Toward a Code Search Engine Based on the State-of-Art and Practice

Vinicius C. Garcia, Eduardo S. de Almeida,

Liana B. Lisboa, Alexandre C. Martins,
Silvio R. L. Meira
Federal University of Pernambuco and

Recife Center for Advanced Studies and Systems

Recife, Pernambuco, Brazil
Email: {vcg, esa2, srlm} @cin.ufpe.br,

{liana.lisboa,alexandre.martins } @cesar.org.br

Abstract

Software engineering and reuse-oriented tools have been
studied along the last years, aiming to provide help in the
software development. With the importance of reuse grow-
ing significantly, effective software reuse tools and environ-
ments started to be needed. This paper presents and dis-
cusses some works that comprise many issues related to
source code search tools, covered by university and indus-
try since 90’s until today. In the end of the paper, a set of
requirements is presented, integrating the features that can
be found in most works of the area, serving as a basis for
future work toward an effective source code search tool.

1 Introduction

Many software development organizations believe that
investing in software reuse will improve their product and
process productivity and quality, and are in the process of
planning or developing software reuse capability.

While some organizations naively equate software reuse
with a particular technology, such as object-oriented tech-
nology, in fact it has become quite clear that successful
software reuse practice has much more to do with organi-
zational management, infrastructure, and technical factors
unrelated to these technologies [32]. Some of these factors
(technical and non-technical) can be found in [1].

In this sense, the idea of reuse environments stands out.
By integrating different factors, an environment comprises
a process and its reuse-related aspects, such as assets stor-
age, search and certification, all integrated in a set of tools
that cooperate in order to offer to the software engineer a
framework to perform reuse activities.

The particular case of assets storage and search may be

Daniel Lucrédio, Renata P. de M. Fortes
Institute of Mathematical and Computing
Sciences and
Sao Paulo University
Sao Carlos, Sao Paulo, Brazil
Email: {lucredio, renata}@icmc.usp.br

an important way of stimulating the reuse culture in organi-
zations trying to obtain its initial benefits [12]. Efforts must
concentrate in offering subsidies and tools for the reuse of
white-box components - where the source code is available
- and already existent source code, whether from the orga-
nization itself, from previous projects, or from repositories
available on the Internet. Also important is how to integrate
these search functionalities in the environment, so that the
reuser does not need to deal with tool integration issues.

Under such motivation, our group is currently research-
ing software engineering and source code search tools. In
[24] we present an overview of the main research works
on component search and retrieval. This paper extends that
work, including ideas from repository systems and software
engineering environments, toward a code search tool that
can be effectively used inside organizations.

2 Background

The first significant efforts in producing tightly inte-
grated development environments were those in the area of
Programming Support Environments (PSEs). As their name
suggests, PSEs are collections of tools that support coding
activities. Early PSEs typically provided one or more com-
pilers, language-sensitive editors (such as syntax-directed
editors), and debuggers, and sometimes other tools as well
(e.g., testing or documentation utilities) [14].

PSEs comprised tightly integrated collections of tools,
and as such, they were able to overcome many of the prob-
lems associated with earlier, loosely integrated environ-
ments. Their major limitation, however, is that they sup-
port only one software engineering activity - implementa-
tion - and its artifact, the source code, excluding all other
major activities and their artifacts (requirements engineer-
ing, specification, among others). As became clear over

IEE I-'

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

the years, one activity may affect another, and changes in
one artifact may require changes to other related artifacts,
to ensure that these remain mutually consistent. So, the
identification of the need for integrated support for software
engineering activities throughout the software lifecycle rep-
resents the genesis of Software Engineering Environments
(SEE), also called CASE (Computer-Aided Software Engi-
neering).

SEEs, like their PSE antecedents, are integrated collec-
tions of tools that facilitate software engineering activities.
However, SEEs extend programming support tools with
support for software engineering across the software lifecy-
cle. These tools facilitated the development and analysis of
different software artifacts. In the area of environments and
tools, SEEs represent, perhaps, the most significant area of
research over the past decade; they are to the full software
engineering lifecycle what PSEs were to coding [14].

Through the years, a vast collection of tools have been
prototyped or marketed. Some of these have been devel-
oped in the context of integrated environments, some can
cooperate loosely with some others and many are freestand-
ing. Each tool or environment is still highly specific to
some context, requiring the usage of a particular language,
database, compiler or integration platform [11, 14].

As software has become more pervasive and its life ex-
pectancy has increased, it has been subject to greater pres-
sures to integrate and interact with other pieces of software,
and to evolve and adapt to be used in new and unanticipated
contexts, both technological (e.g., new hardware, operat-
ing systems) and sociological (e.g., new domains, business
practices, processes and regulations, users) [13].

