 0) for any c, s and a ∈ A. Under Assumptions 1 and 2, we have

Γa(y,∞|s, a) = Pr(Yi(a) ≤ y|Si = s, Ci 6= a)

=
Pr(Yi(a) ≤ y|Si = s)− Pr(Yi(a) ≤ y, Ci = a|Si = s)

Pr(Ci 6= a|Si = s)

=
Pr(Yi(a) ≤ y|Si = s)− Pr(Yi(a) ≤ y|Ci = a, Si = s) Pr(Ci = a|Si = s)

1− Pr(Ci = a|Si = s)

=
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

1− P (a|s, 0)
,

for any a and s ∈ A. Substituting these to equations (11) and (12) yields the results in Lemma .1.

Lemma .2 Let A∗i , C
∗
i and S∗i be reordered versions of Ai, Ci and Si, respectively, such that C∗i = 0 iff

Ci = c (and likewise for A∗i and S∗i ). Then, the resulting sharp bounds on Γa(y, c | s, a)− Γa(y, c− 1 |

s, a) are also the sharp bounds on Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) for any y and c ∈ A, where

Γ∗a(y, c | s, a) = Pr(Yi(a) ≤ y, C∗i ≤ c|Si = s, Ci 6= a).

Proof. First, consider the sharp bounds on Γa(y, c)− Γa(y, c− 1). In addition to the Fréchet-Hoeffding

constraints on its constituent parts,

Γa(y, c|s, a) ∈
[
Γ−a (y, c|s, a),Γ+

a (y, c|s, a)
]

Γa(y, c− 1|s, a) ∈
[
Γ−a (y, c− 1|s, a),Γ+

a (y, c− 1|s, a)
]
,
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the increase in cumulative probability from c− 1 to c is also subject to

Γa(y, c)− Γa(y, c− 1) ∈ [0,Γa(∞, c)− Γa(∞, c− 1)] .

The combination of these constraints yields

Γa(y, c|s, a)Γa(y, c− 1|s, a)

∈ [0,Γa(∞, c)− Γa(∞, c− 1)]
⋃

([
Γ∗−a (y, c|s, a),Γ∗+a (y, c|s, a)

]
−
[
Γ∗−a (y, c− 1|s, a),Γ∗+a (y, c− 1|s, a)

])

∈

max


0,

max

 0,

Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1

−min

 Γa(∞, c− 1|s, a),

Γa(y,∞|s, a)



 ,

min


Γa(∞, c)− Γa(∞, c− 1),

min

 Γa(∞, c|s, a),

Γa(y,∞|s, a)

−max

 0,

Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1






Next, consider the sharp bounds on Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a). Because −1 lies below the

lowest possible value of C∗i , Γ∗a(y,−1 | s, a) is necessarily zero, and bounds on the difference reduce to

bounds on Γ∗a(y, 0 | s, a),

Γ∗a(y, 0|s, a) ∈
[
Γ∗−a (y, 0|s, a),Γ∗+a (y, 0|s, a)

]
∈
[

max {0,Γ∗a(∞, 0|s, a) + Γ∗a(y,∞|s, a)− 1} ,min {Γ∗a(∞, 0|s, a),Γ∗a(y,∞|s, a)}
]

∈
[

max {0,Pr(Ai = c | Si = s, Ai 6= a,Di = 0) + Γa(y,∞|s, a)− 1} ,

min {Pr(Ai = c | Si = s, Ai 6= a,Di = 0),Γa(y,∞|s, a)}
]

∈
[

max {0,Γa(∞, c|s, a)− Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1} ,

min {Γa(∞, c|s, a)− Γa(∞, c− 1|s, a),Γa(y,∞|s, a)}
]
.

We now show that the upper bound on Γa(y, c) − Γa(y, c − 1) is identical to the upper bound on
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Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) in each of the following four possible cases. (1) Γa(∞, c|s, a) ≤

Γa(y,∞|s, a) and 0 ≥ Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1) re-

duces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)−max {0,Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1}} .

This implies Γa(∞, c|s, a)−Γa(∞, c−1|s, a) ≤ Γa(y,∞|s, a), and so the upper bound on Γ∗a(y, 0 | s, a)

becomes Γa(∞, c|s, a)− Γa(∞, c− 1|s, a). Since 0 ≥ Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1, the upper

bound on Γa(y, c) − Γa(y, c − 1) further reduces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)} =

Γa(∞, c) − Γa(∞, c − 1), which is identical to the upper bound on Γ∗a(y, 0 | s, a). (2) Γa(∞, c|s, a) ≤

Γa(y,∞|s, a) and 0 < Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1)

becomes min {Γa(∞, c)− Γa(∞, c− 1),Γa(∞, c|s, a)− (Γa(∞, c− 1|s, a) + Γa(y,∞|s, a)− 1)} =

Γa(∞, c) − Γa(∞, c − 1), since 1 − Γa(y,∞|s, a) > 0. This is again identical to the upper bound

on Γ∗a(y, 0 | s, a). (3) Γa(∞, c|s, a) > Γa(y,∞|s, a) and 0 ≥ Γa(∞, c − 1|s, a) + Γa(y,∞|s, a) − 1.

