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Mobility represented t (h) ⌧ (h) P (⌧) Sampling Type of result F
good

Notes

Italian cars 0.30 2.49 Exponential Periodic Analytical 51% � = 1.7h
Stretched exponential Periodic Numerical 39% � = 1.3h
Exponential Power law Numerical 27% –
Stretched exponential Power law Numerical 23% –

USA CDR data (0.30) 0.55 Exponential Periodic Analytical 24% � = 0.8h

Truncated power law Periodic Numerical 15% � = 0.5h

Truncated power law Power law Numerical 6% –

Chinese Geolife Traj. 0.33 0.80 Exponential Periodic Analytical 27% � = 1.0h

Empirical Periodic Numerical 18% � = 1.0h

Empirical Empirical (p = 0) Numerical 11% –

Empirical Empirical (p = 1) Numerical 16% –

TABLE S1. Results’ summary.

1000 m

t

FIG. S1. Representing trajectories. (Left) A 2D trajectory from the green circle to the orange square, obtained with GPS
readings (solid blue) and sampled trajectory (dashed red). (Right) Cumulated distance traveled on the real trajectory (solid
blue) and sampling points (red crosses) drawn from a power-law distribution with exponent �1. The sampled trajectory is a
gross approximation of the real trajectory, a lot of information being lost in the process.
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FIG. S2. Rescaled distribution of travel times. Optimal sampling of t = 0.30 h with � = �̂ = 1.73 h. The distribution of
sampled travel times (light blue) can be compared with the original exponential distribution (black dots) after re-normalizing
the distribution, multiplying it by the factor (1� C

0

)�1.

FIG. S3. Constant sampling on GPS data. We present results obtained by sampling the GeoLife GPS data with a constant
sampling interval �. We plot the average sampled move displacement h`⇤i

`

⇤
>0

(computed in 2 dimensions), normalised by the
real average move length h`i as a function of the length of the sampling interval �. The ideal case h`⇤i

`

⇤
>0

= h`i (Eq. (9))
is reached for � = 15 min, while for a short-tailed rest time it is expected to be � = 52 min (red circle). The fact that the
sampling time optimizing F

good

(orange triangle) corresponds to h`⇤i
`

⇤
>0

/h`i ⇡ 2 implies that optimal sampling frequencies
would represent, in this case, an under-sampling of the trajectory where moves are more frequently joined together than cut
by sampling times.

ANALYTICAL CALCULATIONS889

Possible sampling scenarios890

In order to compute the di↵erent statistics presented in the text, we use methods of renewal theory [47-49] along891

the lines presented in detail in [43], and we refer the interested reader to this last reference.892

Sampling can get wrong in seven di↵erent ways. The cases are the following. We can have two sampling times893

falling:894

1. in the same rest;895

2a. in two subsequent rests (the correct way);896

2b. in two rests separated by more than one move;897

3a. in a move and in the rest following that move;898
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3b. in a move and in a rest not following that move;899

4. in the same move;900

5a. in a rest and in the move following that rest;901

5b. in a rest and in a move not following that rest;902

6a. in two subsequent moves;903

6b. in two non-subsequent moves.904

Case 1 can be identified, since the displacement is ` = 0. Case 2a gives a correct evaluation of the move performed,905

since both sampling are made when the individual is still, and only one movement has been done in that time. Cases906

3a, 4, 5a and 6a ‘cut’ moves, under-estimating the observed displacements and leading to an over-estimate of the907

number of moves. Cases 2b, 3b, 5b and 6b ‘join’ together multiple moves, thus yielding over-estimated displacements908

and under-estimated number of moves.909

General setting910

The random trajectory consists in an alternation of moves with durations t

1

, t

2

, t

3

, . . . , where the position x(✓)911

increases with unit velocity (v = 1), and of rests with durations ⌧

1

, ⌧

2

, ⌧

3

, . . . , where x(✓) stays constant. The walker912

starts from x = 0 at time ✓ = 0. The move durations t

k

and the rest durations ⌧

k

are drawn from two given continuous913

distributions f(t) and g(⌧).914

We are interested in the distribution P

✓1,✓2(`) of the distance915

` = x(✓
2

) � x(✓
1

) (S1)

traveled by the walker between two fixed times ✓

1

and ✓

2

, and in various related quantities. An exact expression916

for the distribution P

✓1,✓2(`) can be derived by analytical means, for arbitrary distributions f(t) and g(⌧), by using917

techniques from renewal theory [47–49]. The key quantity is the triple Laplace transform918

