Pyridine functionalized N-heterocyclic silane complexes of iridium and rhodium – an unexpected change in coordination

Felix Kaiser,^{a,b} Robert M. Reich,^a Eric Rivard^b and Fritz. E. Kühn^a*

a. Catalysis Research Center and Department of Chemistry, Technische Universität München, Molecular Catalysis and Wacker Institute, Lichtenbergstr. 4, 85747 Garching bei München, Germany. E-Mail: fritz.kuehn@ch.tum.de

b. Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta Canada, T6G 2G2. E-mail: erivard@ualberta.ca.

- Supporting Information -

Table of Contents

1.	NMR spectroscopy	S1				
	a) ¹ H NMR	S1				
	<i>b</i>) ¹¹ B NMR	S5				
	c) ¹³ C NMR	S6				
	d) ¹⁹ F NMR	S9				
	e) ²⁹ Si NMR	.S10				
2.	ESI-MS	.S12				
3.	LIFDI-MS	. S 15				
4.	X-Ray single crystal diffraction	S17				
	a) X-ray structure of 3	.S17				
	b) X-ray measurement details	S17				
	c) Crystallographic data	S18				
5. 1	5. Thermodynamic parameters from VT NMRS19					
6. F	S. References					

1. NMR spectroscopy

a) ¹H NMR

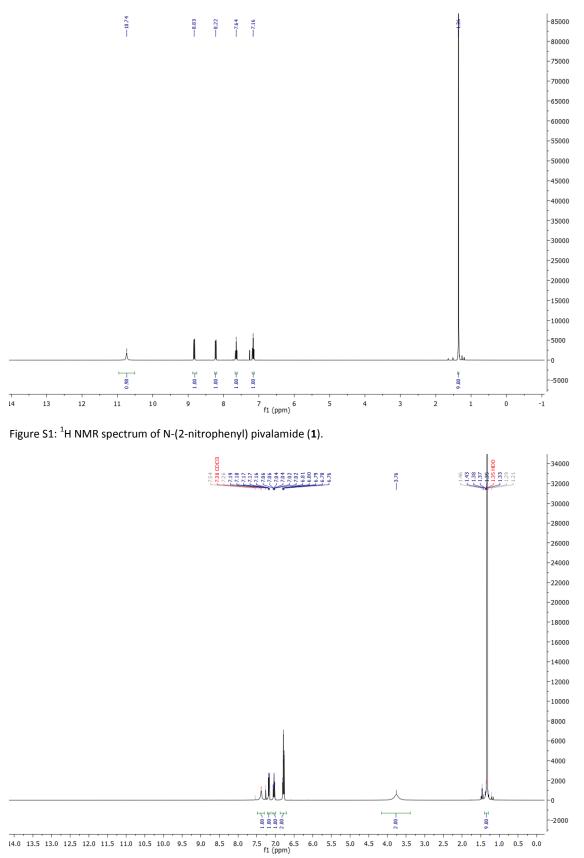


Figure S2: ¹H NMR spectrum of *N*-(2-aminophenyl) pivalamid (2).

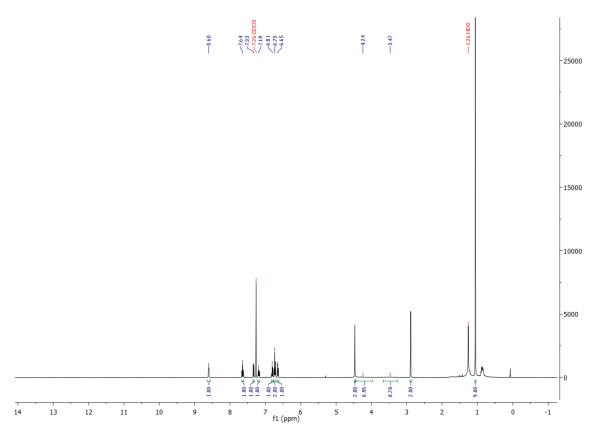


Figure S3: ¹H NMR spectrum of N-neopentyl-N'-(pyridin-2-ylmethyl) phenylene diamine (**3**).

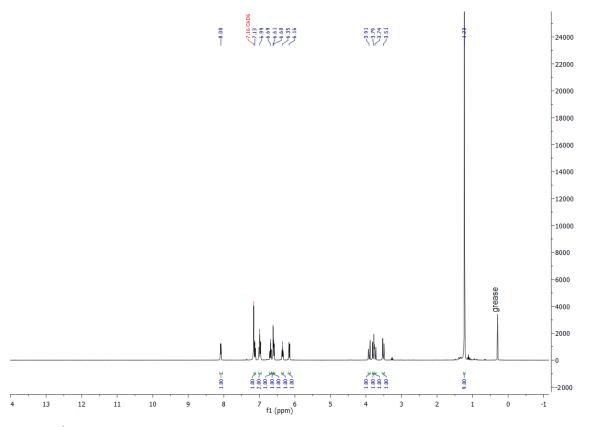


Figure S4: ¹H NMR spectrum of 1-neopentyl-2,2-hydrochloro-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (4).