The upper bound on Γa(y, c)− Γa(y, c− 1) reduces to min{Γa(∞, c)− Γa(∞, c− 1),Γa(y,∞|s, a)−

max{0,Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1}}. Since 0 ≥ Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1, the up-

per bound on Γa(y, c)− Γa(y, c− 1) further reduces to min {Γa(∞, c)− Γa(∞, c− 1),Γa(y,∞|s, a)},

which is the original upper bound given for Γ∗a(y, 0 | s, a). (4) Γa(∞, c|s, a) > Γa(y,∞|s, a) and

0 < Γa(∞, c−1|s, a)+Γa(y,∞|s, a)−1. The upper bound on Γa(y, c)−Γa(y, c−1) further reduces to

min {Γa(∞, c)− Γa(∞, c− 1), 1− Γa(∞, c− 1|s, a)} = Γa(∞, c) − Γa(∞, c − 1). This implies that

Γa(∞, c|s, a)−Γa(∞, c−1|s, a) < Γa(y,∞|s, a). The upper bound on Γ∗a(y, 0 | s, a) then also becomes

Γa(∞, c|s, a)− Γa(∞, c− 1|s, a).

Finally, we show that the lower bound on Γa(y, c) − Γa(y, c − 1) is identical to the upper bound on

Γ∗a(y, 0 | s, a) − Γ∗a(y,−1 | s, a) in each of the following three possible cases. (1) 0 ≥ Γa(∞, c|s, a) +

Γa(y,∞|s, a) − 1. The lower bound on Γa(y, c) − Γa(y, c − 1) reduces to max{0,−min{Γa(∞, c −

1|s, a),Γa(y,∞|s, a)}} = 0. Because Γa(∞, c|s, a) ≥ Γa(∞, c|s, a) − Γa(∞, c − 1|s, a), the lower

bound on Γ∗a(y, 0 | s, a) also becomes 0. (2) 0 < Γa(∞, c|s, a) + Γa(y,∞|s, a) − 1 and Γa(∞, c −

1|s, a) ≤ Γa(y,∞|s, a). The lower bound on Γa(y, c)− Γa(y, c− 1) reduces to max{0,Γa(∞, c|s, a) +

Γa(y,∞|s, a)− 1−min{Γa(∞, c− 1|s, a),Γa(y,∞|s, a)}}. Since Γa(∞, c− 1|s, a) ≤ Γa(y,∞|s, a),
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the lower bound on Γa(y, c)−Γa(y, c−1) reduces further to max{0,Γa(∞, c|s, a)+Γa(y,∞|s, a)−1−

Γa(∞, c− 1|s, a)}, which is the original lower bound given for Γ∗a(y, 0 | s, a). (3) 0 < Γa(∞, c|s, a) +

Γa(y,∞|s, a)−1 and Γa(∞, c−1|s, a) > Γa(y,∞|s, a). The lower bound on Γa(y, c)−Γa(y, c−1) re-

duces further to max {0,Γa(∞, c|s, a) + Γa(y,∞|s, a)− 1− Γa(y,∞|s, a)} = 0. Since Γa(∞, c|s, a)−

Γa(∞, c − 1|s, a) + Γa(y,∞|s, a) − 1 < Γa(∞, c|s, a) − Γa(y,∞|s, a) + Γa(y,∞|s, a) − 1 < 0 and

Γa(∞, c|s, a)− 1 ≤ 0, the lower bound for Γ∗a(y, 0 | s, a) is also zero.

Lemma .3 Let Φa(y|s, c) = Pr(Yi(a) ≤ y|Si = s, Ci = c). Under Assumptions 1 and 2, the sharp

upper and lower bounds on Φa(y|s, 0), denoted by Φ+
a (y|s, 0) and Φ−a (y|s, 0) respectively, are identified

as

Φ+
a (y|s, 0) = min

{
1,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

P (0|s, 0)

}
and

Φ−a (y|s, 0) = max

{
0, 1 +

P (a|s, 0) + F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− 1

P (0|s, 0)

}
for y ∈ Y and a, s ∈ A.

Proof. First, note that

Φa(y|s, c) = Pr(Yi(a) ≤ y|Si = s, Ci = c, Ci 6= a)

=
Pr(Yi(a) ≤ y, Ci ≤ c|Si = s, Ci 6= a)− Pr(Yi(a) ≤ y, Ci ≤ c− 1|Si = s, Ci =6= a)

Pr(Ci = c|Si = s, Ci 6= a)

=
Γa(y, c|s, a)− Γa(y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)
,

for c 6= a. By Lemma .1, the sharp upper and lower bounds on Φa(y|s, c) are given by

Φ+
a (y|s, c) = min

{
1,

Γ+
a (y, c|s, a)− Γ−a (y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)

}
,

Φ−a (y|s, c) = max

{
0,

Γ−a (y, c|s, a)− Γ+
a (y, c− 1|s, a)

Pr(Ci = c|Si = s, Ci 6= a)

}
.

