
RiSE Project: Towards a Robust Framework for Software Reuse

Eduardo Santana de Almeida' , Alexandre Alvaro' , Daniel Lucredio2, Vinicius Cardoso Garcia2,
Silvio Romero de Lemos Meira'

'Federal University of Pernambuco and Recife Center for Advanced Studies and Systems
'Federal University of SGo Carlos

{esad, aa2, srlm) @cin. ufpe. br, {lucredio, vinicius] @dc. ufscar. br

Abstract

Sofmare reuse is LI critical aspect for companies
interested in the improvement of software development
quality and productiyi@, and in costs reduction.
However, achieving i t is a non-trivial task. In this paper,
we present a robust framework for software reuse, based
on previous success factors, in order io guide
organizations in the effective reuse. Non-technical and
fechnical aspects compose the framework.

1. Introduction
Systematic software reuse is a technique that is

employed to address the need for improvement of
software development quality and efficiency 111. Quality
could be improved by reusing all forms of proven
experience, including products and processes, as well as
quality and productivity models. Productivity could
increase by reusing existing experience, rather than
creating everything from the beginning 121.

There is a vast literature on reuse, including efforts
involving domain engineering, component-based
development, and, currently, product-lines. However,
these focus on isolated reuse aspects without considering
the interactions among them. On the other hand, outside
the academia, several success factors and best practices
may be found, mainly related to previous experiences,
success and failure models, myths and inhibitors. Often,
these are also not generic enough to be applicable outside
its original context.

This is our motivation to develop a robust framework
for software reuse. We have surveyed some of the
existing works for software reuse success, and based on
their strong and weak points, we propose our framework,
which attempts to group all the different aspects of reuse,
including those pointed out inside and outside academia,
in order to guide organizations in the adoption of a reuse
program.

0-7803-881 9-4/04/$20.00 02004 IEEE.

2. A Brief Survey on Software Reuse
The idea of software reuse is not new. In 1968, during

the NATO Software Engineering Conference, generally
considered the birthplace of the field, the focus was the
s o h a r e crisis - the probkm of building large, reIiabIe
software systems in a controlled, cost-effective way.
From the beginning, software reuse was touted as a
means to overcome the software crisis. An invited paper
at the conference: "Mass Produced Sofiware
Components" by McIlroy [3], ended up being the seminal
paper on software reuse. In McIlroy's words: "the
software industy is weakly founded and one aspect of
this weakness is the absence of a sofmare component
subindustry" (pp. SO), which is a starting point to
investigate mass-production techniques in software, in a
comparison with the construction industry.

For almost four decades, extensive research tries to
follow the fuzzy map of the area. The results have been
presented in many forums, such as Software Engineering
and Software Reuse Conferences, as well as in many
journals.

This research material contains important information,
which may lead the way in solving the reuse problem.
However, one of the reasons that may explain the gap
between McIlroy's ideas and the current state-of-the-art
is, ironically, presented by McIlroy himself: "To develop
a useful inventoty, money and talent will be needed.
Thus, the whole project is an improbable one for
university research" (pp. 84).

2.1. Success Factors in software reuse

Because software reuse provides a competitive
advantage, there is little incentive to share the learned
lessons across companies. Moreover, there has been little
research to determine if an individual company's software
reuse success factors are applicable to other
organizations. Thus, this section presents and discusses
the main success factors related to software reuse
available in the literature, and try to establish a
relationshlp among them.

48

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

2.1.1. Informal Research. During more than one
decade, companies wanted to achieve systematic reuse.
They pursued a domain focused, repeatable process,
primarily concemed with the reuse of higher level
lifecycle artifacts, such as requirements, design models
and source code. The following works represent some
attempts of researchers aiming to obtain systematic reuse:

i. According to Frakes [4], a key concept in
systematic reuse is the domain, which may be defined as
an application area or, more formally, a set of systems
that share design decisions.

Frakes relates that there are six critical factors for
systematic software reuse: Management, Measurement,
Legal issues, Economics, Design for reuse and Libraries.

ii. Glass [5] presents and discusses the question that
software reuse has problems when put in practice. Glass
considers that, if there is a motherpie-and-applehood
topic in software engineering, reuse is such topic. His
point of view is that software reuse has good potential,
but this has not been achieved yet. While other
researchers point to factors such as management and
culture, Glass believes that the main problem is that there
are not many software components that can be reused.