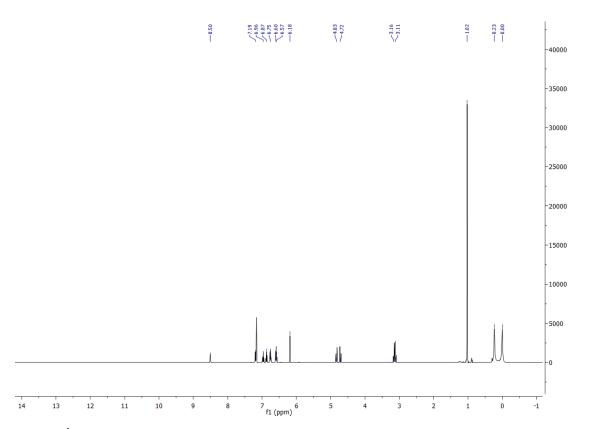


Figure S5: ¹H NMR spectrum of 1-neopentyl-2-hydro-2-(bis-trimethylsilylamido)-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (**5**).

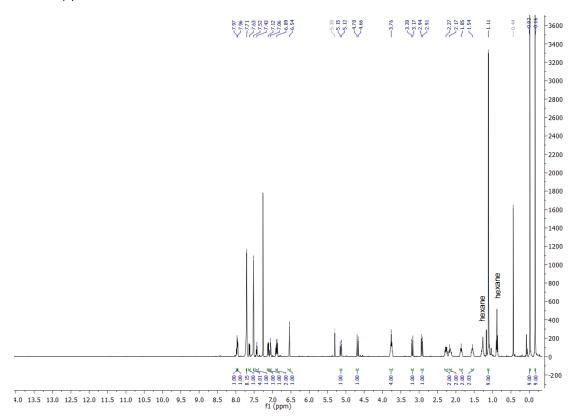


Figure S6: ¹H NMR spectrum of **6**.

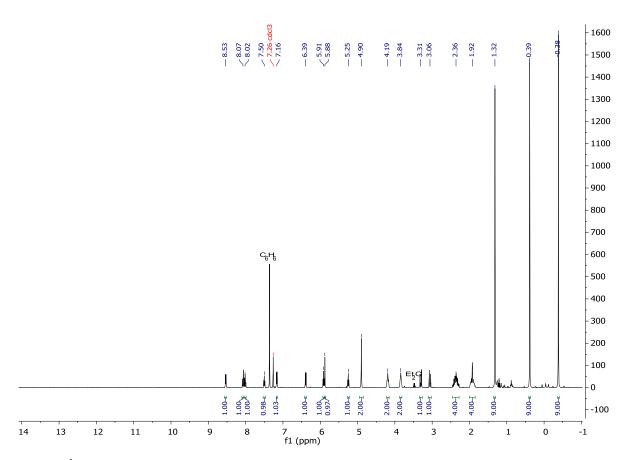


Figure S7: ¹H NMR spectrum of **7**. Cocrystallized benzene is marked as such in the sample (see also crystal structure).

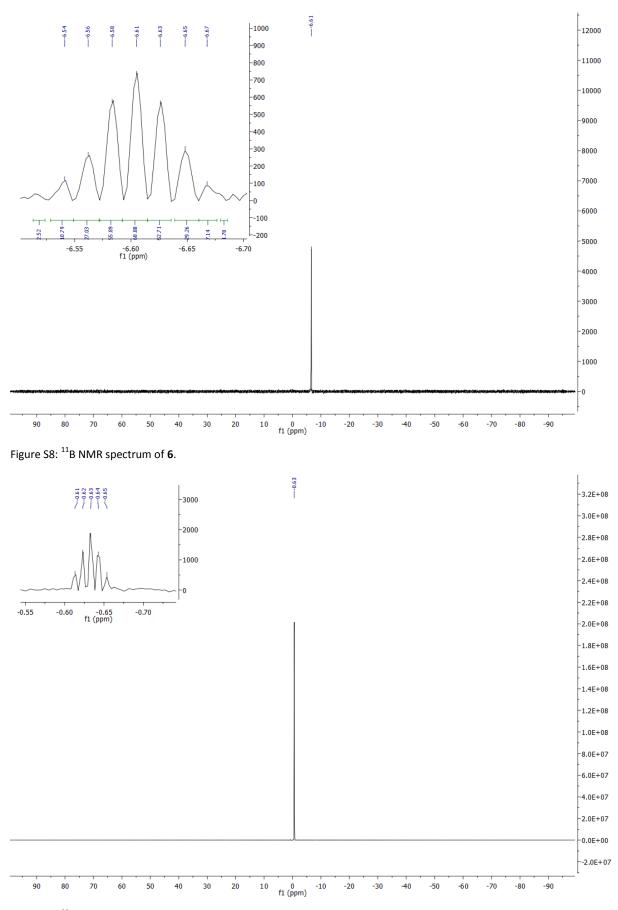


Figure S9: ¹¹B NMR spectrum of **7**.