Because Γ+
a (y,−1|s, a) = Γ−a (y,−1|s, a) = 0 and by Lemma .1, these bounds simplify when c = 0 to

Φ+
a (y|s, 0) =

Γ+
a (y, 0|s, a)

Pr(Ci = 0|Si = s, Ci 6= a)
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= min

{
H(0|s, a, 0)

Pr(Ci = 0|Si = s, Ci 6= a)
,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ci = 0|Si = s, Ci 6= a) {1− P (a|s, 0)}

}
= min

{
H(0|s, a, 0)

Pr(Ai = 0|Si = s, Ai 6= a,Di = 0)
,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = 0|Si = s, Ai 6= a,Di = 0) Pr(Ai 6= a|Si = s,Di = 0)

}
= min

{
1,
F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)

Pr(Ai = 0|Si = s,Di = 0)

}
and

Φ−a (y|s, 0) =
Γ−a (y, 0|s, a)

Pr(Ci = 0|Si = s, Ci 6= a)

= max

{
0,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− {1−H(0|s, a, 0)} {1− P (a|s, 0)}
Pr(Ci = 0|Si = s, Ci 6= a) {1− P (a|s, 0)}

}
= max

{
0,

F (y|s, a, 1)− F (y|s, a, 0)P (a|s, 0)− 1 + P (a|s, 0)

Pr(Ai = 0|Si = s,Di = 0)
+ 1

}
.

Now we provide a proof for the bounds in Proposition 1. We only consider the case of c = 0. This

can be done without loss of generality by Lemma .2. Now, note that τ(a, a′|0) can be written under

Assumption 1 as,

τ(a, a′|0) =
∑
s∈A

{π(a|s, 0)− π(a′|s, 0)}Pr(Si = s|Ai = 0, Di = 0), (13)

where π(a|s, c) ≡ E[Yi(a)|Si = s, Ci = c] for any a and c ∈ A. Under Assumption 1, π(a|s, 0) can be

point-identified when a = 0 as

π(0|s, 0) = E[Yi|Ai = 0, Si = s,Di = 0], (14)

for any s ∈ A, but not when a 6= 0. To find the sharp bounds on π(a|s, 0) when a 6= 0, note that

π(a|s, 0) = lim
y∗→−∞

{∫ ∞
y∗

1− Φa(y|s, 0) dy + y∗
}
.

By Lemma .3, π−(a|s, 0) ≤ π(a|s, 0) ≤ π+(a|s, 0) where

π−(a|s, 0) ≡ lim
y∗→−∞

{∫ ∞
y∗

1− Φ+
a (y|s, 0) dy + y∗

}
, (15)

π+(a|s, 0) ≡ lim
y∗→−∞

{∫ ∞
y∗

1− Φ−a (y|s, 0) dy + y∗
}
. (16)
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The bounds, π−(a|s, 0) and π+(a|s, 0), are the sharp lower and upper bounds on π(a|s, 0) because

Φ+
a (y|s, 0) and Φ−a (y|s, 0) are the sharp upper and lower bounds on Φa(y|s, 0), respectively.

Substituting Equations (14), (15) and (16) into Equation (13) and simplifying the terms yield the

sharp bounds on τ(a, 0|0),

∑
s∈A

{
π−(a|s, 0) Pr(Si = s|Ai = 0, Di = 0)

}
− E[Yi|Ai = 0, Di = 0]

≤ τ(a, 0|0) ≤ (17)∑
s∈A

{
π+(a|s, 0) Pr(Si = s|Ai = 0, Di = 0)

}
− E[Yi|Ai = 0, Di = 0]

for any a ∈ A. For τ(a, a′) where a 6= a′, we obtain the following bounds,

∑
s∈A

{
π−(a|s, 0)− π+(a′|s, 0)

}
Pr(Si = s|Ai = 0, Di = 0)

≤ τ(a, a′|0) ≤ (18)∑
s∈A

{
π+(a|s, 0)− π−(a′|s, 0)

}
Pr(Si = s|Ai = 0, Di = 0)

which are not necessarily sharp because π−(a|s, 0) and π+(a′|s, 0) may not be simultaneously attainable,

and vice versa. Finally, Lemma .2 implies that (17) and (18) are both valid as bounds for τ(a, c|c) and

τ(a, a′|c), respectively, for any c ∈ A. This completes the proof of Proposition 1.

A.4 Proof of Proposition 2

We begin by considering the joint distribution of all variables in the study population when J = 3:

Pr(Si = s,Di = d, Ci = c, Ai = a, Yi = y, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

= Pr(Yi(d) = y|Ai = a, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

×Pr(Ai = a|Ci = c,Di = d)

×Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2) Pr(Di = d)

= Pr(Yi(d) = y|Ai = a, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2)

×{Pr(Ai = a|Ci = c,Di = 0)(1− d) + Pr(Ai = a|Di = 1)d}
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×Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2) Pr(Di = d), (19)

where the first equality follows from Assumption 1 and the fact that Yi(0), Yi(1), Yi(2) and Ai are

sufficient for Yi and that Ci and Di are sufficient for Ai. The second equality is by Assumption 2. Note

that Pr(Yi(d) = y|Yi(0), Yi(1), Yi(2)) and Pr(Ai = a|Ci, Di = 0) are degenerate and that Pr(Ai =

a|Di = 1) and Pr(Di = d) are fixed by the experimental design. Therefore, the remaining component

of equation (19), Pr(Si = s, Ci = c, Yi(0) = y0, Yi(1) = y1, Yi(2) = y2), completely specifies the data

generating process, with |A|2 · |Y||A|− 1 = J22J − 1 free parameters needed to describe it. Balke (1995,

Section 3.5) shows that bounds on counterfactual probabilities found by optimizing over such a complete

model are sharp; that is, they are guaranteed to be at least as tight as bounds calculated from any partial

(marginalized) model.