2.1.2. Empirical Research. There is little empirical
research about software reuse. In this section, we present
the three main studies available in the literature.

i. fine [6] researched the fact that there is no set of
success factors that are common across organizations and
have some predictability relationships to software reuse.

In this way, in 1995, a s w e y was conducted to
investigate which software reuse success factors are
applicable across all application domains. The
organizations that achieved the highest software reuse
capability had the following characteristics: product-line
approach, architecture which standardizes interfaces and
data formats, common sojware architecture across the
product-line, design for manufacturing approach, domain
engineering, reuse process, management which
understands reuse issues, sofnvare reuse advocate($ in
senior management, state-of-the-art reuse tools and
methods, experience in reusing high level software
artifnets such as requirements and design, instead ofjust
code reuse, and the ability to trace end-user requirements
to the components.

ii. TO assess the market for component-based software
engineering, the Software Engineering Institute
(CMUISEI) studied industry trends in the use of software
components. The study [7], conducted from September
1999 to February 2000, examined software components
from both techca l and business perspectives.

The report concluded that the market perceives the
following key inhibitors for reuse adoption, in decreasing
order of importance: lack of available components, lack
of stable standards for component techndogy, luck of

certified components, and lack of an engineering method
to consistently produce quality systemsfrom components,

iii. The Morisio’s research [8], maybe the most
detailed practical study about software reuse available in
the literature, presents and discusses some of the key
factors in adopting or running a company-wide software
reuse program. The key factors are derived from
empirical evidence of reuse practices, as emerged from a
survey of projects for the introduction of reuse in
European companies: 24 such projects conducted from
1994 to 1997 were analyzed using structured interviews.

The projects were undertaken in both large and small
companies, working in a variety of business domains, and
using both obj ect-oriented and procedural development
approaches. Most of them produce software with high
commonality between applications, and have at least
reasonably mature processes.

According to Morisio’s research, successes were
achieved when, given a potential for reuse because of
commonality among applications, management
committed to introducing reuse processes, modtfjling non-
reuse processes, and addressing human factors.

iv, In [SI, Rothenberger investigates the premise that
the likelihood of success of s o h a r e reuse efforts may
vary with the reuse strategy employed and, hence,
potential reuse adopters must be able to understand reuse
strategy alternatives and their implications.

In order to engage the reuse phenomenon at a level
closer to the organizational reuse setting, the author
focuses on the systematic reuse of software code
components. Rothenberger used survey data collected
from 71 s o h a r e development groups to empirically
develop a set of six dimensions that describe the practices
employed in reuse programs.

According to study, the high level of reuse is
associated with the lugh levels of: planning and
improvement, formalized process, management support,
project simi?ariv, and common architecture.

3. Towards a Robust Framework for
Software Reuse

With basis on the survey and the identified success
factors, we propose a framework to enable the adoption
of a reuse program. The proposed framework (Figure 1)
has two layers. The first layer (on the left) i s formed by
best practices related to software reuse. Non-technical
factors, such as education, training, incentives, and
organizational management are considered. This layer
constitutes a fundamental step before the introduction of
the framework in the organizations. The second layer (on
the right) is formed by important technical aspects related
to software reuse, such as processes, environments, and
tools.

49

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

Reuse
Process

Figure 1. Framework for Software Reuse.

This framework constitutes a solid basis for
organizations that are moving towards an effective reuse
process. Its elements not only help the organization in
adopting reuse, but also guide it in the migration process,
reducing its risks and failure possibilities. Next we
present each element of the framework.

3.1. The Software Reuse Process and Best
Practices

Since McIlroy’s work, the goal of research in the area
of software reuse is to develop and support systematic
approaches for effectively reusing existing assets, in order
to maximize quality and productivity. Although
successful software reuse experiments are increasingly
common, success is not the norm. Software reuse is not a
matter of routine practice, the promises of software reuse
remain for the most part unfulfilled, and a number of
issues remain worthy of further research [IO].