c) ¹³C{¹H} NMR

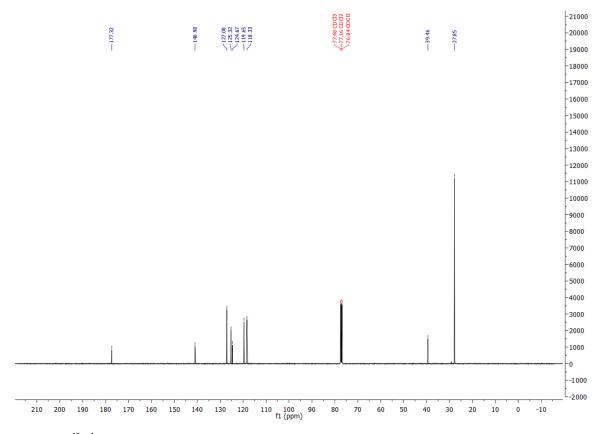


Figure S10: ¹³C{¹H} NMR spectrum of N-(2-aminophenyl) pivalamid (2).

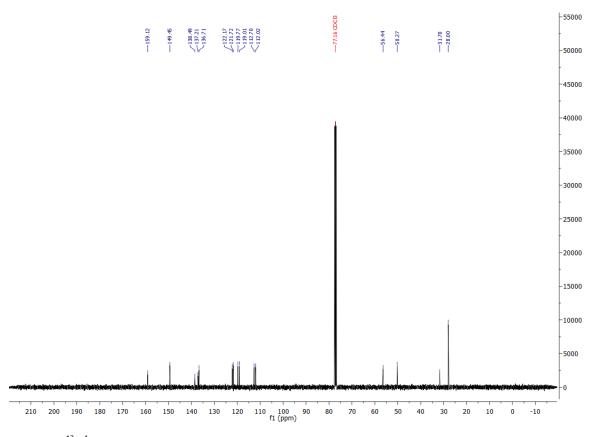


Figure S11: ¹³C{¹H} NMR spectrum of N-neopentyl-N'-(pyridin-2-ylmethyl) phenylene diamine (**3**).

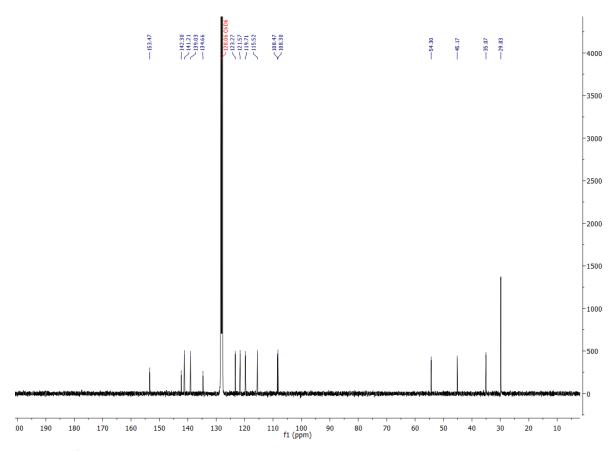


Figure S12: ¹³C{¹H} NMR spectrum of 1-neopentyl-2,2-hydrochloro-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (4).

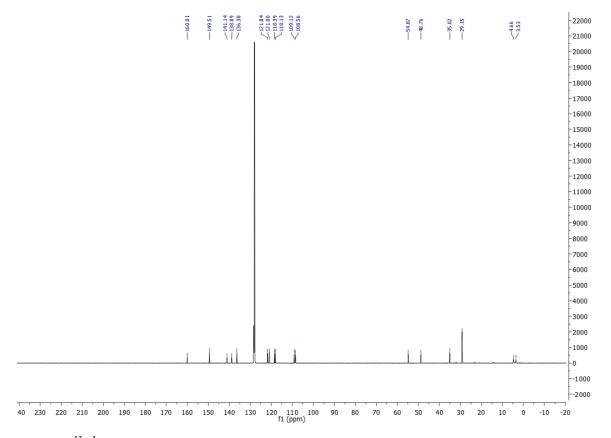
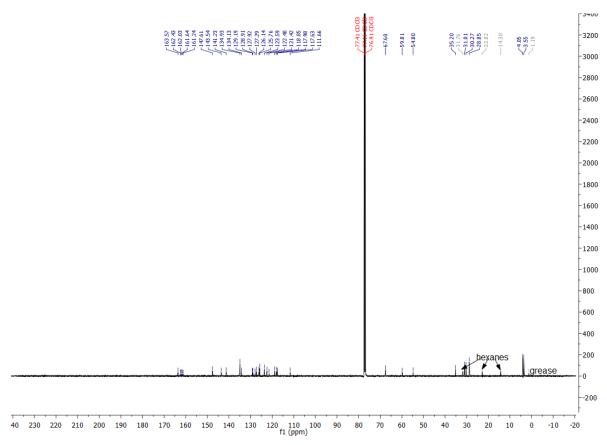



Figure S13: ¹³C{¹H} NMR spectrum of 1-neopentyl-2-hydro-2-(bis-trimethylsilylamido)-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (**5**).