We express the complete model in terms of φy0,y1,y2,s,c ∈ Φ. First, note that
∑

y0∈{0,1}
∑

y1∈{0,1}∑
y2∈{0,1}

∑
s′∈A

∑
c′∈A φya,ya′ ,ya′′ ,s′,c′ = 1. Next, from the free-choice condition, we observe Pr(Si =

s, Ci = c, Yi = y | Di = 0), which is completely specified by |A|2 · |Y| − 1 = 2J2 − 1 free parameters.

We use the following 2J2 marginals as constraints on φy0,y1,y2,s,c (with one redundant):

Pr(Si = s,Ai = c | Di = 0) = Pr(Si = s, Ci = c) =
∑
a∈A

∑
ya∈{0,1}

φy0,y1,y2,s,c, (20)

Pr(Si = s,Ai = c, Yi = 1 | Di = 0) = Pr(Si = s, Ci = c, Yi(c) = 1) =
∑
a6=c

∑
ya∈{0,1}

φy0,y1,y2,s,c, (21)

for all s and c ∈ A. Similarly, from the forced-choice condition, we observe

Pr(Si = s, Ai = a, Yi = y | Di = 1)

= Pr(Yi = y | Si = s, Ai = a,Di = 1) Pr(Ai = a | Di = 1) Pr(Si = s | Di = 1)

where the equality holds by Assumption 2. Because Pr(Ai = a | Di = 1) is fixed a priori by randomiza-

tion, the observed distribution from the forced-choice arm can be fully characterized by (|Y| − 1)|A|2 +

|A|−1 = J2 +J−1 free parameters. We use the following J2 +J margins as constraints on φy0,y1,y2,s,c,
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noting that one of them is redundant:

Pr(Si = s | Ai = a,Di = 1) = Pr(Si = s) =
∑
a∈A

∑
ya∈{0,1}

∑
c∈A

φy0,y1,y2,s,c, (22)

Pr(Si = s, Yi = 1 | Ai = a,Di = 1) = Pr(Si = s, Yi(a) = 1) =
∑
a′∈A

∑
ya′∈{0,1}

∑
c∈A

φy0,y1,y2,s,c · 1{ya = 1},

for all s and a ∈ A. However, note that equation (22) are merely linear combinations of equation (20)

and can therefore be omitted.

Finally, the quantity of interest can be written in terms of φy0,y1,y2,s,c as,

τ(a, a′ | c) = E[Yi(a) | Ci = c]− E[Yi(a
′) | Ci = c]

=

∑
y0∈{0,1}

∑
y2∈{0,1}

∑
s φ1,y1,y2,s,c

Pr(Ai = c|Di = 0)
−
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s φy0,1,y2,s,c

Pr(Ai = c|Di = 0)
,

assuming a′ = 1 and a = 0 without loss of generality. Solving for the extrema of τ(a, a′ | c) under

the above set of linear constraints, which incorporate the full information in the observed data as well as

probability axioms, yields its sharp upper and lower bounds as displayed in Proposition 2.

A.5 Statistical Inference for the Bounds

Let p = [ps] = [Pr(Si = 0), · · · ,Pr(Si = J − 1)]> be a stochastic vector of stated-preference

probabilities. q = [qsc] = [Pr(Ci = c|Si = s)] is a row-stochastic matrix, where row s, denoted

qs, represents the distribution of true preferences (Ci) among those with the stated preference Si =

s. Also let π+ = {π+(a|s, c) : a, s, c ∈ A} and π− = {π−(a|s, c) : a, s, c ∈ A}, where π+(a|s, c)

and π−(a|s, c) are defined in Appendix A.3. Let F 1 = {F (y|s, a, d) : s, a ∈ A, d = 1} and F 0 =

{F (y|s, a, d) : s, a ∈ A, d = 0}, where F (y|s, a, d) is defined in Proposition 1. Finally, we use τ+ and

τ− to denote the sets of the upper and lower bounds on τ(a, a′|c) for all a, a′, c ∈ A, respectively, and

X to indicate all observed data.

Our goal is to approximate the posterior distribution of (τ−, τ+) with Monte Carlo simulations. We

begin by the general bounds in Proposition 1. Note that τ− and τ+ are deterministic functions of π−,
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π+, p and q, such that

τ−(a, a′|c) =
∑
s∈A

(
π−(a|s, c)− π+(a′|s, c)

) qscps∑
s′∈A qs′cps′

,

τ+(a, a′|c) =
∑
s∈A

(
π+(a|s, c)− π−(a′|s, c)

) qscps∑
s′∈A qs′cps′

for all a, a′, c ∈ A. Therefore, we consider the problem of simulating samples from the joint posterior of

π−, π+, p and q, which can be written as,

f(π+,π−,p, q|X) = f(π+,π−|F̂ 1, F̂ 0, q) f(q|n0
s) f(p|n)

under Assumptions 1 and 2, where F̂ 1 and F̂ 0 are empirical CDFs corresponding to F 1 and F 0, re-

spectively. For p and q, we use the noninformative improper priors p ∼ Dirichlet(0) and qs ∼

Dirichlet(0) ∀ s ∈ A. Then, qs |X ∼ Dirichlet(n0
s) ∀ s and p |X ∼ Dirichlet(n).