A number of different reuse approaches have been
presented in the literature, considering aspects such as
libraries, domain engineering, and, currently, product
lines. However, there are still some limitations, including:

i. How assets are represented. An asset that
embodies a function should be represented by a function
that abstracts its most relevant functional (semantic)
properties, whereas an asset that embodies a structure
should be represented in a way that highlights its relevant
structural (syntactic) properties. Current research on
reusable assets does not properly acknowledge this
hstinction and its impact,

ii. How assets are developed. Design for black-box
reuse is primarily a specification issue and is determined
by the generality of its implementation. Design for whte-
box reuse, on the other hand, is primarily determined by
design issues, such as modularity, simplicity, and
structuredness. Current design life cycles do not make
this distinction. Moreover, the development for reuse
processes present gaps among the phases of analysis,
design, and implementation. According to Szyperski [1 11,
assets such as components, for example, are already a

reality at the implementation level, and now the concept
must be found at the earlier phases of the development
lifecycle. Doing so, reuse principles and concepts should
be consistently applied through the whole development
process, and consistently followed from one phase to the
other.

iii. How assets are reused. The development with
reuse activity is also very important for software reuse.
Methods to search assets, make adaptations, and integrate
them into current project are needed. Thus, this activity
must be well integrated with the development with reuse.
Current reuse processes have presented few advances
towards this integration.

iv. Metrics. As in any engineering activity,
measurement is vital for systematic reuse. In general,
reuse benefits (improved productivity and quality) are a
function of the reuse level achieved. A reuse process must
define what, where, and when to measure, however, reuse
processes with a metric program are not also explored.

V. Costs. Economics considerations are an important
aspect of reuse, since most decisions that arise in software
reuse can and must be justified by some scale economic.
Nevertheless, even with important works in this area,
such as [121, current reuse processes do not consider cost
aspects as, for example, ways to estimate the cost of
development for reuse considering domain engineering or
product lines.

vi. Lack of best practices. Section 2 presented a brief
survey about software reuse. In this survey, important
non-technical aspects related to software reuse were
identified, such as education, training, incentives, and
organizational management. Current reuse processes have
explored few these aspects and considered them as
essential for software reuse success.

These six issues are being investigated and analyzed
by our research group, in order to be incorporated into an
effective reuse process. Moreover, two other essential
processes compose our reuse process: reengineering and
adaptation.

3.1.1. Reengineering Process. Software reengineering
is being used to recover legacy systems and allow their
evolution 1131. It is performed mainly to reduce
maintenance costs, improve development speed and
systems readability.

However, the importance of reengineering goes
beyond such technical aspects. Legacy systems represent
much of the knowledge produced and maintained by an
organization, who cannot afford to lose it. Thus,
reengineering allows this knowledge to be reused, in the
form of reconstructed code and documentation.

There are two major stumbling blocks to the practice
of reengineering. One is the lack of support tools to aid
the entire process. The other is the lack of a well-defined
process for planning an effective approach for

50

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

reengineering. The goals in developing such a process are
[14]:
-
-
- Reduce cost and schedule;
- Facilitate hardwarelsoftware evolution;
- Improve the system understanding; and
- Reduce long-term maintenance costs.

Another important characteristic of a reengineering
process is its adaptability, i.e., its suitability to different
situations. Each organization has its own legacy system,
written in different programming languages, with
different tools, platforms and different people involved.
Thus, a reengineering process must accommodate these
particularities, in order to be industrially applicable.

We are currently developing the reengineering
process, focused in reusing the knowledge embedded in
legacy systems, in order to help organizations in adopting
an effective reuse process without losing its past
experience. The main objective of our reengineering
process is to promote reuse by extracting high-
modularized, low-coupled reusable assets, though the
separation of concems concept [151.

There are six main steps in the process, which were
defined after a wide study of the related literature. The
initial steps (i-iv) compose the reverse engineering, and
the followings steps (v-vi) the forward engineering.

i. Define objectives. A strategic planning, that
establishes the main objectives of the reengineering
process, must be defined before its execution.

ii. Analyze tegacy system. In order to capture the
information that wiIl be used in the reengineering, it is
necessary to perform a 111 analysis of the system
elements. There are a variety of elements to be collected,
including: programs, library routines, business rules,
informal documentation, models, user manuals, history
records, among others. These constitute the knowledge
that must be reused.

iii. Organize and decompose. Since the reengineering
product must be prepared for reuse, an intermediate step,
which organizes the recovered information in order to
increase its modularity, is performed. This facilitates the
task of recovering the documentation and reconstructing
the system, which are performed in the next steps.