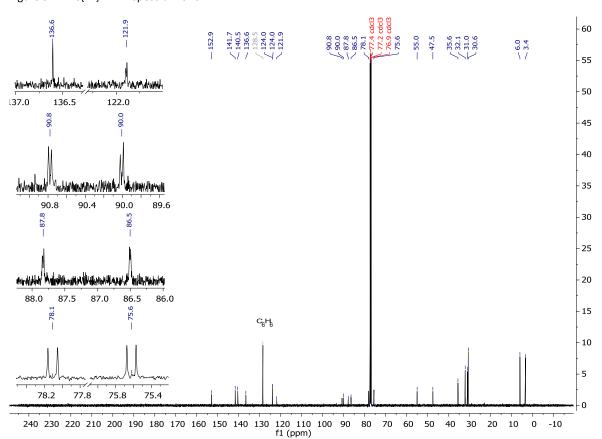
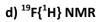



Figure S14: ¹³C{¹H} NMR spectrum of **6**.

Figure S15: ¹³C¹H} NMR spectrum of **7**. Cocrystallized benzene is marked as such in the sample (see also crystal structure).

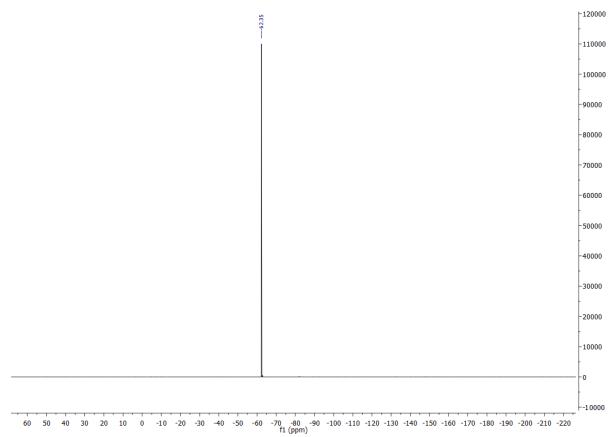
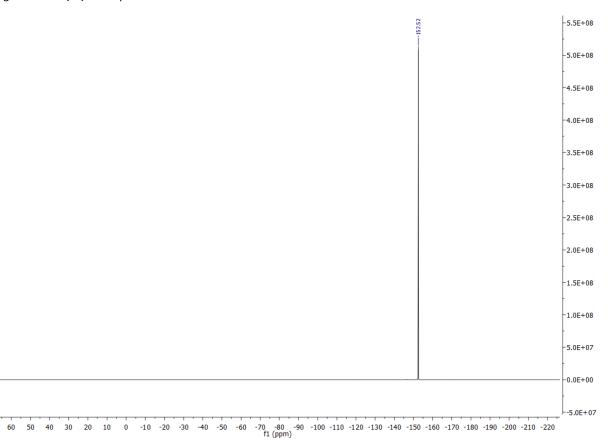



Figure S16: ¹⁹F{¹H} NMR spectrum of **6.**

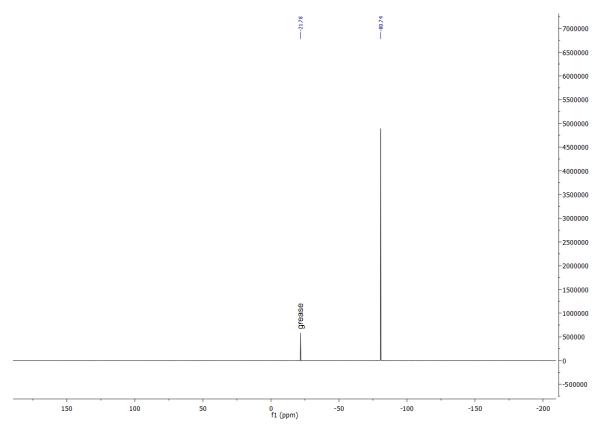


Figure S18: ²⁹Si{¹H} NMR spectrum of of 1-neopentyl-2,2-hydrochloro-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (4).

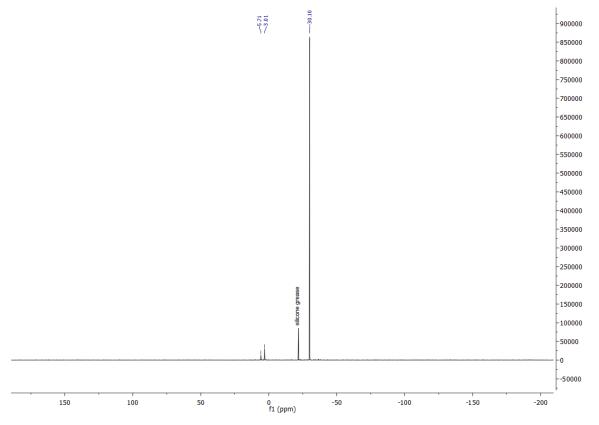


Figure S19: ²⁹Si{¹H} NMR spectrum of 1-neopentyl-2-hydro-2-(bis-trimethylsilylamido)-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (**5**).