We are now left with f(π+,π−|F̂ 1, F̂ 0, q). Because of the way these bounds are constructed (see

Proposition 1),

π+(a|s, c), π−(a|s, c) ⊥⊥ π+(a|s′, c), π−(a|s′, c) | F̂ 1, F̂ 0, q and

π+(a|s, c), π−(a|s, c) ⊥⊥ π+(a′|s, c), π−(a′|s, c) | F̂ 1, F̂ 0, q

for s 6= s′ and a 6= a′. Therefore, to fully characterize the posterior of [τ−(a′, a′′|c), τ+(a′, a′′|c)] for each

a, a′′ and c ∈ A, it is sufficient to only consider the bivariate posterior distribution of [π+(a|s, c), π−(a|s, c)]

for a ∈ {a′, a′′} and s ∈ A. Note that, under mild assumptions and with a sufficiently large sample size,

the posterior for each pair [π+(a|s, c), π−(a|s, c)] can be approximated by a bivariate normal distribution

due to the Bayesian central limit theorem. That is, we have:π−(a|s, c)

π+(a|s, c)

 | q,X ≈ Normal


 π̄−(a|s, c, qs,X)

π̄+(a|s, c, qs,X)

 ,
 V −(a|s, c, qs,X) C(a|s, c, qs,X)

C(a|s, c, qs,X) V +(a|s, c, qs,X)


(23)

when N is sufficiently large, and the means and covariances can be approximated by the asymptotic

means and covariances of the frequentist sampling distributions of [π−(a|s, c), π+(a|s, c)], respectively,

as shown below. Note that priors on π−(a|s, c), π+(a|s, c) can be ignored and therefore left unspecified

11



when N is large because of the Bernstein-von Mises theorem.

Let y be the natural lower bound of Yi(a) if it exists and min{Yi : Si = s, Ai = a}, which is

the lowest point at which the estimated conditional CDF, Γ̂a(y,∞|s, a), is nonzero, if it does not. Let

Γ−1
a (·) be the inverse of Γa(y,∞|s, a) (see Section A.3 for the definition) with respect to y, so that

Γ−1
a (Γa(y,∞|s, a)) = y, and let Γ̂−1

a (·) be its sample analogue, such that Γ̂−1
a (p) = min{y : p ≤

Γ̂a(y,∞|s, a)}. Let b = qsc
1−qsa . For the means, note that the π−(a|s, c) and π+(a|s, c) are functions of

F (y|s, a, 0), F (y|s, a, 1) and P (a|s, 0) (as shown in Appendix A.3), which can be consistently estimated

by their nonparametric maximum likelihood estimates F̂ (y|s, a, 0), F̂ (y|s, a, 1) and qsa, respectively.

This implies the following plug-in estimators for π̄−(a|s, c, qs,X) and π̄+(a|s, c, qs,X):

ˆ̄π−(a|s, c, qs,X) = Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

ˆ̄π+(a|s, c, qs,X) = Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy,

where we used the fact that Φ+
a (y|s, c) = 1 for y ≥ Γ−1

a (b) and Φ−a (y|s, c) = 0 for y ≤ Γ−1
a (1− b) (see

Appendix A.3 for the definitions of Φ+
a (y|s, c) and Φ−a (y|s, c)).

For the variances and covariances, we use the fact that for any ECDF F̂ (·), Cov
(
F̂ (a), F̂ (b)

)
=

F (a)−F (a)F (b)
n

for a ≤ b where n is the number of steps in F̂ (·).

V −(a|s, c, qs,X)

= Var

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

)

=

(
1

qsc

)2

Var

(∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa dy

)

=

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

= 2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

12



= 2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov
(
F̂ (y|s, a, 1), F̂ (x|s, a, 1)

)
dxdy

+ 2

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

Cov
(
F̂ (y|s, a, 0), F̂ (x|s, a, 0)

)
dxdy

=
2

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy,

where n0
sa is as defined in Section 6 and n1

sa =
∑N

i=1 1{Si = s, Ai = a,Di = 1}. Similarly,

V +(a|s, c, qs,X)

= Var

(
Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy

)

=
2

n1
sa

(
1

qsc

)2 ∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

We estimate these quantities by substituting F (·|s, a, d) with F̂ (·|s, a, d) for d = 0, 1. A small sample

correction can optionally be applied to these estimates by replacing ndsa with ndsa − 1 for d = 0, 1.

The covariance between π−(a|s, c) and π+(a|s, c) depends on whether b < 1
2
, in which case they are

based on disjoint (but still correlated) portions of the same ECDFs, or whether b ≥ 1
2
, in which case they

are based on overlapping regions of the ECDFs and are therefore more correlated. If b ≥ 1
2
,

C (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy,

Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy

)

= Cov

(∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy,

∫ ∞
Γ̂−1
a (1−b)

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy

)
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=

(
1

qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

+2

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

+

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

Cov

 F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa,

F̂ (x|s, a, 1)− F̂ (x|s, a, 0)qsa

 dxdy

=
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

+
2

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ Γ̂−1
a (b)

y

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

+
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

Γ̂−1
a (1−b)

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy

and if b < 1
2
,

C (a|s, c, qs,X)

=
1

n1
sa

(
1

qsc

)2 ∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n0
sa

(
qsa
qsc

)2 ∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 0) (1− F (x|s, a, 0)) dxdy.

Again, we estimate these by replacing F (·|s, a, d) with F̂ (·|s, a, d) for d = 0, 1. The small sample

correction can also be applied.