L(r, s, u) =

Z 1

0

e�r✓1 d✓

1

Z 1

✓1

e�s✓2 d✓

2

⇥
Z 1

0

e�u`

P

✓1,✓2(`) d`. (S2)

This quantity can be evaluated as a sum over six sectors (see above discussion and Fig. S4):919

1. ✓

1

and ✓

2

belong to the same ⌧

n

;920

2. ✓

1

belongs to ⌧

m

while ✓

2

belongs to ⌧

n

;921

3. ✓

1

belongs to t

m

while ✓

2

belongs to ⌧

n

;922

4. ✓

1

and ✓

2

belong to the same t

n

;923

5. ✓

1

belongs to ⌧

m

while ✓

2

belongs to t

n

;924

6. ✓

1

belongs to t

m

while ✓

2

belongs to t

n

.925

Let us illustrate the method on the example of sector 2. For fixed integers m � 1 and n � m + 1, we have926

✓

1

= ⇥
1

+ B

1

,

✓

2

= ⇥
2

+ B

2

,

⇥
1

= (t
1

+ · · · + t

m

) + (⌧
1

+ · · · + ⌧

m�1

),

⇥
2

= (t
1

+ · · · + t

n

) + (⌧
1

+ · · · + ⌧

n�1

),

x(✓
1

) = t

1

+ · · · + t

m

,

x(✓
2

) = t

1

+ · · · + t

n

,

` = t

m+1

+ · · · + t

n

, (S3)
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FIG. S4. Schematic representation of the di↵erent sectors. In the plane (✓
1

, ✓
2

) we represent the di↵erent sectors
according to the numbering defined in the text.

with 0 < B

1

< ⌧

m

and 0 < B

2

< ⌧

n

. The contribution of sector 2 with fixed m and n to L(r, s, u) therefore reads927

L(m,n)

2

(r, s, u) =

⌧
e�r⇥1�s⇥2�u`

⇥
Z

⌧m

0

e�rB1 dB

1

Z
⌧n

0

e�sB2 dB

2

�
. (S4)

Hereafter we borrow conventions and notations from Ref. [43]. In particular, h. . . i denotes an average over the random928

process, i.e., over all the move durations t

k

and rest durations ⌧

k

.929

The explicit evaluation of (S4) involves three steps.930

• First, performing the two integrals leads to the expression931

L(m,n)

2

(r, s, u) =

⌧
e�r⇥1�s⇥2�u`

1 � e�r⌧m

r

1 � e�s⌧n

s

�
, (S5)

which only involves the t

k

and ⌧

k

.932

• Second, averaging independently over all the t

k

and ⌧

k

, we obtain933

L(m,n)

2

(r, s, u) = b
f(r + s)m b

f(s + u)n�mbg(r + s)m�1

⇥ bg(s)n�m�1

bg(s) � bg(r + s)

r

1 � bg(s)

s

(S6)

in terms of the Laplace transforms (characteristic functions)934

b
f(s) = he�sti =

Z 1

0

f(t) e�st dt,

bg(s) = he�s⌧ i =

Z 1

0

g(⌧) e�s⌧ d⌧. (S7)

• Third, the entire contribution of sector 2 reads935

L
2

(r, s, u) =
1X

m=1

1X

n=m+1

L(m,n)

2

(r, s, u), (S8)
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where the sums boil down to geometric sums. This leads to936

L
2

(r, s, u) =
b
f(s + u)

1 � b
f(s + u)bg(s)

b
f(r + s)

1 � b
f(r + s)bg(r + s)

⇥ bg(s) � bg(r + s)

r

1 � bg(s)

s

. (S9)

The contributions of the five other sectors can be evaluated along the same lines. We thus obtain937

L
1

(r, s, u) =
b
f(r + s)

1 � b
f(r + s)bg(r + s)

⇥ r + sbg(r + s) � (r + s)bg(s)

rs(r + s)
,

L
3

(r, s, u) =
1

1 � b
f(s + u)bg(s)

1

1 � b
f(r + s)bg(r + s)

⇥
b
f(s + u) � b

f(r + s)

r � u

1 � bg(s)

s

,

L
4

(r, s, u) =
1

1 � b
f(r + s)bg(r + s)