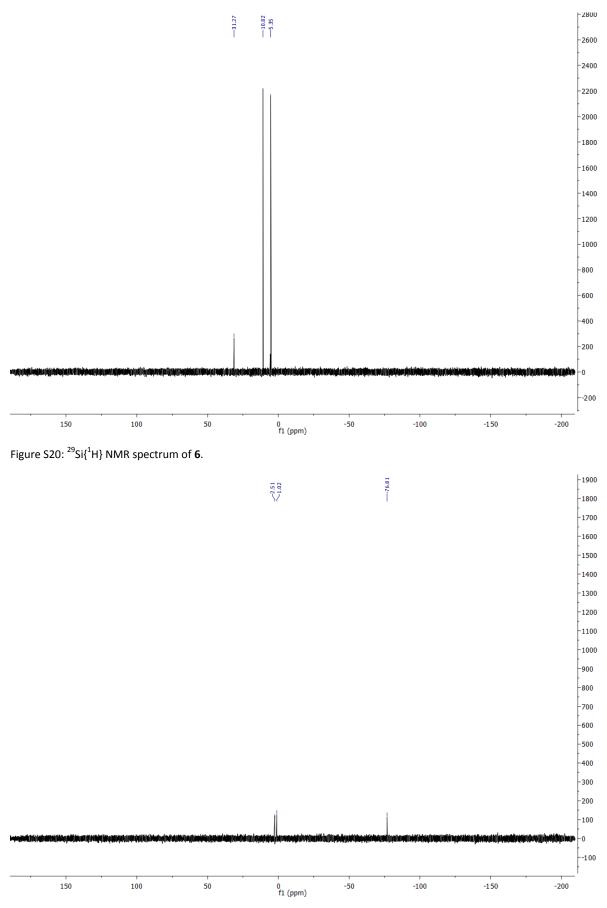


Figure S21: 29 Si{ 1 H} NMR spectrum of **7**.

2. ESI-MS

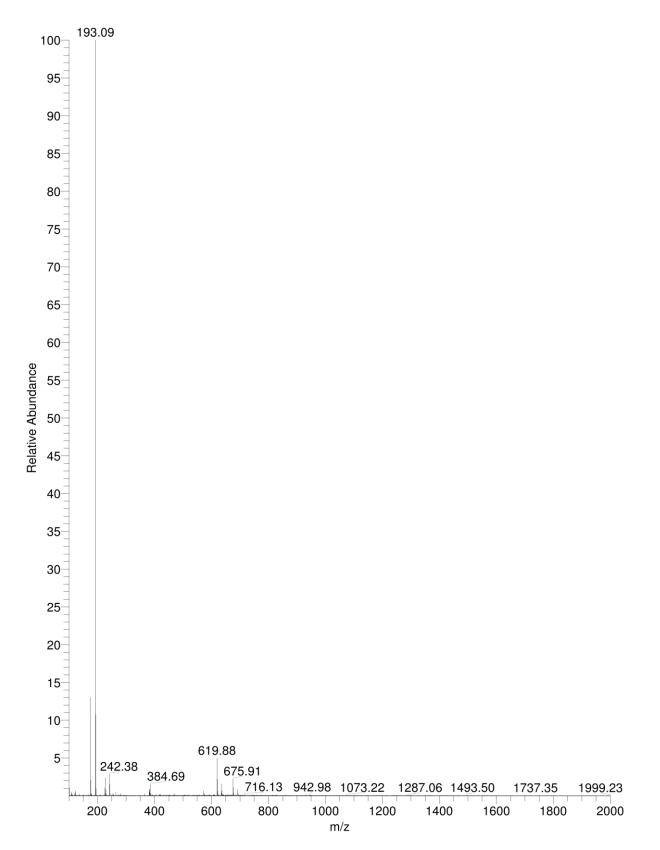


Figure S22: ESI MS of N-(2-aminophenyl) pivalamid (2).

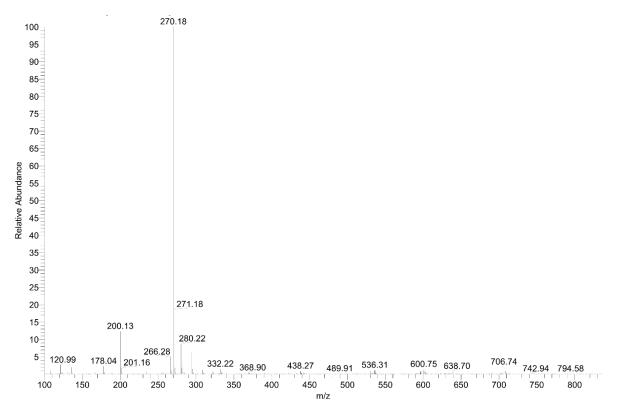


Figure S23: ESI MS of N-neopentyl-N'-(pyridin-2-ylmethyl) phenylene diamine (3).