If a organization wants to achieve reuse, the software en-
gineering environment cannot ignore these characteristics.
Issues such as tool integration, flexibility, interoperability,
and the incremental nature of software evolution, become
critical.

3 Software Reuse Environments

According to Rine and Sonnemann [32], investment in
software reuse is predictive of productivity and quality. Un-
fortunately, software reuse has proven to be difficult to
achieve, specially when it involves changes in an organi-
zation’s process and culture. One way of facilitating this
aspect is to embed reuse practices and activities in the envi-
ronment.

The work presented by Biggerstaff and Perlis [3] could
be considered the “first” important work in this area. This
work defines program restructuring operations (refactor-
ings) to support the reuse of object-oriented application
frameworks. The refactorings are automated by tools, and
use preconditions in order to preserve the behavior of a pro-
gram.

By offering tools to help in different aspects of reuse,
software engineers can more easily perform reuse-related
activities. For example, a process-centered environment
helps developers to correctly follow reuse principles, since
they are tightly integrated into the environment. An intu-
itive search engine stimulates the search for some piece of
design or code before building it from scratch.

In this sense, many specialized technologies have been
produced in both university and industry to promote partic-
ular aspects of reuse. These follow three trends: (i) reusable
assets search engines, which are the most basic approach
to promote reuse; (ii) repository systems, which attempt
to centralize and manage all reusable information; and (iii)
reuse environments, which attempt to cover a wider range
of activities of a reuse process.

The remainder of this paper focuses on the first trend,
relating university and industry experiences in this area, as
well as ours, summarized in the form of a set of require-
ments for a code search tool.

3.1 Search Engines

An essential step in software reuse is to find previously
built assets. But people often lack an idea of what they need
when searching for something. They believe that a compo-
nent that solves their problem may exist, but can not define
neither the problem nor the solution in an adequate way.

According to Lucrédio et al. [24], the first works of the
early 90’s [18, 25, 29, 30] dedicate a special focus on the
classification schemes used to store, and consequently re-
trieve, software components. An example of this concern
may be seen in [30]. In this work, Prieto-Diaz proposes
the utilization of a facet-based scheme to classify software
components. With this scheme, it is possible to describe
components according to their different characteristics, un-
like the traditional hierarchical classifications, where a sin-
gle node from a tree-based scheme is chosen.

However, researchers such as Maarek et al. [25] argue
that the effort needed to manually classify components of
a software library is too big, since these tend to grow and
become huge. Moreover, the process to classify the com-
ponents is susceptible subjective, so that two different peo-
ple may choose different keywords or facets to describe the
same asset. In this sense, Maarek et al. [25] propose the use
of automatic indexing to extract, from free-text descriptors,
terms or phrases that best describes a component.

In [29], Podgurski and Pierce explore component search
through its execution: given a set of input values and a set
of expected output values, the components are executed and
those that produce the expected output are retrieved.

However, the classification scheme is only part of the
component retrieval problem. The first work that focused on
other aspects of the search problem was presented by Hen-

IEE |-:

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

ninger [17], and was called CodeFinder. The CodeFinder
uses query-construction methods that guide users through
the formulation of queries, especially if users can not define
their needs or do not know the terminology. Henninger, in
agreement with Frakes and Pole [9], suggests that construct-
ing queries is as important or more important than the re-
trieval algorithm that is used. Henninger’s retrieval system
combines retrieval by reformulation (which supports incre-
mental query construction) and spreading activation (which
retrieves items that do not exactly match the query, but are
related to it) to help users to find information.

After this first experience with code search engines, Hen-
ninger proposes an evolutionary approach to constructing
effective software reuse repositories [18]. Henninger af-
firms that repositories for software reuse face two inter-
related problems: (i) acquiring the knowledge to initially
construct the repository, and (ii) modifying the repository
to meet the evolving and dynamic needs of software devel-
opment organizations. In this work, Henninger outlines an
approach that avoids these problems by choosing a retrieval
method that utilizes minimal repository structure to effec-
tively support the process of finding software components.

The overall advantage of Henninger’s approach is that
costs are incurred incrementally on an as-needed basis in-
stead of requiring an extensive up-front repository design
effort. Initially, components are only required to undergo
whatever certification process is necessary to become part
of a production system. Subsequent efforts can then incre-
mentally add value to components as they are reused.

A different approach is taken by Mili et al. [28], who dis-
cuss the design and implementation of a component storage
and retrieval structure based on formal specifications.