⇥ u � r + (r + s) bf(s + u) � (s + u) bf(r + s)

(r + s)(u � r)(s + u)
,

L
5

(r, s, u) =
1

1 � b
f(s + u)bg(s)

b
f(r + s)

1 � b
f(r + s)bg(r + s)

⇥ bg(s) � bg(r + s)

r

1 � b
f(s + u)

s + u

,

L
6

(r, s, u) =
bg(s)

1 � b
f(s + u)bg(s)

1

1 � b
f(r + s)bg(r + s)

⇥
b
f(r + s) � b

f(s + u)

u � r

1 � b
f(s + u)

s + u

. (S10)

Steady state938

From now on we focus our attention onto the steady state of the process, obtained by letting the first time ✓

1

go939

to infinity, keeping the time di↵erence940

� = ✓

2

� ✓

1

(S11)

fixed. This steady state is well-defined if the distributions f(t) and g(⌧) decay fast enough for the mean values t and941

⌧ to be finite. In the opposite situation, where either t or ⌧ or even both are divergent, the process never reaches942

a steady state. It rather exhibits various non-stationary features, usually referred to as aging or weak ergodicity943

breaking [50]. We assume henceforth that t and ⌧ are finite.944

The quantity of most interest is the steady-state distribution P

�

(`). Its double Laplace transform945

L(s, u) =

Z 1

0

e�s� d�

Z 1

0

e�u`

P

�

(`) d` (S12)

is the limit of the product (r + s)L(r, s, u) as r ! �s. We thus obtain946

L(s, u) =
N(s, u)

(t + ⌧)s2(s + u)2(1 � b
f(s + u)bg(s))

, (S13)

with947

N(s, u) = s(s + u)(st + (s + u)⌧)(1 � b
f(s + u)bg(s))

� u

2(1 � b
f(s + u))(1 � bg(s)). (S14)
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The distribution P

�

(`) has the general form948

P

�

(`) = C

0

(�) �(`) + C

1

(�) �(` � �) + P

cont

�

(`), (S15)

with two delta functions at the endpoints ` = 0 and ` = �, and a non-trivial continuous piece in-between. The delta949

function at ` = 0 corresponds to sector 1 (✓
1

and ✓

2

belong to the same rest duration ⌧

n

). The Laplace transform950

b
C

0

(s) of the associated amplitude C

0

(�) reads951

b
C

0

(s) =
bg(s) + s⌧ � 1

(t + ⌧)s2

, (S16)

hence952

C

0

(�) =
1

t + ⌧

Z 1

�

(⌧ � �)g(⌧) d⌧. (S17)

Similarly, the delta function of P

�

(`) at ` = � corresponds to sector 4 (✓
1

and ✓

2

belong to the same move duration953

t

n

). The associated amplitude reads954

C

1

(�) =
1

t + ⌧

Z 1

�

(t � �)f(t) dt. (S18)

As � increases from 0 to infinity, the above amplitudes decrease monotonically from C

0

(0) = ⌧/(t + ⌧) and C

1

(0) =955

t/(t + ⌧) to zero, whereas the weight of the continuous part P

cont

�

(`) increases from zero to one.956

The mean value of ` has the remarkably simple expression957

h`i
�

=
t

t + ⌧

�. (S19)

The second moment of ` reads in Laplace space958

Z 1

0

e�s�h`2i
�

d� =
2t

(t + ⌧)s3

� 2(1 � b
f(s))(1 � bg(s))

(t + ⌧)s4(1 � b
f(s)bg(s))

. (S20)

This formula can be inverted in the regime where � is much larger than t and ⌧ , yielding959

h`2i
�

� h`i2
�

⇡ (⌧2 � ⌧

2)t
2

+ (t2 � t

2

)⌧2

(t + ⌧)3
� + K. (S21)

The linear growth of the variance of ` with � testifies that the continuous part P

cont

�

(`) satisfies an approximate central960

limit theorem at large �, where the measured displacement ` is the sum of a typically large number of elementary961

moves. The constant K, corresponding to the first correction to this limit, is given by a combination of moments of962

t and ⌧ , which can be either positive or negative.963

Another quantity which is used in the main text is the fraction P

good

(�) of the moves which are correctly sampled.964

These events correspond to the observation times ✓

1

and ✓

2

belonging to two consecutive rests surrounding the move965

under consideration, i.e., to sector 2 with n = m+1. It is also useful to introduce the normalised fraction of correctly966

sampled moves,967

F

good

(�) =
P

good

(�)