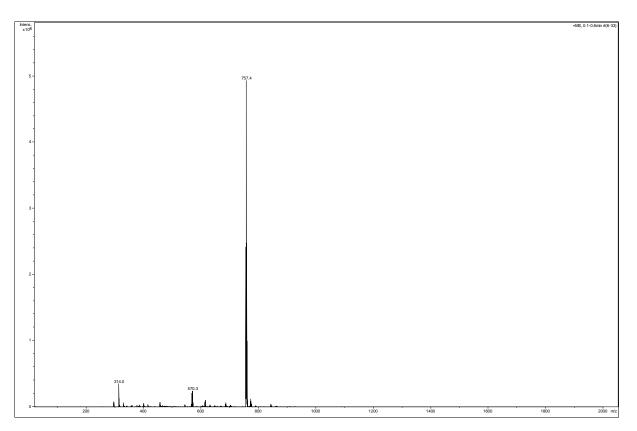


Figure S24: ESI MS of **6**.

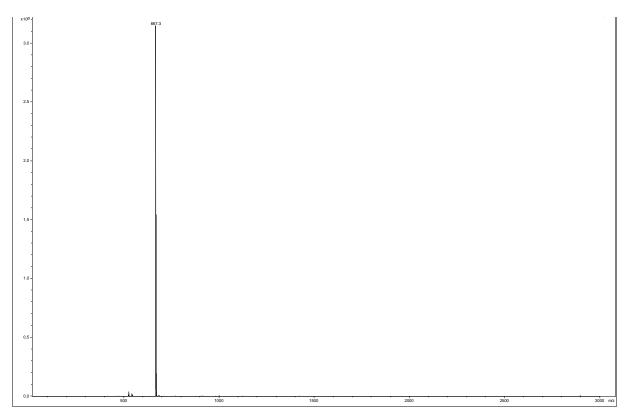


Figure S25: ESI MS of 7.

3. LIFDI MS

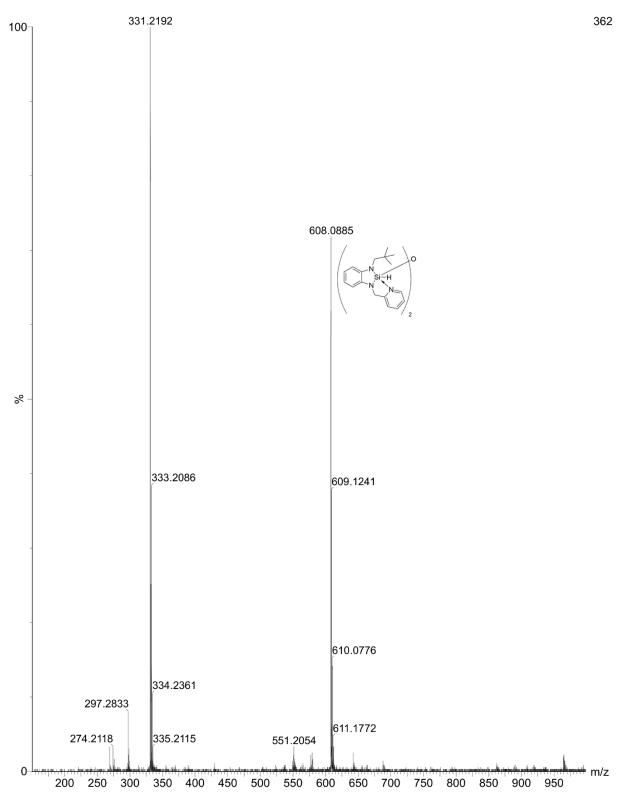


Figure S26: LIFDI MS of of 1-neopentyl-2,2-hydrochloro-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (4). Additional signal at m/z=608 caused by hydrolysis product (hydrolysis with moisture in the course of the measurement).

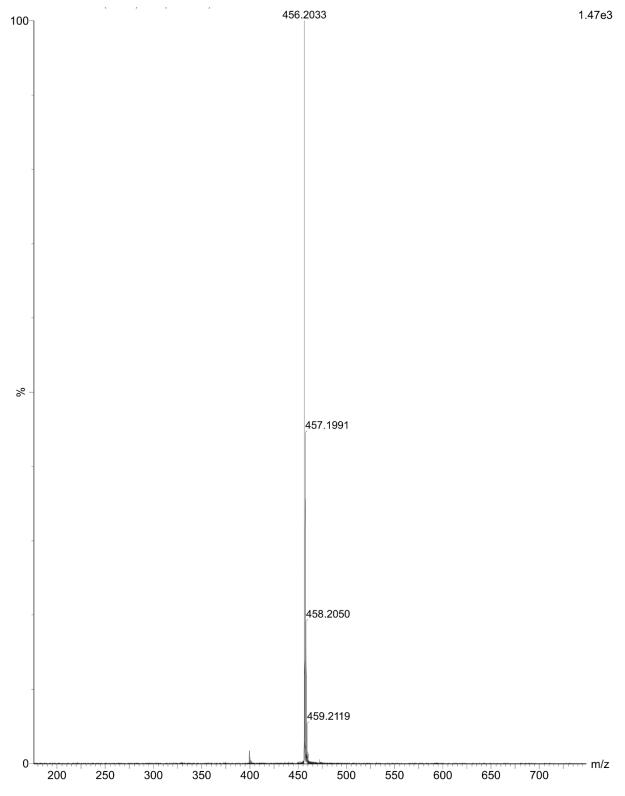


Figure S27: LIFDI MS of 1-neopentyl-2-hydro-2-(bis-trimethylsilylamido)-3-((pyridin-2-yl)-methyl)-benzo[1,3,2] diazasilol (5).

