Mobile + cloud: a viable replacement for desktop cheminformatics?

Dr. Alex M. Clark

April 2013

Two platform stacks

desktop/laptop

phone/ tablet

file server

web services

compute cluster

cloud resources

What's the point?

Mobile computing

- almost all other software is migrating to mobile...
- ... should chemistry be the last reason to use a PC?
- it's time for an overhaul anyway (the 1980s are over)

Cloud computing

- economies of scale: pay as you go, as much as you need
- no air conditioned rooms full of servers
- no junk appliances under the desk
- no administrators

Mobile interface

- Less compute power: just enough for interactivity
- Limited storage: think of it as a cache for network
- Code portability: zero legacy code reuse
- Clumsy touchscreen: very tight screen real estate planning
- **Different** style: UI paradigms must be rethought from scratch
 - e.g. conventional molecule sketchers don't work well...
 - ... different set of concepts, learning new interface

Cloud computation

- Offloading heavy calculations to a webservice can bring mobile interfaces up to parity with traditional stack
- Webservices either:
 - **stateless**: short tasks, finished before HTTP timeout
 - asynchronous: client maintains & resubmits state
 - task state: temporary state for duration of task
 - **persistent state**: login as a user to access content
- Workflow based on short exchanges: split evenly for efficiency and user experience
- Not easy to do, but worthwhile

Workflow

- Ingredients:
 - selected compounds + activity from the GSK malaria leads (248 compounds)
 - three known scaffolds:

- The SAR Table app
 - running on an iPad
 - calling upon cloud-based resources

Data importing

- Download chemical structures from:
 - email attachments
 - arbitrary URL
 - network filesystem (e.g. Dropbox)
- Directly into SAR Table app

 Passing small documents to/from apps is easy and effective

Specify scaffold

Draw scaffold for first structure, select scaffold matching action

Scaffold matching

- Produces all useful combinations of scaffold + R-groups
- User selects from the degenerate possibilities
- Defers to a webservice: molsync.com
- Service properties:
 - complex calculation
 - short (<< 3 seconds)</p>
 - stateless
 - small input, small output

Multiple matching

- Can try to match many scaffolds to many molecules
- Similar webservice request (complex, fast, stateless, small data)
- Iterative dance between **app** interface + **web** service:
 - algorithm applies chemical structure logic, user resolves degeneracy

Searching for more

- Search for templates:
 - ChEBI
 - PubChem
- Intermediate webservice layered on top of publicly available search capabilities

- Service properties:
 - complex labour-intensive
 - medium speed (< 3 minutes)</p>
 - stateful reference data
 - small input, small output

Template results

- Scaffold & R-group decomposition handled automatically by the metalayer
- Now have numerous additional compounds in the table
- Duplicates excluded
- Additional compounds are all known:
 - lookup recipe
 - purchase from vendor
- Only thing missing is activity...

Activity visualisation

- Setup a scheme...
 - Units
 - Transform
 - Colours
 - Range

- Customise for the data
- All these leads quite active
- Define 5.9 to 6.5 as the low activity range (red to yellow)
- Define 6.5 to 8.1 as the high activity range (yellow to green)

Model building

- Have some data, but not all?
 - No problem, build a model...
- Based on a generic method: descriptors based on substructures
- Webservice calls iterate over refinement steps
- Service properties:
 - complex labour-intensive calculation
 - medium speed (each cycle < 10 seconds)
 - state managed by client
 - small input, small output

Model application

- The model is then applied to compounds with unknown activity
- Compounds with green wedges can be
 - prepared/purchased
 - measured
 - real data included
- A measurements are added, predictivity improves

Matrix view

- Select axes, e.g.
 - R4
 - **–** R5
- Distinct fragments plotted on axes
- Activity summarised by colour coding

Empty cells

- Can use the previously built model to estimate activity for empty cells
- The webservice creates hypothetical compounds for each cell:
 - R4 and R5 are implied
 - scaffold, R1, R2 and R3 are selected from currently known cases
- Service properties:
 - complex labour-intensive calculation
 - fast speed (< 30 seconds)</pre>
 - batch state
 - small input, small output

Proposing compounds

- Any of the cells that look good: tap on one, create a new partial specification...
- ... define the missing variables from the row view.

New compounds

- Fill in missing substituents from a list of existing fragments
- Heat-map colours denote activity distribution

Presenting data

- Can output data, bitmaps for structures, and multi-page PDFs for the whole matrix view (arts'n'crafts)
- More specialised output is possible:
 - vector graphics (SVG, EPS)
 - Microsoft Word & Excel documents with tables of vector graphics, designed for manuscript preparation
- Tricky formatting done by webservice
 - complex calculation
 - fast speed (< | second)</pre>
 - stateless
 - small input, small output

Sharing data

• Can pass the SAR Table document, or individual structures, to other

apps via:

open in

clipboard

- Send by email with attachments
- Store/retrieve on remote filesystems (e.g. Dropbox via MolSync app)
- Share on the web, by uploading to an open repository
- Tweet the web link, directly from the app

Molecular Informatics vol. **3 I**, p. 569 (2012)

Conclusion

- Major workflow chunks are already possible without using a PC
- Mobile devices are powerful enough to drive a great user experience with complex data
- Cloud-based infrastructure can boost functionality, that is hard or impossible to provide on the device
- BUT notice the trend:
 - small inputs, small outputs, restricted state
- Apps are great for working on small documents that are easily passed around (app-to-app or via network)

Future work

- The largest remaining problem is big data
 - requires complex serverside infrastructure
 - with security
 - and interoperability
- The Pistoia Alliance app strategy intends to address this

Prognistication

- Apps will become increasingly prevalent in chemistry
- So will cloud computing

Acknowledgments

- Sean Ekins
- Antony Williams
- Evan Bolton
- The Pistoia Alliance
- Inquiries to info@molmatinf.com

MOLECULAR MATERIALS INFORMATICS

http://molmatinf.com http://molsync.com http://cheminf20.org

@aclarkxyz