Another search engine is the Agora [33]. Developed by
the Commercial Off-the-Shelf (COTS)-Based Systems Ini-
tiative at SEI/CMU!, its objective was to create a world-
wide, automatically generated database (repository) of soft-
ware products, classified by component model. Agora com-
bines introspection with Web search engines to reduce costs
of bringing software components to, and finding compo-
nents in, the software marketplace.

In this work, Seacord et al. talk effectively about com-
ponents marketplace. However, they affirm that the combi-
nation of introspection with component search is a neces-
sary but insufficient element of an online component mar-
ketplace. Elements required by a component marketplace
that are not addressed by this work include security, elec-
tronic commerce, and quality assurance.

Therefore, the efforts of Seacord et al. toward the inte-
gration of component technology and Web search can have
an impact on the emergence of on-line component market-
places by (i) providing developers a worldwide distribution
channel for software components, (ii) providing consumers

ISoftware Engineering Institute at Carnegie Mellon University

a flexible search capability over a large base of available
components and (iii) providing a basis for the emergence of
value-added component qualification services, within and
across specific business sectors.

Thomason et al. [35] suggest that a comprehensive com-
ponent classification schema, coupled with adequate visu-
alization and selection tools, are essential to the longevity
of any component-based system. Thus they propose the
CLARIFi approach, to develop a classification schema that
identifies the properties that are important to the selection
of components for a given task. This classification schema
is a subset of a larger data model, which incorporates the
roles of supplier, integrator, broker and certifier. This one
of the first works that consider certification as an important
step before storing components.

Another aspect that may be used to improve search is
context information. From an informational perspective,
context aims to provide an information space that can be
“adapted according to the user’s context”, and comple-
mented by tools/processes that promote the socially situated
construction and sharing of context. In [6], a relevant work
in general information retrieval, Finkelstein et al. present
a new conceptual paradigm for performing search in con-
text, automating the search process, providing even non-
professional users with highly relevant results.

This paradigm is implemented in practice in the “Intel-
liZap” system, where search is initiated from a text query
marked by the user in a document he/she views, and is
guided by the text that surrounds the marked query (“the
context”). The context-driven information retrieval process
involves semantic keyword extraction and clustering to au-
tomatically generate new, augmented queries, eliminating
possible semantic ambiguity and vagueness.

Context information is also used by Ye and Fischer in
[38], where they propose a new mechanism to find and re-
turn the results to the developer in an autonomous way. Rel-
evant component information is customized in accordance
with the knowledge and environment of the developer. They
propose a process called information delivery, which con-
sists in anticipating the software engineer’s needs for com-
ponents. The process is performed by monitoring the activ-
ities of the software engineer, such as codification or code
documentation, and automatically searching for the compo-
nents. The search criterion is identified inside the code. For
instance, a Javadoc comment or a method call can be used
to formulate a search criterion. However, only executable
code is considered as a software component.

Washizaki and Fukazawa [37] state that conventional
search techniques cannot enable prompt reuse of software
because they target source code as the retrieval unit. In this
sense, they propose a new component-extraction-based pro-
gram search system, which analyzes a collection of Object-
Oriented (OO) programs, acquires relationships among OO

IEE |-:

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

classes, and extracts reusable software components com-
posed of some classes. The target of reuse is a program
source code written in OO languages, particularly Java, and
targets JavaBeans as a component architecture.

In [19], Holmes and Murphy propose the Strathcona, an
Eclipse plug-in that finds source code examples through a
search based in 6 different heuristics. The choice of the
class is based on the code structure similarity that the de-
veloper is writing. After the localization in the repository,
the plug-in relates each extracted class with the developed
source code, if exists, and structure an application model of
the returned class (by the search).

In [10] we present a software component search engine
architecture as an Eclipse plug-in, called MARACATU. The
search is performed through text mining and faceted tech-
niques, using the Lucene engine [15]. The architecture is
able to search Java source code and components in CVS
servers, to load the selected components, to index them lo-
cally and to show the result in the Eclipse workbench. Be-
ing able to retrieve and reuse not only “black-box” com-
ponents, but “white-box” components and source code too,
we believe that this approach is the start point for organi-
zations to have the first benefits of reuse, in terms of tools,
since MARACATU is a non-intrusive way of allowing code
search and retrieval.