4. Single-crystal X-ray diffraction

a) X-Ray single crystal structure of N-neopentyl-N'-(pyridin-2-ylmethyl) phenylene diamine (3).

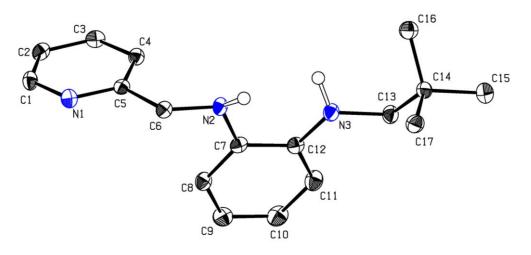


Figure S28: ORTEP style X-ray structure of **3**. Ellipsoids are shown at a 50% probability level. The hydrogen atoms are drawn with an arbitrary radius. Carbon-attached hydrogen atoms are omitted for clarity. Element colors: black – carbon, blue – nitrogen.

b) X-ray measurement details

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (Bruker APEX II, κ -CCD), a rotating anode (Bruker TXS) with MoK_{α} radiation (λ = 0.71073 Å) and a Helios optic monochromator (3, 6) or on a Bruker D8 Kappa APEX II system equipped with a fine-focused sealed tube with with MoK_a radiation (λ = 0.71073 Å) and a Triumph monochromator (4, 5, 7) by using the APEX software package.¹ The measurements were performed on a single crystal coated with perfluorinated ether. The crystal was fixed on top of a microsampler and transferred to the diffractometer. The crystal was frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorentz and polarization effects, scan speed, and background using SAINT.² Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.² Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using SHELXLE³ in conjunction with SHELXL-2014⁴. Hydrogen atoms were assigned to ideal positions and refined using a riding model with an isotropic thermal parameter 1.2 times that of the attached carbon atom (1.5 times for methyl hydrogen atoms). Silicon- and nitrogenattached protons could be located on the difference Fourier maps and were allowed to refine freely. If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (Fo^2 - Fc^2)^2$ with SHELXL-97⁵ weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.⁶ Images of the crystal structures were generated by PLATON.⁷

c) Crystallographic data

	3	4	5	6	7
formula	$C_{17}H_{23}N_3$	C17H22ClN3Si	$C_{23}H_{40}N_4Si_3$	C63H64BF24.07Ir	$C_{23}H_{33.5}B_{0.5}F_2$
				N_4Si_3	$N_2Rh_{0.5}Si_{1.5}$
M _r	269.38	331.91	456.86	1621.71	475.01
crystal habit	clear colorless	clear yellow	clear colorless	clear orange	clear yellow
	fragment	fragment	fragment	fragment	fragment
crystal system	monoclinic	triclinic	triclinic	monoclinic	triclinic
space group	P21/n	$P\overline{1}$	$P\overline{1}$	C2/c	$P\overline{1}$
a [Å]	9.1143(5)	11.463(2)	9.657(2)	19.308(2)	11.591(4)
<i>b</i> [Å]	5.6876(3)	12.121(1)	10.800(1)	18.256(1)	12.932(5)
<i>c</i> [Å]	29.019(2)	13.285(2)	14.678(2)	40.759(3)	18.375(7)
α [°]	90	77.296(4)	77.297(6)	90	108.43(2)
β [°]	97.306(2)	77.546(4)	86.511(6)	101.562(2)	99.56(2)
γ [°]	90	71.924(4)	63.939(5)	90	104.37(2)
$V[Å^3]$	1492.1(2)	1690.1(3)	1340.4(3)	14076(2)	2440(2)
Z	4	4	2	8	4
$\rho_{\rm c}$	1.199	1.304	1.132	1.531	1.293
F (000)	584	704	496	6485	998
<i>T</i> [K]	100(2)	100(2)	100(2)	100(2)	100(2)
μ [mm ⁻¹]	0.072	0.297	0.194	2.053	0.474
data/restraints/	2733/0/192	8379/0/411	7477/0/284	12417/319/991	8589/491/652
parameters					
$GoF(F^2)$	1.047	1.076	1.071	1.050	1.068
$R_1^{a}, w R_2^{b} (I > $	0.0378, 0.0848	0.0328, 0.0852	0.0287, 0.0838	0.0500, 0.0987	0.0326, 0.0787
2σ(I))					
R_1, wR_2 (all	0.0527, 0.0901	0.0397, 0.0887	0.0316, 0.0904	0.0859, 0.1070	0.0406, 0.0831
data)					
R _{int}	0.0648	0.0347	0.0276	0.1517	0.0454
CCDC number	1571194	1571192	1571193	1571196	1571195

Table S1: Crystallographic data for compounds **3**, **4**, **5**, **6** and **7**.