iv. Reconstruct Documen tation. Reuse success
depends on the ability of correctly determining if some
asset can or cannot be reused in some situation. In order
to achieve this, good documentation is essential to inform
to the Software Engineer about the functionality
contained in some asset. Hence, the reengmeering process
must obtain such documentation from legacy systems,
where they are often of poor quaIity or inexistent.

v. Redesign. After organizing and recovering the
legacy system assets, the S o h a r e Engineer may

Provide a flexible approach to reuse knowledge;
Improve commonality and modularity across systems;

introduce new design specifications, in order to make
them more reusable and/or introduce new functionaiities.

vi, Reimplementation. Finally, the knowledge
recovered from the legacy system is materialized in
executable assets, which can be directly reused.

The reengineering process is currently under
deveIopment, with Aspect-Oriented Software
Development techniques 1151. Its main steps and
guidelines have been already specified. Next, case studies
will be applied in order to refine it and evaluate its
validity within a reuse adoption program.

3.1.2. Adaptation Process. Many organizations are
actively pursuing software process maturity, in order to
increase their competitiveness. Usually, they use
measures such as the Capability Maturity Model (CMM)
to structure their process improvement initiatives. One
method often cited for accelerating process improvement
within an organization is to replicate a standard, reusabIe
organizational process within other projects. Hollenbach
defined this approach as a reusable process [16].
According to Hollenbach, process reuse is the use of one
process description in the creation of another process
description. This should not be confounded with multiple
executions of the same process on a given project.

However, this method presents some problems when
the boundary to reuse the process is not the organization,
but other software factories. Moreover, the problem is
still higher when the process in question is a software
reuse process. Thus, what is needed is an effective
process to capture guidelines that lead the adaptation of
an organization’s process to become reuse-centered.

We believe that the initial HoIlenbach’s work can offer
some directions to define the aspects of the adaptation
process. However, we deem that the formalization of a
Reuse Maturity Model (RMM) with levels of reuse and
key practices can offer important insights. Thus,
organizations can be classified according to RMM levels
and the process can be adapted more accurately,
Currently, studies are being made toward the RMM. After
that, the adaptation process will be developed.

3.2. Software Reuse Environment

CASE tools have always helped in software
development, providing improved productivity and
quaky. However, the benefit of CASE is bigger when in
the form of integrated environments, with several tools
that add its own contribution to the process, guiding the
Software Engineer throughout the whole lifecycle.

With software reuse, it could not be different. Inside a
Software Reuse Environment, tools are used in the
development and reuse of assets. There are some issues
that must be considered inside a Software Reuse
Environment:

51

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

i. Distinction between development ‘‘for reuse” and
development “with reuse”. These are different activities,
which must have distinct tool support.

ii. Tool integration. The tools of the environment
must have different levels of integration [17], including
data and presentation integration, but mainly process
integration, i.e., they must be focused on a single process,
in this case, a reuse process.

iii. Reusability. Not just code, but every kind of asset
must be reused, including models, test cases,
requirements, among others.

iv. Referential Integrity. Reuse often causes assets to
reference each other. In order to avoid confusion, these
references must be correctly managed.

v. Software Configuration Management. As
happens in any development environment, the control of
the software evolution reduces the risks in development
and maintenance, and so this is a major requirement in a
reuse environment.

vi. Technology and language independence. The
environment must not be fixed in a single technology or
language, or else it would be of little use to a software
factory, which must be able to use any technology andlor
language in its projects.

We are currently developing a prototype environment,
composed by some tools that focus on Component-Based
Software Engineering [18], which will serve as a basis to
give automated support for the reuse process.

3.3. The Component Certification Process

In a software reuse process, it is important to assure
quality in the assets that will be stored into repository
systems. According to Wohlin [19], components that are
to be retrieved from a repository must have a quality
stamp in terms of what level of reliability can be expected
from them as they are put into a system. Thus, the
certification stands out as an essential area to evaluate the
component reliability level.

In the literature, we found some divergent definitions
about component certification. However, Council 1201
established a satisfactory definition about it:

“Rird-party certification is a method to ensure that
software components conform to well-defined standards;
based on this certification, trusted assemblies of
components can be constructed”.