Inoue et al. [20] propose a novel graph-representation
model of a software component library. They define a com-
ponent rank model, to be applied on a graph representation
of the component library. In this model, a collection of
software components is represented as a weighted directed
graph, i.e., the nodes of the graph correspond to compo-
nents and the edges linking the nodes correspond to cross
component usage. Similar components are clustered into
one node so that the effect of duplicated components is re-
moved. The resulting rank is used to prioritize the query
result so that highly ranked components are quickly seen
by the user. Using the component rank, they developed a
component search system called SPARS-J (Software Prod-
uct Archiving and Retrieving System for Java), which treats
the source files of Java classes as components.

In the same way as [10, 33], using Web search en-
gines, Koders [21] was one the first Open Source component
search engines ever developed. Koders automatically con-
nects with different version control systems (e.g., CVS and
Subversion) to identify source code, being able to recognize
approximately 30 programming languages and 20 software
licenses. The Koders official launch was in April 2005.

The first evolution of MARACATU, an integrated reuse
environment called ADMIRE, has been defined and imple-
mented by Mascena et al. [26]. According to Mascena et al.,
a fundamental premise for any type of reuse is the knowl-
edge about the existence of the reusable assets. Such knowl-
edge may already be available, for example, due to the past

experience of the subject of the reuse action or may be
obtained through knowledge dissemination. ADMIRE was
based on the same concept of information delivery proposed
by Ye and Fisher [38] in CodeBroker. A new reuse metric
also was proposed with the goal of monitoring the reuse
activities and allow the software engineer to make correc-
tive actions across the development process. The evaluation
demonstrates that the ADMIRE environment can be used as
a basis for providing momentum at the initial stages of a
reuse process [1] also acting as a supporting tool for later
stages.

A second evolution of MARACATU was develop by Van-
derlei et al. [36]. In this version, Vanderlei et al. presented
the use of folksonomy concepts in a software component
search engine as an alternative to improve the performance
of the search engine. A set of requirements to perform com-
ponent search and retrieval with folksonomy was specified
and implemented, followed by the description of search us-
ing this concept in the engine. This MARACATU current
version combines folksonomy, text-mining, and facet-based
search techniques.

3.2 Discussion

Figure 1 summarizes the survey presented on the source
code search tools area. According to Figure 1, there are
some works (represented by an “X”) that mark the main
changes in this research area.

In 1998, Frakes et al. [7] presented a work that has a
process-centered concern. After this, other works started to
think about the reuse process, such as [2,4,22,23]. After-
ward, with the appearance of quality models like ISO and
CMM, we may notice an increasing concern about certifi-
cation, metrics and component quality assurance.

Despite all these advances in different ways, Software
Reuse Environments(SRE) are still not being widely used.
In fact, an efficient SRE have not been presented yet, and the
industry still waits for a good solution, which addresses the
real, organization-wide issues, not only particular aspects
of reuse. Although there are still some issues to be solved
within particular aspects of reuse, these are not an excuse
for the absence of an efficient SRE. Current technologies are
good enough for building an efficient environment. Hence,
next section presents the main requirements for a reuse en-
vironment, starting with a efficient source code search tool,
including ideas that are present in the works covered by this
survey.

4 Toward an efficient source code search tool

The time line shown in Figure 1 presents the change that
is occurring since the end of the millennium, leading to the
formation of an effective source code search tool, where this

IEE |-:

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

2004

o o Washizaki and Fuk 2006
Biggerstaff and Perlis Frakes and Poule 19 c— 1997 1999 Comzil:z?lt!:;racliijrfi:;ed Vanderlei et al.
Software Reusability: Empirical study on Henninger Henninger Kwon et al program search system MARACATU with
Concepts Clasification methods CodeFinder 1 CodeFinder 2 Integrated Model Folksanomy
and Models of 00 Techniques 2002 2005

1997
Thomas et al.
An Analysis of Errors in a
Reuse Environment

%

1980

1991 1993 1994 19956 1896 1997

1989
1991
Prieto-Diaz 1601
Facet-based scheme Maarek et al.
Free-text Analysis

1883
Podgurski et al. 1997

Search by behavior

1998

Mili et al., 1997
Storing and Retrieving
Soft. Components

Holmes and Murphy
Strathcona

2005
Inoue et al.
SPARS-J

Ye and Fisher
CodeBroker —
Active repository

X
1999 2000 2001 2002 2003 2004 2005
1998 2005 2006
Seacord et al 2001 Garcia et al.
Agora Fikelstein et al. 2003 MARACATU 2006
Placing Search in Context Hatcliff et al. Mascena et al.
Cadena ADMIRE

environment

Figure 1. Research on Source Code Search Tools

particular kind of assets (source code) are made available to
be reused, in different phases of the development process,
in a non-intrusive way.