1 � C

0

(�)
, (S22)

where the denominator is nothing but the probability of measuring a non-zero displacement.968

In the steady-state of the process, we obtain in Laplace space969

b
P

good

(s) =
b
f(s)(1 � bg(s))2

(t + ⌧)s2

, (S23)

whereas the Laplace transform of C

0

(�) is given by (S16).970
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Exponential distributions971

When the distributions of the move and rest durations are exponential, with respective parameters a = 1/t and972

b = 1/⌧ , i.e., f(t) = a e�at, g(⌧) = b e�b⌧ , b
f(s) = a/(s+a), bg(s) = b/(s+b), the above expressions simplify drastically,973

and so many observables can be evaluated in closed form.974

Eqs. (S13), (S14) read975

L(s, u) =
(a + b)2 + (a + b)s + au

(a + b)(s2 + (a + b + u)s + bu)
. (S24)

We thus recover (S19), i.e.,976

h`i
�

=
b

a + b

�, (S25)

as well as the following expression977

h`2i
�

= h`i2
�

+
2ab

(a + b)3
� +

2ab

(a + b)4

⇣
e�(a+b)� � 1

⌘
(S26)

for the second moment of the measured displacement. In this example, the constant K = �2ab/(a + b)4 is negative.978

With the notations of the main text, i.e., in terms of ⌧ , t, `

⇤
, v, �, the first two moments read979

h`⇤i =
v�

1 + ⌧/t

(S27)

and

h`⇤2i =
v

2�
2

(1 + ⌧/t)2
+

2v

2

⌧

2�

t(1 + ⌧/t)3

+
2v

2

⌧

3

t(1 + ⌧/t)4

✓
exp

✓
� (t + ⌧)�

t⌧

◆
� 1

◆
. (S28)

The full distribution P

�

(`) can also be obtained in closed form. In a first step, performing the inverse transform of980

the expression (S24) from s to �, we obtain an expression for the Laplace transform981

L

�

(u) =

Z 1

0

e�u`

P

�

(`) d`, (S29)

namely982

L

�

(u) = e�(a+b+u)�/2

⇥
✓
cosh R +

(a + b)2 + (a � b)u

2(a + b)

sinh R

R

�

◆
, (S30)

with983

R =
�

2

p
(a � b + u)2 + 4ab. (S31)

In a second step, the expression (S30) can be inverse transformed from u to `, yielding a result of the general form (S15),984

with985

C

0

(�) =
a

a + b

e�b�

, C

1

(�) =
b

a + b

e�a� (S32)

and986

P

cont

�

(`) =
2ab

a + b

e�a`�b(��`)

⇥
✓

I

0

(x) + (a(� � `) + b`)
I

1

(x)

x

◆
, (S33)
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with987

x = 2
p

ab`(� � `), (S34)

and where I

0

and I

1

are modified Bessel functions.988

The expression (S23) reads989

b
P

good

(s) =
a

2

b

(a + b)(a + s)(b + s)2
. (S35)

We have therefore990

P

good

(�) =
a

2

b

(a + b)(a � b)2

⇥
�
e�a� + ((a � b)� � 1)e�b�

�
(S36)

and991

F

good

(�) =
a

2

b

(a � b)2
e�a� + ((a � b)� � 1)e�b�

a + b � a e�b�

. (S37)

The normalised fraction F

good

(�) of correctly sampled moves starts growing as (a�)2/2 at small �, whereas it992

falls o↵ exponentially at large �. It therefore reaches a non-trivial maximum F̂

good

for an optimal value �̂ of � (see993

Fig. 3 (bottom)). In the limit b/a ! 0, the maximal value F̂

good

reaches unity (see Fig. 4 (top)). It is attained for994

�̂ ⇡ 2p
ab

. (S38)

It however drops from this perfect value very rapidly, with a square-root singularity of the form995

F̂

good

⇡ 1 � 2

r
b

a

. (S39)

For a = b, the expression (S37) simplifies to996

F

good

(�) =
(a�)2

2(2ea� � 1)
. (S40)