Besides, certification should provide evidence that the
component is adequate to fulfill a given set of
requirements. In other words, a component is certifiable if
it has properties that can be demonstrated, in an objective
way, to adhere to the component. Any such property can
be the subject of certification. However, the component
properties should be described in sufficient detail, and
with sufficient rigor, to enable their certification [2 11.

Nevertheless, certification can face some difficulties,
particularly due to the relative novelty of ths area. To
increase this problem, the reuse community is still far
from reaching a consensus on how certification should be
carried out, what its requirements should be or even on
who should perform it [22].

In thts way, we are investigating the coniponent
certification area in order to define a component quality
model (analyzing the key component requirements),
define a metrics framework to track the properties of the
components and establish a certification process to group
the concepts. The plan is, clearly, to develop it to the
point where it can be used as a component certification
standard to a software factory, in order to achieve a
Components Certification Center.

3.4. The Repository System

The software development process involves great
amount and variety of information. These include
requirements, graphical analysis and design models,
annotations, drafts, and executable code. This information
constitutes an important knowledge basis of the software
development process, influencing directly in its quality.

In this sense, repository systems play a central role in
reuse. By storing and managing previously built reusable
assets, development teams may take advantage of this
knowledge in new projects, saving effort and time.

We are developing a repository system based on the
XMI standard 1231, which allows any kind of metadata to
be represented, instead of just executable code, It also
provides some semantic information, which is an
important requirement for reuse.

The repository has three main features:
i. Storage. As any database mechanism, the repository

aIIows assets to be included, removed and updated;
U. Search. The repository has a search mechanism that

speeds up the process of finding reusable assets. There
are several issues related to this subject, as we present in
[24], such as performance, query formulation, precision
and recall ratios, among others, which must be taken into
consideration when implementing this kmd of search;

iii. Management. This involves the management of
the repository users, version control and assets mining.
This last item is of great importance. By gathering
information from the repository, it is possible to obtain
very usefid data, such as whch assets are being more
reused and which developers are achieving more reuse.
This data may be used to infer other questions, such as
which assets must be modified to become more reusable
and how many training the development team needs in
order to put reuse into practice, among other information
that may define the success or failure of a reuse program.

Our repository is based on CVS, a widely used
version control system, which makes it suitable to a large
number of companies. We are currently developing the

52

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

search mechanism, with metrics to improve the results

4. Concluding Remarks
During the last years, several organizations are trying

to achieve software reuse, in order to increase their
productivity and quality, and to reduce development time
and costs. However, the adoption of a reuse program is a
difficult task, with technical and non-technical aspects
that must be carefully analyzed and combined.

In this paper, we present a framework for software
reuse that guides organizations in the adoption of an
effective reuse program. The framework is based on an
exhaustive study [26] that identified critical aspects for
reuse success. These aspects were integrated in a coherent
way, in order to work together. Moreover, another
important point is that the framework is being developed
in conjunction with a large Brazilian software factory’,
where the results could be applied in an industrial
environment. In this sense, we agree with Ali Mili [lo],
believing that this is fimdamental for the research in the
soitware reuse area, where small, non-realistic examples
often takes pIace.

The framework is part of RiSE Project’ (Reuse in
Software Engineering), and is still under development. In
future papers, we will explore each framework’s element
in details.

References

~ 5 1

[I] C.W. Krueger, Software Reuse, ACM Computing Surveys,
Vol. 24, No. 02, June, 1992, pp. 13 1 - 183.
[2] V.R. Basili, L.C. Briand, W.L. Melo, How Reuse Influences
Productivity in Object-Oriented Systems, Communications of
the ACM, Vol. 39, No. IO, October, 1996, pp, 104-1 16.
[3] M.D. McIlroy, Mass Produced Software Components,
NATO Software Engineering Conference Report, Garmisch,
Germany, October, 1968, pp. 79-85.
[4] W.B. Frakes, S. Isoda, Success Factors of Systematic
Software Reuse, IEEE Software, Vol. 12, No. 01, January,

[SI R.L Glass, Reuse: What’s Wrong with This Picture?, IEEE
Software, Vol. 15, No. 02, MarchiApril, 1998, pp. 57-59.
[6] D.C. Rine, Success Factors for software reuse that are
applicable across Domains and businesses, ACM Symposium on
Applied Computing, San Jose, California, USA, ACM Press,

[7] L. Bass, C. Buhman, S. Dorda, F. Long, J. Robert, R.
Seacord, K. Wallnau, Market Assessment of Component-Based
Software Engineering, Software Engineering Institute (SEI),
Technical Report, Vol. 01, May, 2000.