Finally, in the special case of a = c, the quantity π(a|s, c) = π(c|s, c) is point-identified. There-

fore, equation (23) reduces to a univariate normal distribution such that π̄ ≡ π̄−(c|s, c, qs,X) =

π̄+(c|s, c, qs,X) and V ≡ V −(c|s, c, qs,X) = V +(c|s, c, qs,X) = C(c|s, c, qs,X). In fact, the es-
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timators of these parameters provided above reduce to the sample mean and the sampling variance for

the mean, respectively, for the corresponding subgroup:

ˆ̄π = y +

∫ ∞
y

1− F̂ (y|s, c, 0)dy

= y +

∫ ∞
y

N∑
i=1

(
1− 1{Yi ≤ y}

)
· 1{Si = s, Ai = c,Di = 0}

n0
sc

dy

= y +
1

n0
sc

N∑
i=1

(∫ Yi

y

1 dy +

∫ ∞
Yi

0 dy

)
· 1{Si = s, Ai = c,Di = 0}

=
1

n0
sc

N∑
i=1

Yi · 1{Si = s, Ai = c,Di = 0},

and

V̂ =
2

n0
sc

∫ ∞
y

∫ ∞
y

F̂ (y|s, c, 0)
(

1− F̂ (x|s, c, 0)
)

dxdy

=
2

n0
sc

∫ ∞
y

∫ ∞
y

(
N∑
i=1

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}
n0
sc

)

×

(
N∑
j=1

(
1− 1{Yj ≤ x}

)
· 1{Sj = s, Aj = c,Dj = 0}

n0
sc

)
dxdy

=
2

(n0
sc)

3

∫ ∞
y

(
N∑
i=1

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}

)

×
N∑
j=1

(∫ ∞
y

(
1− 1{Yj ≤ x}

)
· 1{Sj = s, Aj = c,Dj = 0} dx

)
dy

=
2

(n0
sc)

3

N∑
i=1

N∑
j=1

∫ ∞
y

1{Yi ≤ y} · 1{Si = s, Ai = c,Di = 0}

×
(

1− 1{Yj ≤ y}
)

(Yj − y) · 1{Sj = s, Aj = c,Dj = 0} dy

=
2

(n0
sc)

3

N∑
i=1

∑
j∈J

1{Si = s, Ai = c,Di = 0} · 1{Sj = s, Aj = c,Dj = 0}
∫ Yj

Yi

(Yj − y) dy,

with J =
{
j ∈ 1, · · · , N : Yj ≥ Yi

}
=

1

n0
sc

N∑
i=1

∑
j∈J

(Yj − Yi)2

(n0
sc)

2
· 1{Si = s, Ai = c,Di = 0} · 1{Sj = s, Aj = c,Dj = 0}

=
1

(n0
sc)

2

N∑
i=1

(Yi − π̄)2 · 1{Si = s, Ai = c,Di = 0},
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for any c, s ∈ A. Again, a small sample correction can be applied for V̂ by multiplying it by n0
sc/(n

0
sc−1).

For the binary-outcome bounds in Proposition 2, we employ a similar procedure. Let H = [Hsa] =

[Pr(Yi = 1|Si = s, Ai = a,Di = 1)] and G = [Gsa] = [Pr(Yi = 1|Si = s, Ai = a,Di = 0)].

In this case, τ− and τ+ are completely determined by H , G, p and q. The endpoints of the ACTE

bounds τ−(a, a′|c) and τ+(a, a′|c) are respectively given by the solutions to the linear problem described

in Proposition 2:

min
Φ

and max
Φ

1

Pr(Ai = c|Di = 0)

 ∑
a′′∈{0,1}

∑
s∈A

(
φ1,0,ya′′ ,s,c

− φ0,1,ya′′ ,s,c

) , (24)

s.t. φy0,y1,y2,s,c′ ≥ 0 ∀ y0, y1, y2, s, c
′,
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A
∑

c′∈A φy0,y1,y2,s,c′ = 1,∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1} φy0,y1,y2,s,c′ ·1{yc′ = 1} = qsc′psGsc′ ∀ s, c′,

∑
y0∈{0,1}

∑
y1∈{0,1}

∑
y2∈{0,1}

φy0,y1,y2,s,c′ = qsc′ps ∀ s, c′, and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

c′∈A φy0,y1,y2,s,c′ · 1{ya′′ = 1} = psHsa′′

∀s, a′′, where Φ ≡ {φy0,y1,y2,s,c : y0 ∈ {0, 1}, y1 ∈ {0, 1}, y2 ∈ {0, 1}, s ∈ A, c ∈ A} .

The joint posterior of these parameters can be factorized as f(H ,G,p, q|X) = f(H|F̂ 1) f(G|F̂ 0)

f(q|n0
s)f(p|n) under Assumptions 1 and 2. We use the improper priors Hsa ∼ Beta(0, 0) and Gsa ∼

Beta(0, 0). The posteriors are then given by Hsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

1},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 1}) and Gsa ∼ Beta(
∑N

i=1 1{Yi = 1, Si = s, Ai = a,Di =

0},
∑N

i=1 1{Yi = 0, Si = s, Ai = a,Di = 0}).