It also becomes evident that there are three different
kinds of problems that must be dealt with when designing
an effective search source code tool: i) efficient search and
retrieval is needed, to assure that the developer is capable of
finding previously built reusable assets; ii) a communication
with different kinds of repository systems is needed, to ef-
fectively store and manage all reusable information; and iii)
integration with an environment must be performed, dealing
with the issues of using different tools during the different
phases of the development process.

Substantial effort in particular aspects of each one of
these issues has been already performed, as seen in this pa-
per. Next we group all these efforts together, by presenting
a set of requirements that an efficient code search tool must
fulfill.

4.1 Search Engines Specific Requirements

The primary goal of the search engine is to deliver to
the developer all information that he needs in order to reuse
some asset, and - ideally - should not leave anything behind.

i. Retrieval algorithms. Retrieval methods can be
divided into three categories: enumerated classification,
faceted, and free-text indexing [8]. Through the years these
were the mostly used approaches for retrieving reusable
software, including most of the works presented here.
Therefore, we believe that they should be part of any reuse-
oriented search engine, mainly because these are already
well-proven and easy-to-use solutions. Moreover, the re-
trieval algorithms must focus on intuitive ways to classify
and identify the components with low costs. Besides, they
should be based on information that is familiar to the soft-
ware engineers. In this way, they can find the appropriate
assets during the software development without necessarily

having knowledge about the contents of the repository. In
this scenario, different techniques should be experimented
to address the aforementioned drawbacks [36].

ii. Active search. A search mechanism usually de-
pends on the software engineer’s initiative to start search-
ing. However, if the SRE makes the job (search), according
to the source code the software engineer is currently writ-
ing, the reuse process is incorporated to the developer’s cul-
ture in a non-intrusive way [19]. Also, the chance of reuse
is increased [26, 38].

iii. High recall and precision. These are the classical
metrics for evaluating a search engine, and should be con-
sidered by a SRE. High precision means that most retrieved
elements are relevant. High recall means that few relevant
elements are left behind, without being retrieved.

iv. Query formulation. There is a natural information
loss when the reuser is formulating a query. As pointed
out by [17], there is also the conceptual gap between the
problem and the solution, since usually components are de-
scribed in terms of functionality (“how”), and queries are
formulated in terms of the problem (“what”). A search en-
gine must provide means to help the reuser to formulate the
queries, consequently reducing this gap.

v. Performance. Performance is usually measured in
terms of the response time. In centralized systems, the
involved variables are the hardware processing power and
the search algorithm complexity. In distributed scenarios,
however, other variables must be considered, such as net-
work traffic, geographical distance and the greater number
of components.

vi. IDE Integration. Ideally, the search source code tool
should be integrated to the developer’s IDE, so that mini-
mum overhead is required in order to use it. A flexible idea
is to use plug-in based integration, such as in the Eclipse
platform [10, 16, 19,26,36].

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)

0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

IEE l-:

COMPUTER
SOCIETY

4.2 Repository Systems Requirements

Besides searching and browsing capabilities, a commu-
nication with a different kind of repositories must also pro-
vide some functionalities to manage the stored assets and
all the knowledge associated to them, in order to facilitate
reuse.

i. Reports. Reports are a valuable instrument, offering
a general vision of how the set of reusable assets stored in
the repository is being used. As examples of reports, we
can cite: profile/degree of collaboration between users, pro-
file/degree of components usage, most performed queries,
most downloaded components, newest component releases,
among others.

ii. Component publishing. It should be possible to pub-
lish new components, together will all information needed
in order to efficiently reuse it, and the publisher’s profile
(author, affiliation, etc.).

iii. Component Certification. After components have
been created or extracted from legacy systems, they must
be evaluated and certified before stored into the repository.
Quality control services must be offered, in order to in-
crease the quality of the produced software.

iv. Users Notification. A developer should be able to
register interest in some information that is maintained in
the repository, so that he/she can be later notified when it
changes, or when new information is added. For example,
the repository can automatically notify developers when a
new component is published, or when a new version of
some component that he/she already reused is available.

v. Administration services. As any information system,
a repository must have administrative functionalities, to al-
low the manager to directly manipulate data, such as users
profiles, classifiers, artifact types, among others. This is
important in order to solve some minor problems that might
occur, and to offer some flexibility to the system.

vi. Component Manager. It should be possible to main-
tain different versions of one asset, allowing users to re-
trieve an old version, and to maintain variations from the
same asset version (alternative implementations). It should
also be possible to inform eventual dependencies that may
exist between the stored assets.

vii. Feedback. A feedback system is important in the
sense that users may register their impressions about the
reused assets (in the original context or another). With this,
it is possible, for example, to provide the asset developer
important information about enhancements or corrections.
It is also possible to implement incentive policies, reward-
ing the developers of the better evaluated assets.

viii. Content Indexing. All kinds of information that
are maintained in the repository should be indexed, and not
only the reusable assets themselves. In this way, the user
can perform search in the whole repository, including other

users, reports, among other kinds of information.

ix. Dynamic repository information. The repository
structure should allow asset representations to be modified
while users search for information, adapting itself to the
changing nature of the information, and incrementally im-
proving itself while the software engineers use it [18].