5. Thermodynamic parameters from VT NMR

For the determination of the thermodynamic parameters of the rotation barrier around Si1–N4 in **5**, a NMR spectra were recorded at various temperatures in THF- d_8 .

The overcoming of the rotational barrier in molecule **5** can be described as a first-order kinetic process. As such, the conformer lifetime τ is reciprocally proportional to the rate constant k.

According to Arrhenius, the rate constant k is given by:

$$k = A \cdot e^{\frac{E_A}{RT}}$$

Following the relations for Gibbs free activation enthalpy, require standard pressure and apply the natural logarithm, for the first order reaction at temperature *T* it can be denoted:

$$\ln\frac{k}{T} = \frac{\Delta H}{R} \cdot \frac{1}{T} + \frac{\Delta S}{R} + \ln\frac{k_B}{h}$$

(Δ H: activation Enthalpy; Δ S: activation entropy; k_B : Boltzmann constant; h: Planck constant; R: gas constant)

Thus, plotting $\ln \frac{k}{r}$ versus $\frac{1}{r}$ will makes all thermodynamic values accessible through slope or intercept.

E_A can eventually be calculated by

$$E_A = \Delta H + RT$$

Determination of reaction constant k:

At low temperatures (≤ 20 °C), the exchange rate was considered slow, and thus, with $w_{\frac{1}{2}}$ as the band width at half intensity level:

$$k = \frac{1}{\tau} = \pi \cdot w_{\frac{1}{2}}$$

Thereby, the linewidth at -40 °C was considered as "natural linewidth" without exchange and was substracted from the linewidths, measured at higher temperatures in order to reveal the exchange-related linewidths.

Around the coalescence point (20 – 45 °C), k was calculated through ($\Delta\delta$: separation between the two SiMe₃ signals in Hz):

$$k = \frac{1}{\tau} = \frac{\pi \cdot \Delta \delta}{\sqrt{2}}$$

For fast exchange at elevated temperatures (> 45 °C), k was calculated as ($\Delta \delta_{-40}$: line separation at - 40 °C):

$$k = \frac{1}{\tau} = \frac{\pi \cdot \Delta \delta_{-40}^2}{2w_{\frac{1}{2}}}$$

Т	w_1/2	Δδ	k	1/T	ln(k/T)
-40	2,51	157,4	0,1	0,00428908	
-20	2,66	148,4	0,46338492	0,00395023	-6,30317942
0	4,71	140	6,9272118	0,00366099	-3,6745637
20	28,55	127,8	81,8243515	0,00341122	-1,27610953
40	74,28	92	204,372615	0,00319336	-0,42673744
45	145,0	78	173,272435	0,00314317	-0,60765785
47	128,5	62	305,834199	0,00312354	-0,04574651

Table S2: Measured and calculated parameters within the VT 1 H NMR studies of **5**.

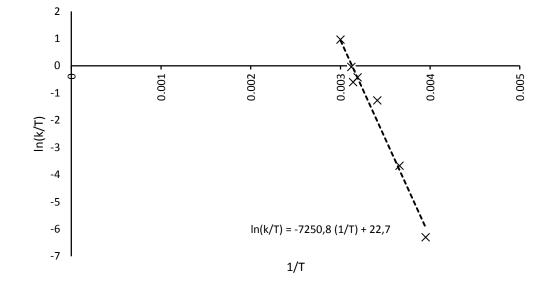


Figure S28: Linear Regression of In(k/T) vs. 1/T.

Linear regression and calculation of the parameters reveals:

$$\Delta H = 60.3 \frac{kJ}{mol}; \Delta S = -8.8 \frac{J}{mol \cdot K}; E_A = 62.9 \frac{kJ}{mol}$$

6. References

- 1. *APEX suite of crystallographic software, APEX 2, version 2008.4.*, Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- 2. SAINT, version 7.56a, SADABS, version 2008.1, Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- 3. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. *SHELXLE, J. Appl. Crystallogr.* 2011, **44**, 1281-1284.
- 4. Sheldrick, G. M. *SHELXL-2014*, University of Göttingen, Göttingen, Germany (2014).
- 5. Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany (1998).
- 6. Wilson, A. J. C. *International Tables for Crystallography*, Dordrecht, The Netherlands, Kluwer Academic Publishers (1992).
- 7. A. L. Spek, *Acta Cryst. D*, 2009, **65**, 148-155.
- 8. P. W. Atkins and J. de Paula, Physical Chemistry (7th ed.) (Oxford University Press, Oxford, UK, 2002).
- 9. H. Günther, NMR spectroscopy: basic principles, concepts, and applications in chemistry (2nd ed.) (John Wiley & Sons, New York, 1996)
- 10. R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry (4th ed.), (Wiley, New York, 2004)
- 11. R. C. Neuman Jr.; V. Jonas, J. Org. Chem. 1974, **39**, 925-928.
- 12. https://www.csun.edu/~jeloranta/CHEM352L/experiment3.pdf, 01.10.2017; 17:35 MESZ
- 13. J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron paramagnetic resonance: elementary theory and practical applications (John Wiley & Sons, New York, 1994).