The maximal value is already as small as F̂

good

⇡ 0.14602. It is reached for �̂ ⇡ 1.84141/a.997
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NUMERICAL ANALYSIS998

Random sampling and long-tailed pause distributions999
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FIG. S5. E↵ect of sampling (periodic and Poisson process) with di↵erent rest distribution. Similar to what we
depicted in Fig. 3 (represented here as black circles in the left panel and as a blue line in the right panel). In all scenarios
studied, we fix t = 0.30 h and consider di↵erent alternative forms for P (⌧) (exponential (exp–) or Stretched Exponential (SE–)
or Truncated Power Law (TPL–)). We use either constant (–�) or exponentially distributed (–exp) sampling times. The grey
circle represents the value associated with �̊ and the filled grey up-triangle that of �̂ for the (exp – �) scenario. (Left) We
compare the average value h`⇤i

`

⇤
>0

with h`i = ` = vt. All definitions of the optimal sampling time di↵erent from �̊ (defined by
imposing the identity between h`⇤i and `) are necessarily associated with values smaller than �̊ for long-tailed rest distributions.
For the SE case, a sampling time of ⇡ 1h correctly estimates the average. If rests are distributed as a TPL, the large fraction of
short rests leads to the concatenation of subsequent trips, even with this relatively short sampling time. This result illustrates
a first incongruence in the work by Song et al. [4], where individual moves and rests are reconstructed with a sampling rate
of 1 h, identifying a rest distribution (the TPL studied here) for which we predict that only half of the movements would be
captured (because h`⇤i/` ⇡ 2 and consequently n⇤/n ⇡ 1/2). (Right) In all scenarios the fraction F

good

of correctly sampled
trips is lower than the value (51%) given by Eq. (S37) and studied extensively in this paper. In particular, trajectories with long
rest times (SE– and TPL–) yield worse results than the peaked case (exp–). At the same time, using exponentially distributed
sampling times (–exp) systematically yields worse results than constant sampling (–�). The optimal value �̂ (filled grey up
triangle and dashed line) over-estimates the position of the peak for long-tailed rests. A possible realistic scenario for human
mobility is represented by a down triangle, where trajectories with SE rest distribution reach a maximum F

good

of 39% when
sampled with a constant � = �̌ = 1.33 h (80 min). If the pause distribution is TPL, F

good

barely reaches the 15% mark,
illustrating a second incongruence in the work by Song et al. [4]. (In the right panel, all triangle markers indicate the maximum
of the associated curve.)

As stated in the main text, real sampling problems can be more complex than the idealised case defined by Eqs. (1),1000

(2) and (3). In particular: (i) the rest time distribution can be broad; (ii) sampling times can be random variables;1001

(iii) speed can be a random variable (travel durations have been seen to have a short-tailed distribution). We start1002

by studying the e↵ects of points (i) and (ii), while we discuss point (iii) in the following section.1003

Available data on rest durations suggest that their distribution is long-tailed. Di↵erent fits have been proposed for1004

the latter distribution. Here we consider a Truncated Power Law (TPL), used for interpreting mobile phone data [4],1005

and a Stretched Exponential (SE), used for interpreting private vehicles’ parking times [7]. As for the sampling time,1006

we can introduce randomness with an exponential distribution of inter-event times (Poisson process). Alternatively,1007

if we want to represent the sampling process associated with communication, we use a power-law distribution with1008

exponent �1 [3, 38]. Since this distribution is not integrable, it is necessarily defined on an interval between some1009

�
min

and �
max

.1010

In Figs. S5 and S6, we combine di↵erent rest distributions and sampling time distributions. We see that, in all1011

the possible scenarios, F

good

is below the best value F̂

good

= 51%. In Fig. S5 (right) we show the fraction F

good

1012

for exponential (exp), TPL or SE rest time distributions and with sampling times � distributed as a delta function1013