X. Security. Historically, security has been a minor
issue in component search and retrieval. Since in most
approaches reuse takes place in-house only, little effort is
needed in order to avoid unauthorized access. However, in
some scenarios this should be considered.

xi. Repository familiarity. Reuse occurs more fre-
quently with well-known assets [30]. Therefore, a reposi-
tory system should help the user to explore and get familiar
with the information it maintains, so that in future searches,
it is easier to locate them.

xii. Interoperability and Communication. In a sce-
nario involving distributed repositories, which is the com-
mon surrounding environment of most organizations, it is
inevitable to think about interoperability. A repository
should be based on standard technologies, in order to fa-
cilitate its future expansion, integration and communication
with other systems.

xiii. Referential Integrity. In SREs, reuse usually
causes several software parts to reference each other. How-
ever, due to the evolutionary nature of software systems, as-
sets are constantly added, updated and removed from their
location. Thus, a SRE must guarantee that every reference
has its integrity assured [23].

xiv. Software Configuration Management. Software
Configuration Management can be defined as the ability to
control the changes that naturally occur during the software
process. The objective is to assure that the software evolves
in an ordered way, reducing the confusion between the Soft-
ware Engineers. This is an extensive subject, involving
many tasks, such as version and modification control. In
a SRE, these tasks must be performed either to control the
changes in the assets as the changes in the applications [23].

4.3 Integration with an Environment Re-
quirements

Finally, the requirements related to the integration with
an environment are specified as follows.

i. Incorporate the tool in an existent development
process. Harrison et al. [14] detaches the importance of
semi-automated support for the software development pro-
cess. We may extend this statement to the software reuse
process, which should itself be treated as a piece of software
- one that undergoes a similar lifecycle, including require-
ments specification, design, implementation, testing, analy-
sis, etc. The adoption of the search source code tool must
occur in a non-intrusive way in the software development

IEE I-'

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

process.

ii. Tool integration. Development environments are
composed by tools that must interoperate in order to help
the software engineer through the development process.
This interoperation can be achieved in different levels [23,
34]: platform, data, presentation, control and process inte-
gration. Here, this integration must also occur in a non-
intrusive way, i.e. neither the tool nor the environment
should need much adaptation.

ili. Technology and Language Independence. Al-
though extensively studied, software components are still
evolving, and there is no definitive solution. New
component-based technologies are constantly arising. A
search source code tool must maintain a basic conceptual
core, independent to any technology or language, respond-
ing to the novelty without being dependent on it [23].

iv. Search in Multiple view systems. Multi-view soft-
ware environments, like MVCASE [23] and Rational Rose
[31], facilitate the development when different developers
may have different views of the artifacts and the processes.
However, it involves mapping operations and/or events from
components in one view to another, and is currently an ob-
stacle for building true multiple-view environments.

v. Reusability. In order to achieve effective reuse, the
Software Engineer must be able to avoid all types of ef-
fort duplication [23]. Not just code, but every kind of asset
should be reused [5] such as architecture, test cases, design,
requirements, use cases, patterns, among others.

vi. Reuse Metrics. Reuse metrics [26] are used to iden-
tify the components that are highly reusable and the busi-
ness areas and systems in which reuse has the high poten-
tial to provide the greatest benefits to an organization. They
can identify these components that recur most frequently
across the systems through domain analysis. McClure [27]
describes 10 factors for reuse metrics as follows: common-
ality of a component, reuse threshold of a component, reuse
merit of a component, reuse creation cost of a component,
reuse usage costs of a component, reuse maintenance cost
of a component, degree of commonality of a system, degree
of reusability of a system, reuse target level and reuse merit
of a system. Reuse metrics [26] are the key technology to
elevating benefits from reuse together with component cer-
tification.

S Concluding remarks

Many environments and tools have been proposed to ob-
tain an efficient reuse. In this work, we presented a survey
comprising existent software reuse tools, specifically code
search tools, to increase reuse in the development process.
Although we are unaware of a complete reuse environment
that is suitable for real usage in the industry, we believe that
current technologies are good enough for building an effi-

cient code search tool, even though there are still issues to
be resolved in the different aspects of reuse.