A.6 Statistical Inference for the Sensitivity Analysis

Our approach to statistical inference for the sensitivity analysis in Section 5 is similar to the procedure

outlined in Section 6. In addition to the parameters defined there, we have the naïve estimates η =

{η(a|s) : a, s ∈ A}, where η(a|s) = E[Yi|Si = s, Ai = a,Di = 1]. For a given value of the sensitivity

parameter, ρ = ρac = ρa′c, the sets of upper and lower bounds on τ(a, a′|c) are denoted τ−ρ and τ+
ρ for

a, a′, c ∈ A.

Given π−, π+, p, q, and η, we can deterministically find τ−ρ and τ+
ρ . Each pair of τ−ρ (a, a′|c) and
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τ+
ρ (a, a′|c) are equal to the endpoints of the following interval:

τ(a, a′|c) ∈([
η(a|c)− ρac, η(a|c) + ρac

]⋂[∑
s∈A

π−(a|s, c) qscps∑
s′∈A qs′cps′

,
∑
s∈A

π+(a|s, c) qscps∑
s′∈A qs′cps′

])

−

([
η(a|c)− ρa′c, η(a|c) + ρac

]⋂[∑
s∈A

π−(a′|s, c) qscps∑
s′∈A qs′cps′

,
∑
s∈A

π+(a′|s, c) qscps∑
s′∈A qs′cps′

])
.

We therefore simulate from the posterior of (τ−, τ+) by drawing samples of π−, π+, η, p and q,

f(π+,π−,η,p, q|X) = f(π+,π−,η|F̂ 1, F̂ 0, q) f(q|n0
s) f(p|n)

under Assumptions 1 and 2. Note that this differs from Appendix A.5 only in that the distributions of

π+ and π− are considered jointly with η. These have the additional independence relations

η(a|s) ⊥⊥ π+(a|s′, c), π−(a|s′, c), η(a|s′) | F̂ 1, F̂ 0, q and

η(a|s) ⊥⊥ π+(a′|s, c), π−(a′|s, c), η(a′|s) | F̂ 1, F̂ 0, q

for s 6= s′ and a 6= a′.

We can therefore approximate the posterior of sensitivity bounds by Monte Carlo simulation of p,

q, and the trivariate distributions [π−(a|s, c), π+(a|s, c), η(a|c)] for a ∈ {a′, a′′} and s ∈ A. By the

Bayesian central limit theorem, the latter is given by
π−(a|s, c)

π+(a|s, c)

η(a|c)

 | q,X ≈ Normal



π̄−(a|s, c, qs,X)

π̄+(a|s, c, qs,X)

η̄(a|c,X)

 ,Σ(a|s, c)

 , where

Σ(a|s, c) =


V −(a|s, c, qs,X) C(a|s, c, qs,X) C−η (a|s, c, qs,X)

C(a|s, c, qs,X) V +(a|s, c, qs,X) C+
η (a|s, c, qs,X)

C−η (a|s, c, qs,X) C+
η (a|s, c, qs,X) Vη(a|s, qs,X)


when N is large, and the additional parameters η̄, C−η , C+

η , and Vη are defined below.
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Note that naïve estimate η(a|s) is point-identified, and its posterior mean and variance are equivalent

to the sample mean and the sampling variance for the mean for the corresponding forced-choice units.

These are given by:

η̄(a|s) = y +

∫ ∞
y

1− F (y|s, a, 1) dy,

Vη(a|s) =
2

n1
sa

∫ ∞
y

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy.

Derivations closely follow Section A.5 and therefore are omitted here. Estimation can be done by plug-in

with an optional small sample correction.

The posterior of η(a|s) covaries with those of π−(a|s, c) and π+(a|s, c) because the latter parameters

depend partially on the ECDF of the same forced-choice units.

C−η (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (b)−

∫ Γ̂−1
a (b)

y

F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa
qsc

dy, y +

∫ ∞
y

1− F̂ (y|s, a, 1) dy

)

=
2

n1
sa · qsc

∫ Γ̂−1
a (b)

y

∫ Γ̂−1
a (b)

y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
1

n1
sa · qsc

∫ Γ̂−1
a (b)

y

∫ ∞
Γ̂−1
a (b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

C+
η (a|s, c, qs,X)

= Cov

(
Γ̂−1
a (1− b)−

∫ ∞
Γ̂−1
a (1−b)

qsa + F̂ (y|s, a, 1)− F̂ (y|s, a, 0)qsa − 1

qsc
dy,

y +

∫ ∞
y

1− F̂ (y|s, a, 1) dy

)

=
1

n1
sa · qsc

∫ Γ̂−1
a (1−b)

y

∫ ∞
Γ̂−1
a (1−b)

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

+
2

n1
sa · qsc

∫ ∞
Γ̂−1
a (1−b)

∫ ∞
y

F (y|s, a, 1) (1− F (x|s, a, 1)) dxdy

for any s, c 6= a ∈ A.

Thus, each draw of the sensitivity results from their posterior is generated by the following procedure:

1. Draw p ≡ [ps] ∼ Dirichlet(n), wheren ≡ [ns] =
[∑N

i=1 1{Si = 0}, · · · ,
∑N

i=1 1{Si = J − 1}
]>

.

18



2. For each s ∈ A:

(a) Draw qs ≡ [qsa] ∼ Dirichlet(n0
s), where n0

s ≡ [n0
sa] =

[∑N
i=1 1{Si = s, Ai = 0, Di =

0}, · · · ,
∑N

i=1 1{Si = s, Ai = J − 1, Di = 0}
]>

;

(b) For each a and c ∈ A, draw a triplet [π−(a|s, c), π+(a|s, c), η(a|s)] from the trivariate normal

distribution defined above.