1995, pp. 14-19.

Mach, 1997, pp, 182-186.

Currently, this company has about 270 employees and is

http://www.cin.ufpe. br/-rise
in preparation to obtain the CMM level 3.

[8] M. Morisio, M. Ezran, C. Tully, Success and Failure Factors
in Software Reuse, IEEE Transactions on Software Engineering,

[9] M.A. Rothenberger, K.J. Dooley, U.R. Kulkami, N. Nada,
Strategies for Software Reuse: A Principal Component Analysis
of Reuse Practices, IEEE Transactions on Software Engineering,
Vol. 29, No. 09, September, 2003, pp. 825-837.
[lo] A. Mili, S. Yacoub, E. Addy, H. Mili, Toward an
Engineering Discipline of Sofiware Reuse, IEEE Software, Vol
16, No. 05, September/October, 1999, pp. 22-3 I .
[1 1 3 C. Szyperski, Component Software: Beyond Object-
Oriented Programming, 2nd Edition, ACM Press, 2002.
[I21 J.S. Poulin, Measuring Software Reuse: Principles,
Practices, and Economic Models, Addison-Wesley, 1997.
[131 I. Jacobson, F. Lindstrom, Reengineering of old systems to
an object-oriented architecture, Proceedings of the OOPSLA.
ACM Press, 1991. pp. 340-350.
[I41 J. Bergey et al., Why Reengineering Projects Fail,
Technical Report CMU/SEI-99-TR-O10, April, 1999.
[151 G. Kiczales et al., Aspect-Oriented Programming.
Proceedings of the I 1st ECOOP. Springer Verlag, 1997. JLNCS,

[16] C. Hollenbach, W.B. Frakes, Software Process Reuse in an
Industrial Setting, Proceedings of the 4th International
Conference on Software Reuse, IEEE Press, 1996, pp. 22-30.
[17] I. Sommerville, SofnYare Engineering, 6 ed: Pearson
Education, 2000.
[18] D. Lucrtdio, E. S. Almeida, C . P. Bianchini, A. F. Prado,
L. C. Trevelin, Orion - A Component Based Software
Engineering Environment, JOT - Journal of Object Technology,

[I91 C. Wohlin, B. Regnell, Reliability Certification of Software
Components, Proceedings of the 5th International Conference
on Software Reuse (ICSR), 1998, pp 56-65.
[20] B. Councill, Third-party Certification and Its Required
Elements, Proceedings of the 4th ICSE Workshop on
Component-Based Software Engineering (CBSE), 2001.
[21] K. C. Wallnau, Volume 111: A Technology for Predictable
Assembly from Certifiable Components, Software Engineering
Institute (SEI), Technical Report, Vol. 03, April, 2003.
[22] M. Goulao, F. B. Abreu, The Quest for Software
Components Quality, Proceedings of the 26th Annual
International Computer Software and Applications Conference

[23] XML Metadata Interchange (XMI) Specification, Object
Management Group, 2002.
[24] D. LucrCdio, E. S. Almeida, A. F. Prado, A Survey on
Software Components Search and Retrieval, 30th IEEE
EUROMICRO Conference, Component-Based Software
Engineering Track, Rennes - France, 2004.
[25] D. Lucrkdio, E. S. Almeida, A. F. Prado, C. H. Yamamoto,
M. Biajiz, Approaches for Efficient Components Recovery (in
Portuguese), Third Brazilian Workshop on Component-Based
Development, SA0 Paulo, Brazil, 2003.
[26] E.S. Almeida, A. Alvaro, S.R.L. Meira, Software Reuse:
The State of the Art, 2004. In preparation.

Vol. 28, NO. 04, April, 2002, pp. 340-357.

V. I241), pp. 220-242.

Vol. 03,2004, pp. 51-74.

(COMPSAC), August, 2002, pp- 313-318.

53

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on February 5, 2009 at 12:33 from IEEE Xplore. Restrictions apply.

http://www.cin.ufpe