(P (�) = �(� � �)) or an exponential distribution (P (�) = (1/�) exp(��/�)), associated with a Poisson process1014

where a sampling can happen at each moment with uniform rate. The solid blue line, together with the gray circle and1015

the up triangle markers, represent the same information as displayed in Fig. 2 (d). All the other curves for F

good

(�)1016
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FIG. S6. E↵ect of sampling with power-law inter-event times and di↵erent rest distributions. Using sampling
times distributed similarly to communication patterns, samplings get very bad for Exponential (a, b), Stretched Exponential
(c, d) or Truncated Power Law (e, f) rest distributions. The quality of the sampling depends on how we choose the minimal
�

min

and maximal �
max

inter-event times. The left panels show the error in the estimate of the average h`i. The right panels
represent the fraction F

good

of correctly sampled moves. With a very conservative choice of �
min

= 5 min and �
max

= 12 h,
the value F

good

for the exponential rest distribution drops from ⇡ 51% to ⇡ 27%. For long-tailed rests we are limited to a
maximal F

good

⇡ 23% (panel (d), Stretched Exponential) when sampling trajectories consistent with the rest and move times
of humans with inter-event times consistent with mobile phones CDR data. The value drops below 6% in the same conditions
for the Truncated Power Law (panel (f)).

are bell-shaped, their maxima have heights < 51%, and these maxima are reached for a � close to the expected �̂.1017

Therefore, all variations introduced here only yield worse samplings. With a down triangle we show that, when the1018

rest times are distributed as a Stretched Exponential, as suggested by car mobility data, the optimal sampling time1019

would be �̌ ⇡ 1.33 h, but with only 39% of trips correctly sampled. If rest times have instead a TPL distribution, as1020

estimated by mobile phone data [4], the sampling is very poor, with F

good

< 15%.1021

Panels (b) (d) and (f) of Fig. S6 correspond to a power-law sampling, where the final result of course depends on1022

�
min

and �
max

. F

good

never goes over the optimal value found for constant sampling, which is naturally reached when1023

�
min

and �
max

get close to �̂. However, since in an individual behaviour we can easily have a whole day without1024

communication, the values of F

good

we expect would be more of the order of the values reached on the right half of1025

each contour graph. We consider as reference values (here as for our analysis of the GeoLife trajectory) �
min

= 5 min1026
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and �
max

= 12 h. This very conservative choice yields F

good

= 27% for the exponential rest distribution.1027

For both constant and random sampling times, the SE distribution yields values of F

good

better than the TPL. This1028

is expected, since larger values of ⌧ are associated with a better sampling (see Fig. 4 (top)), and confirms our choice1029

of the characteristic times for vehicular mobility as the best-case scenario for our study. We therefore identify as1030

‘optimistic’ values for F

good

for a realistic distribution of rests (the Stretched Exponential) the value 39% for constant1031

sampling and 23% for power-law sampling. This last value is, again, computed with �
min

= 5 min and �
max

= 12 h.1032

In conclusion of this section, we cannot help but remark the incongruence between the rest time distribution1033

identified from CDR data (the TPL studied here) and the sampling time of 1 h used to identify mobility patterns. For1034

such a rest time distribution we predict h`⇤i/` ⇡ 2 for a sampling time of 1 h. This ratio suggests that the trajectory1035

is largely under-sampled, with only about half the trips correctly identified. Since rests would also be consequently1036

under-counted, and thus over-estimated in duration, the rest time distribution estimated cannot be correct either.1037

E↵ect of velocity and spatial embedding1038
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FIG. S7. Moments of P (`⇤) with speed variability in the peaked scenario. (Left) First moment. (Right) Second
moment. We introduce variability in the speed distribution P (v), using a random acceleration model [7]. Comparing with the
analytical results of Eq. (8) and Eq. (S28) (blue lines), we can appreciate that realistic speeds introduce only minor changes in
estimating the moments. The red circle indicates the result using the sampling time �̊ that matches the mean values (h`⇤i = `).
The orange triangle shows the values associated with �̂, the sampling time maximizing F

good

. The first sampling time �̊ yields
a slightly under-estimated first and second moment, with a deviation of 5% and 20% respectively, with respect to the moments
of the displacement distribution in the simulated trajectories (yellow solid line).