Most of the requirements specified in this work are the
result of research in the reuse area. However, in practice
most of the requirements could prove to be incomplete, or
even missing. More studies and prototypes are necessary
to validate the requirements presented in this survey and to
construct efficient code search tool.

This study is another step in direction to an effective soft-
ware reuse environment. The specification, design and im-
plementation of this environment is being performed incre-
mentally, through the implementation of some prototypes,
like MARACATU [10], which is being currently developed
[26,36] by our group, as part of the RiSE? (Reuse in Soft-
ware Engineering) reuse framework [1]. Our objective is to
provide a framework for helping organizations in all aspects
of implementing a reuse program.

References

[1] E. S. Almeida, A. Alvaro, D. Lucrédio, V. C. Garcia, and
S. R. L. Meira. RiSE Project: Towards a Robust Framework
for Software Reuse. In IEEE International Conference on
Information Reuse and Integration (IRI), pages 48-53, Las
Vegas, USA, 2004. IEEE/CMS.

[2] A. Alvaro, D. Lucrédio, V. C. Garcia, E. S. Almeida, A. F.
Prado, and L. C. Trevelin. Orion-RE: A Component-Based
Software Reengineering Environment. In WCRE 2003 - 10th
Working Conference on Reverse Engineering, pages 248—
257, Victoria - British Columbia - Canada, 2003.

[3] T.J. Biggerstaff and A. J. Perlis. Software reusability: vol.
1, concepts and models. ACM Press, New York, NY, USA,
1989.

[4] R.M. Braga, C. Werner, and M. Mattoso. Odyssey: A Reuse
Environment based on Domain Models. In IEEE Symposium
on Application-Specific Systems and Software Enginerring
Technology (ASSET’99), pages 50-57, Richardson, Texas,
1999. IEEE/CS Press.

[5] D.D’Souza and A. Wills. Objects, Components and Frame-
works with UML: The Catalysis Approach. Object Technol-
ogy Series. Addison-Wesley, 1999.

[6] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing Search in
Context: The Concept Revisited. In Tenth International
World Wide Web Conference, Hong Kong, 2001.

[7] W.Frakes, R. Prieto-Diaz, and C. Fox. DARE: Domain anal-
ysis and reuse environment. Annals of Software Engineer-
ing, 5(0):125 — 141, 1998.

[8] W.B. Frakes and P. B. Gandel. Representing Reusable Soft-
ware. Information and Software Technology, 32(10):653—
664, 1990.

[9] W. B. Frakes and T. P. Pole. An Empirical Study of Rep-
resentation Methods for Reusable Software Components.
IEEE Transactions on Software Engineering, 20(8), 1994.

2URL: http://www.rise.com.br

IEE |-:

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

V. C. Garcia, D. Lucrédio, F. A. Durdo, E. C. R. San-
tos, E. S. d. Almeida, R. P. d. M. Fortes, and S. R. d. L.
Meira. From Specification to Experimentation: A Soft-
ware Component Search Engine Architecture. In I. Gorton,
G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford,
C. A. Szyperski, and K. C. Wallnau, editors, The 9th In-
ternational Symposium on Component-Based Software En-
gineering (CBSE 2006), volume 4063 of Lecture Notes in
Computer Science, pages 82-97, Milardalen University,
Visteras, Sweden, 2006. Springer-Verlag Berlin Heidelberg.
D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match, or Why it’s hard to build systems out of existing
parts. In International Conference on Software Engineer-
ing, 1995.

M. Griss. Making Software Reuse Work at Hewlett-Packard.
IEEE Software, 12(01):105-107, 1995.

J. C. Grundy, W. B. Mugridge, and J. G. Hosking. Construct-

(25]

[26]

(27]

(28]

(29]

Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An Infor-
mation Retrieval Approach for Automatically Constructing
Software Libraries. IEEE Transactions on Software Engi-
neering, 17(8), 1991.

J. C. C. P. Mascena, E. S. Almeida, V. C. Garcia, and S. R.
d. L. Meira. Towards an Effective Integrated Reuse Environ-
ment. In 5Th ACM International Conference on Generative
Programming and Component Engineering (GPCE), Port-
land, Oregon, USA, 2006. ACM Press.