3. For a given ρ, calculate a simulated draw of [τ−ρ (a, a′|c), τ+
ρ (a, a′|c)] according to equation (9).

The sensitivity procedure for binary outcomes differs only in the last two steps:

2. (b) For each a ∈ A, draw Hsa and Gsa from the posteriors discussed in Sections 6 and A.5.

3. Calculate a simulated draw of [τ−(a, a′|c), τ+(a, a′|c)] by solving the linear programming problem

in equation (24), with the additional sensitivity constraints
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A

φy0,y1,y2,s,c1{ya∗ = 1} ≥ (Hsa∗−ρa∗c)
∑

s∈A qscps and
∑

y0∈{0,1}
∑

y1∈{0,1}
∑

y2∈{0,1}
∑

s∈A φy0,y1,y2,s,c

1{ya∗ = 1} ≤ (Hsa∗ + ρa∗c)
∑

s∈A qscps for given c and a∗ ∈ {a, a′}.

A.7 Additional Simulation Results

In this section, we present additional results from the simulations described in Section 8. First, we ex-

plore the performance of the EM-algorithm-based parametric approach proposed by Long et al. (2008)

(hereafter LLL) in a setting close to our empirical application. This necessitates extending LLL’s original

methodology, as it was developed for a binary treatment. We thus modify their parametric model to ac-

commodate a categorical treatment by modeling the treatment choice with the multinomial logit model,

as opposed to the binary logit model. (We have confirmed that our own R implementation of this exten-

sion replicates the simulation results reported by LLL in their original article almost exactly.) To make

LLL’s approach comparable to our proposed method in terms of observed information used, we set sub-

jects’ stated preferences as the covariate in their choice and outcome models (i.e., X1i = X2i = Si using

their notation). We then apply the LLL estimator to the same 500 simulated datasets as in Section 8.
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CD=0.00 CD=0.33 CD=0.67 CD=1.00
LLL 0.053 0.028 0.019 -0.020

naïve 0.002 0.011 0.023 0.038
min -0.001 -0.001 -0.001 0.000
max -0.001 -0.001 -0.001 -0.001

Table A.1: LLL bias for various CD values, holding OD at zero. Naïve and bounds biases from Sec-
tion 8.1 are reproduced here for convenience.

OD=0.00 OD=0.33 OD=0.67 OD=1.00
LLL 0.053 0.062 0.072 0.080

naïve 0.002 0.011 0.020 0.030
min -0.001 0.001 0.001 0.001
max -0.001 -0.002 -0.002 -0.001

Table A.2: LLL bias for various OD values, holding CD at zero. Naïve and bounds biases from Sec-
tion 8.2 are reproduced here for convenience.

Tables A.1 and A.2 show the results in terms of bias at the sample size of 3,000 (second row from the

top), along with the comparable results for the naïve estimator and our proposed bounds estimator (third

row and below), which are reproduced from Tables 2 and 3 in the main text. Somewhat surprisingly, and

contrary to the original findings by LLL based on a much simpler simulation setup, the LLL estimator

exhibits substantial bias even when both CD and OD are zero. This suggests that finite-sample perfor-

mance of the LLL estimator is rather poor when applied to datasets like ours, rendering it an unattractive

option for inference.

Next, we contrast the proposed Bayesian inferential approach described in Section A.5 to an alterna-

tive method based on the nonparametric bootstrap. We construct the 95% bootstrap confidence intervals

by taking the 2.5th and 97.5th percentiles of parameter estimates in 1000 bootstrap draws. For the

bounds, we take those percentiles from the lower and upper bound estimates, respectively, to construct

confidence intervals that are purported to cover the nonparametric bounds 95% of the time.

Tables A.3 and A.4 show estimated coverage rates for the 95% bootstrap confidence intervals at

various values of the CD and OD parameters. The comparable results for our proposed Bayesian intervals

can be found in Tables A.3 and A.4 in the main text. In general, we find that the coverage of the

bootstrap intervals is noticeably below that of our proposed method, and the bootstrap coverage rates are
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n CD=0.00 CD=0.33 CD=0.67 CD=1.00
500 0.944 0.930 0.895 0.891

1000 0.941 0.915 0.911 0.906
3000 0.952 0.914 0.908 0.924

10000 0.930 0.924 0.924 0.928
50000 0.936 0.940 0.940 0.942

Table A.3: Bootstrap coverage rates for various CD values, holding OD at zero.

n OD=0.00 OD=0.33 OD=0.67 OD=1.00
500 0.944 0.954 0.949 0.950

1000 0.941 0.960 0.956 0.959
3000 0.952 0.942 0.952 0.944

10000 0.930 0.952 0.950 0.958
50000 0.936 0.948 0.944 0.946

Table A.4: Bootstrap coverage rates for various OD values, holding CD at zero.

substantially below nominal at lower sample sizes and for larger values of the CD parameter.
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Sensitivity Analysis for Discussing Story with Friends (binary)

Figure A.1: Sensitivity Analysis for the ACTE of Partisan News Media (Binary Outcome). The plots
correspond to the right panel of Figure 2. See caption for Figure 3 for the explanation of graph elements.
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