We have seen that the optimal sampling times defined in the main text do not depend on the nature of P (v),1039

nor on the dimensionality of space (and thus of the vector speed v). Even when introducing these two factors, the1040

fraction of moves that have been correctly identified remains unchanged. Nevertheless, the shape of the distribution1041

P (`⇤) of sampled distances necessarily depends on speed and spatial embedding. We illustrate this by using, on1042

top of the conditions set by Eqs. (1), (2) and (3), a random acceleration mobility model that induces a correlation1043

between travel time and speed consistent with real data at a national level [7]. This model assumes that trips have an1044

exponentially distributed durations with average value t and start at a base speed v

0

. At any time of the first half of1045

the trip the speed can be incremented of a value �v with a constant probability ⇡. Then, the second half of the trip1046

is characterised by an identical process, but with descending speeds. The value of the four parameters of this model1047

have been set to those used to reconstruct the speed distribution of cars in Italy (t = 0.30h, v

0

= 17.9km/h, �v = 41.81048

km/h, ⇡ = 2.12 jumps/h) [7]. The results of Fig. S7 are to be compared with those of Fig. 3 (top) in the main text.1049

In this case, the sampling time �̂ that is expected to match the first moment for constant speed under-estimates the1050

average displacement by about 5%, although in general this deviation will depend on the type of movement studied..1051

In Fig. S7 (left) we show the e↵ect of sampling trajectories with speed variability. We observe that, when the1052

sampling time distribution is broad, we have the larger deviations from the original distribution. This same phe-1053

nomenon can also be seen in Fig. S5 (left), where we show that the mean value h`⇤i is significantly larger when the1054

rest distribution is broad. The issue comes by the fact that with broad distributions we have several instances where1055

the sampling time is large with respect to the average rest, and therefore more jumps are joined together. When1056

11



this happens, the dimensionality and the nature of the turning angle distribution becomes important. Fig. S8 would1057

di↵er significantly by introducing this further element. Indeed, at low frequencies one would have to integrate over1058

many re-orientations [29]. These re-orientations are neglected in our one-dimensional picture, that as a consequence1059

over-estimates this sum. A possible multi-dimensional model could be the worm-like chain. On top of this, since the1060

human tendency of returning home limits the space explored [3], the size of these summed displacements could be1061

further reduced.1062
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FIG. S8. Sampling accelerated trajectories. Using a random acceleration model [7], we study how the displacement
distribution changes with the sampling. The result depends on the rest time distribution (exponential (exp), stretched expo-
nential (SE) and truncated power law (TPL)) and on the sampling time distribution (peaked �(� � �̄) or with a long tail
(PL)). The optimal sampling times (�̂ and �̊, defined in the main text and �̌ defined in the preceding section) give reasonably
good results, while long-tailed sampling creates sizeable deviations in the displacement distribution.
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CORRELATIONS BETWEEN CALLS AND RESTS IN EMPIRICAL SAMPLING1063

In the main text we study how the statistical properties of GPS trajectories of individuals are a↵ected when we1064

sample them with an inter-call distribution extracted from mobile phone data (CDR). It can however be objected1065

that the times at which calls are made are correlated to the rests. Hence the fraction of correctly sampled trips might1066

be higher than the one we obtain without correlations.1067

Moreover, more refined method of trajectory extraction are based on the idea of identifying stays (where the user is1068

performing an activity) and pass-by’s (locations where the call is made during a travel) [42]. Normally, one needs at1069

least two calls in the same stay to identify it correctly as an activity. The goal of this method consists in filtering out1070

calls made during rests. An ideal algorithm that perfectly identifies calls done during moves would then be equivalent1071

to a perfect correlation between rests and calls.1072

For these reasons, we study the e↵ect of correlations on the fraction of correctly sampled trajectories. We introduce1073

a parameter p to quantify the extent of correlations between calls and rests. Any call that is performed during a move1074

is excluded with probability p. When p = 0 calls and rests are de-correlated and calls can happen at any point in1075

time, while they are perfectly correlated, and all calls necessarily happen when at rest, when p = 1.1076

The results are presented on Fig. S9: when p = 0 we find the same value F

good

= 11% as presented in the main1077

text. When p = 1 we find F

good

= 16%, which is indeed better than without correlations, yet not large enough to1078

invalidate our conclusions, nor to support the current ‘stay point identification’ method as su�cient for reconstructing1079

mobility patterns.1080

FIG. S9. E↵ect of correlations on the fraction of correctly sampled trajectories. We quantify the e↵ect of correlations
between calls and rests on the fraction of rightly sampled trips F

good

. When p = 0 calls and rests are uncorrelated and we find
F
good

= 11%, as shown in the main text. When p = 1 calls only happen during rests and we find F
good

= 16%. Our conclusions
therefore hold disregarding of whether there are correlations between calls and movements, or if this correlation is induced by
filtering out calls done during moves.
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