C. McClure. Model-Driven Software Reuse. Extended In-
telligence, Inc., 1995.

R. Mili, A. Mili, and R. T. Mittermeir. Storing and Retriev-
ing Software Components : A Refinement Based System.
IEEE Transactions on Software Engineering, 23(7), 1997.
A. Podgurski and L. Pierce. Retrieving Reusable Software
By Sampling Behavior. ACM Transactions on Software En-
gineering and Methodology, 2(3):286-303, 1993.

ing component-based software engineering environments: [30] R. Prieto-Diaz. Implementing faceted classification for soft-
issues and experiences. Information & Software Technol- ware reuse. Communications of the ACM, 34(5):88-97,
0gy, 42(2):103-114, 2000. 1991.

W. Harrison, H. Ossher, and P. Tarr. Software Engineering
Tools and Environments: A Roadmap. In The Future of Soft-
ware Engineering, pages 261-277. ACM, New York, 2000.
E. Hatcher and O. Gospodnetic. Lucene in Action. In Action
series. Manning Publications Co., Greenwich, CT, 2004.

J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P.
Ranganath. Cadena: an integrated development, analysis,
and verification environment for component-based systems.
In 25th International Conference on Software Engineering,
pages 160-173, Portland, Oregon, 2003. IEEE Computer
Society.

S. Henninger. Using Iterative Refinement to Find Reusable
Software. IEEE Software, 11(5):48-59, 1994.

S. Henninger. An Evolutionary Approach to Constructing
Effective Software Reuse Repositories. ACM Transactions
on Software Engineering and Methodology, 6(2):111-140,
1997.

R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In 27th International
Conference in Software Engineering, pages 117-125, St.
Louis, MO, USA, 2005. ACM Press.

K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. Ranking Significance of Software Compo-
nents Based on Use Relations. /EEE Transactions on Soft-
ware Engineering, 31(3):213-225, 2005.

Koders. Koders - Source Code Search Engine, URL:
http://www.koders.com, 2006.

0.-C. Kwon, S.-J. Yoon, and G.-S. Shin. Component-Based
Development Environment: An Integrated Model of Object-
Oriented Techniques and Other Technologies, 1999.

D. Lucrédio, E. S. Almeida, C. P. Bianchini, A. F. Prado, and
L. C. Trevelin. Orion - A Component Based Software Engi-
neering Environment. JOT - Journal of Object Technology,
3(4):51-74, 2004.

D. Lucrédio, E. S. Almeida, and A. F. Prado. A Survey on
Software Components Search and Retrieval. In R. Steinmetz
and A. Mauthe, editors, 30th IEEE EUROMICRO Confer-
ence, Component-Based Software Engineering Track, pages
152-159, Rennes - France, 2004. IEEE/CS Press.

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

T. Quatrani and G. Booch. Visual Modeling with Rational
Rose 2000 and UML. Addison-Wesley, 1999.

D. C. Rine and R. M. Sonnemann. Investiments in reusable
software. A study of software reuse investiment success fac-
tors. The Journal of Systems and Software, 41:17-32, 1998.
R. C. Seacord, S. A. Hissam, and K. C. Wallnau. Agora:
A Search Engine for Software Components. Technical Re-
port CMU/SEI-98-TR-011, ESC-TR-98-011, CMU/SEI -
Carnegie Mellon University/Software Engineering Institute,
August 1998. CMU/SEI - Carnegie Mellon University/Soft-
ware Engineering Institute.

I. Sommerville. Software Engineering. Pearson Education,
6 edition, 2000.

S. Thomason, P. Brereton, and S. Linkman. CLARiFi: An
Architecture for Component Classification and Brokerage.
In International Workshop on Component-Based Software
Engineering (CBSE 2000), Limerick, Ireland, 2000.

T. A. Vanderlei, V. C. Garcia, E. S. Almeida, and S. R. d. L.
Meira. Folksonomy in a Software Component Search En-
gine Cooperative Classification through Shared Metadata.
In XX Brazilian Symposium on Software Engineering, Tool
Session, Florian6polis, Brazil, 2006.

H. Washizaki and Y. Fukazawa. Component-Extraction-
Based Search System for Object-Oriented Programs. In
Software Reuse: Methods, Techniques and Tools: Sth Inter-
national Conference, ICSR 2004, volume 3107 of Lecture
Notes in Computer Science, pages 254-263, Madrid, Spain,
2004. Springer.

Y. Ye and G. Fischer. Supporting Reuse By Delivering Task-
Relevant and Personalized Information. In /CSE 2002 - 24th
International Conference on Software Engineering, pages

513-523, Orlando, Florida, USA, 2002.

IEE l-:

COMPUTER
SOCIETY

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 11:53 from |IEEE Xplore. Restrictions apply.

