SUPPLEMENTARY MATERIAL

New 2-arylbenzofurans from the root bark of Artocarpus gomezianus and their α-

glucosidase inhibitory activity

Poomraphie Nuntawong ^a, Virunh Kongkatitham ^a, Kittisak Likhitwitayawuid ^a, Wanwimon

Mekboonsonglarp^b, Suchada Sukrong^a, Somboon Tanasupawat^c and Boonchoo Sritularak^{a,d}

^a Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical

Sciences,

Chulalongkorn University, Bangkok 10330, Thailand; ^b Scientific and Technological

Research Equipment Centre Chulalongkorn University, Bangkok 10330, Thailand; c

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,

Chulalongkorn University, Bangkok, 10330, Thailand; d Natural Products for Ageing and

Chronic Diseases Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn

University, Bangkok, 10330, Thailand

CONTACT Boonchoo Sritularak; boonchoo.sr@chula.ac.th

Abstract: Two new 2-arylbenzofurans, namely 13-O-methyllakoochin B (1) and

artogomezianin (2), were isolated from the root bark of Artocarpus gomezianus, along with 6

known compounds (3-8). The structures of new compounds were determined by

spectroscopic and chemical methods. All of the isolates were evaluated for their α-

glucosidase inhibitory activity. Artogomezianin (2) and lakoochin A (3) exhibited strong α-

glucosidase inhibitory activity with IC₅₀ values of 18.25 and 26.19 µM, respectively, as

compared with the positive control acarbose.

Keywords: Artocarpus gomezianus, Moraceae, 2-arylbenzofuran, α-glucosidase

1

Contents	page
General experimental procedures	3
Methylation of compound 2	3
Assay for α-glucosidase inhibitory activity	3
Figure S1. ¹ H NMR spectrum of 1 (500 MHz) in acetone- <i>d</i> ₆	5
Figure S2. ¹³ C NMR spectrum of 1 (125 MHz) in acetone- d_6	5
Figure S3. HSQC spectrum of 1 in acetone- d_6	6
Figure S4. HMBC spectrum of 1 in acetone- d_6	6
Figure S5. NOESY spectrum of $\bf 1$ in acetone- d_6	7
Figure S6. HRESIMS spectrum of 1	7
Figure S7. ¹ H NMR spectrum of 2 (500 MHz) in CDCl ₃	8
Figure S8. ¹³ C NMR spectrum of 2 (125 MHz) in CDCl ₃	8
Figure S9. HSQC spectrum of 2 in CDCl ₃	9
Figure S10. HMBC spectrum of 2 in CDCl ₃	9
Figure S11. HRESIMS spectrum of 2	10
Figure S12. ¹ H NMR spectrum of 2a (500 MHz) in acetone- d_6	10
Figure S13. NOESY spectrum of $2a$ in acetone- d_6	11
Figure S14. NOESY spectrum (expanded) of $2a$ in acetone- d_6	11
Figure S15. HRESIMS spectrum of 2a	12

Experimental

General experimental procedures

IR spectra were measured on a Perkin-Elmer FT-IR 1760X spectrophotometer, and UV spectra were obtained on a Milton Roy Spectronic 300 Array spectrophotometer. Mass spectra were recorded on a Bruker micro TOF mass spectrometer (ESI-MS). NMR spectra were recorded on a Bruker Avance DPX-300 FT-NMR spectrometer or a Bruker Avance III HD 500 NMR spectrometer. Microtiter plate reading was performed on a Perkin-Elmer Victor™ 1420 multilabel counter. Vacuum-liquid column chromatography (VLC) and column chromatography (CC) were performed on silica gel 60 (Merck, Kieselgel 60, 70-320 □m), silica gel 60 (Merck, Kieselgel 60, 230-400 □m), C-18 (Merck, Kieselgel 60 RP-18, 40-63 □m) and Sephadex LH-20 (25-100 □m, GE Healthcare).

Methylation of compound 2

Compound **2** (2 mg) was dissolved in 40 \square 1 of acetone. The solution was treated with CH₃I (2 \square 1) and potassium carbonate (3.4 mg). The reaction mixture was refluxed at 65 °C for 2 hours. After the reaction was completed, the mixture was extracted with CH₂Cl₂ and purified by column chromatography to give compound **2a**.

Assay for α-glucosidase inhibitory activity

The enzyme activity was assessed by monitoring the release of p-nitrophenol from the p-nitrophenyl- α -D-glucopyranoside (pNPG) substrate. Each test sample was initially evaluated at a concentration of 50 μ g/ml, and then two-fold serial dilution was performed for IC₅₀ determination. In brief, 10 μ l of test sample and 40 μ l of 0.1 U/ml α -glucosidase were mixed and allowed to react at 37°C for 10 min in a 96-well microtiter plate. Then, 50 μ l of 2 mM pNPG was added and the reaction mixture was further incubated for 20 min. Finally,

 μ l of 1 M Na₂CO₃ solution was added to terminate the reaction. The absorption at 405 nm was then measured using a microplate reader. The percentage of α -glucosidase inhibitory activity was calculated as follows:

%
$$\alpha$$
-glucosidase inhibitory activity = $[(A_c-A_s)/A_c] \times 100$

where A_c is the absorbance of the control and A_s is the absorbance of the sample. Acarbose was used as a positive control and treated under the same conditions as the samples. Enzyme inhibition reactions for all samples were carried out in triplicate (n = 3), and each experiment consisted of three repetitions.

Figure S1. 1 H NMR spectrum of **1** (500 MHz) in acetone- d_6

Figure S2. 13 C NMR spectrum of 1 (125 MHz) in acetone- d_6

Figure S3. HSQC spectrum of $\mathbf{1}$ in acetone- d_6

Figure S4. HMBC spectrum of $\mathbf{1}$ in acetone- d_6

Figure S5. NOESY spectrum of $\bf 1$ in acetone- d_6

Figure S6. HRESIMS spectrum of 1

Figure S7. ¹H NMR spectrum of **2** (500 MHz) in CDCl₃

Figure S8. ¹³C NMR spectrum of **2** (125 MHz) in CDCl₃

Figure S9. HSQC spectrum of 2 in CDCl₃

Figure S10. HMBC spectrum of 2 in CDCl₃

Figure S11. HRESIMS spectrum of 2

Figure S12. 1 H NMR spectrum of **2a** (500 MHz) in acetone- d_6

Figure S13. NOESY spectrum of 2a in acetone- d_6

Figure S14. NOESY spectrum (expanded) of 2a in acetone- d_6

Figure S15. HRESIMS spectrum of 2a