Supporting information

Application of Electrochemical Devices to Characterize the Dynamic Actions of Helicases on DNA

Dimithree Kahanda,^{1†} Kevin T. DuPrez,^{2†} Eduardo Hilario,² Marc A. McWilliams,¹ Chris H. Wohlgamuth,¹ Li Fan,^{2*} and Jason D. Slinker^{1*}

¹Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, TX 75080.

²Department of Biochemistry, University of California, 900 University Ave, Riverside, CA 92521

*Email: li.fan@ucr.edu; Phone: 951-827-3630; Fax: (951) 827-4434

*Email: <u>slinker@utdallas.edu</u>; Phone: 972-883-6513; Fax: 972-883-2848

Contents

- S-2: Crystallization data for 6xHis-StoXPB2
- S-4: Image of the custom chip used in study
- S-5: Images of custom temperature controlled electrochemical setup
- S-6: Chemical drawings of the C6 linker and Nile Blue redox probe coupling

Table S1: Crystallization data for 6xHis-StoXPB2

Data collection and refinement statistics (molecular replacement)

	Native
Data collection	
Space group	P 43 21 2
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	160.92, 160.92, 122.96
α, β, γ (°)	90.00, 90.00, 90.00
Resolution (Å)	29.9 - 3.05 (3.21 - 3.05)
R _{merge}	37.4 (290.4)
Ι/σΙ	11.2 (2.0)
CC1/2 (%)	99.6 (62.9)
Completeness (%)	99.9 (100.00)
Redundancy	23.6 (23.4)
Refinement	
Resolution (Å)	30.00 - 3.05
No. reflections	29713
$R_{\rm work}$ / $R_{\rm free}$	19.60 / 22.58
No. atoms	
Protein	6404
Sulfate Ion	70
Chloride Ion	7
Glycerol	42
Water	134

B-factors

Protein	99.61
Ligand/ion	97.44
Water	61.54
R.m.s. deviations	
Bond lengths (Å)	0.0098
Bond angles (°)	1.3146
Ramachandran	
Core	86.8%
Allowed	13.2%
Gen. Allowed	0.0%
Outliers	0.0%

*2 crystals were used for data process and structure determination.

*Values in parentheses are for highest-resolution shell.

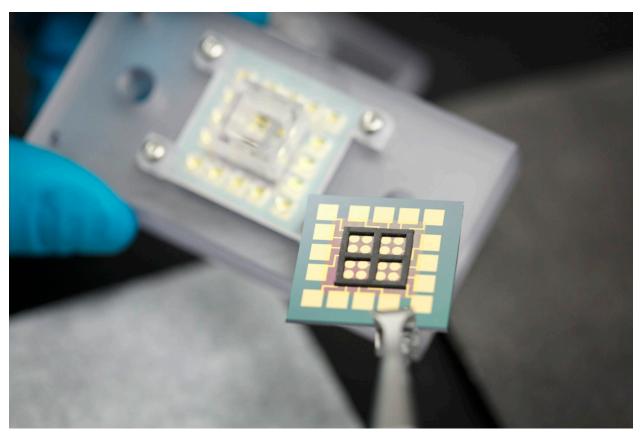
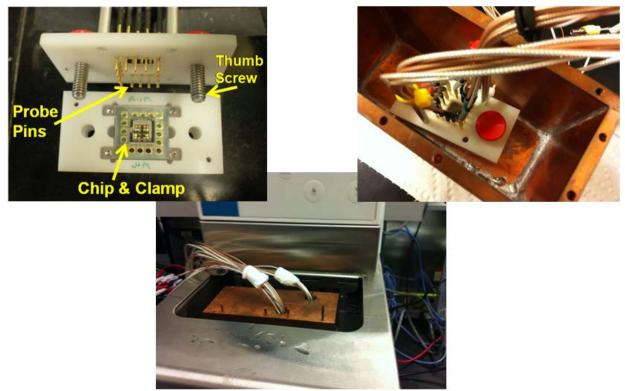



Figure S1: Images of the custom chip used for study

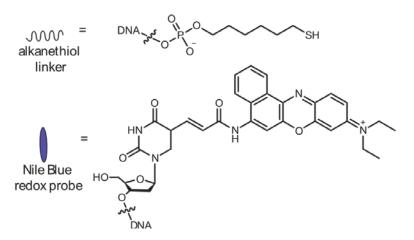

Figure S1: Image of the custom chip used for study.

Figure S2: Images of custom temperature controlled electrochemical setup

Figure S2. Setup for attaining temperature control of multiplexed electrode chips. (Upper) Illustration of the chip layout for studying self-assembled monolayers of probe-modified DNA on multiplexed gold electrodes. (Middle left) Chips are connected to external electrochemical hardware with a modular test mount that also maintains buffer solution over the chip. (Middle right and lower) The entire mount is then placed in a copper box that is submerged in a temperature-controlled water bath. This ensures temperature uniformity over the entire mount.

Figure S3: Chemical drawings of the C6 linker and Nile Blue redox probe coupling

Figure S3. DNA modifiers used in this study. The moiety used for self-assembling DNA to the electrode surface is the C6 Thiol Modifier S-S from Glen Research. The Nile Blue redox probe was attached by coupling the dye, Nile Blue A perchlorate, to the NHS Carboxy DT phosphoramidite from Glen Research.