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Abstract 25 

Missing an upper limb dramatically impairs daily-life activities. Significant efforts in overcoming the 26 

issues arising from this disability have been made in both academia and industry, although their 27 

clinical outcome is still limited. Translation of prosthetic research into clinics has been challenging 28 

because of the difficulties in meeting the necessary requirements of the market. In this perspective, 29 

we focus on myocontrol algorithms for upper limb prostheses and we emphasize that one relevant 30 

factor determining the relatively small clinical impact of these methods is the limit of commonly 31 

used laboratory performance metrics. The laboratory conditions, in which the majority of the 32 

solutions are being evaluated, fail to sufficiently replicate real-life challenges. We qualitatively 33 

substantiate this argument with data from seven transradial amputees. Their ability to control a 34 

myoelectric prosthesis was tested by measuring the accuracy of offline EMG signal classification, as 35 

a typical laboratory performance metrics, as well as by clinical scores when performing standard tests 36 

of daily living. Despite all subjects reached relatively high classification accuracy offline, their 37 

clinical scores were largely different and were not strongly predicted by classification accuracy. As 38 

argued in previous reports, we reinforce the suggestion to test myocontrol systems using clinical tests 39 

on amputees, fully fitted with sockets and prostheses highly resembling the systems they would use 40 

in daily living, as evaluation benchmark. Agreement on this level of testing for systems developed in 41 

research laboratories would facilitate clinically relevant progresses in this field. 42 

1 Introduction 43 

Recent progresses in active prosthesis control for the upper limb include the introduction of novel 44 

control approaches (Amsuess et al., 2015; Jiang et al., 2014a; Scheme and Englehart, 2011), sensor 45 

types and sensor fusion algorithms (Cipriani et al., 2014; Dosen et al., 2010; Nissler et al., 2016; 46 

Ortenzi et al., 2015; Weir et al., 2003), surgical techniques (Aszmann et al., 2015; Kuiken et al., 47 

2004), as well as advanced hardware (Catalano et al., 2014; Cipriani et al., 2011; Grebenstein et al., 48 

2011). Nonetheless, the impact of these advances towards improving the experience of the everyday 49 

end user is still limited. The discrepancy between myoelectric solutions that academia develops and 50 

promotes, and the systems available on the market is indeed substantial. This issue has been 51 

previously discussed (e.g. (Hill et al., 2009; Jiang et al., 2012)) and relates to the conditions in which 52 

new methods are tested. 53 

The necessity for testing prosthetic solutions in a greater number of amputees than currently done is a 54 

widely recognized problem. Moreover, the tests used often fail to include clinically relevant metrics. 55 

Performance metrics prevalent in laboratory research may be poorly associated to the clinical 56 

outcome (Jiang et al., 2014b; Ortiz-Catalan et al., 2015; Simon et al., 2011). Here, we reinforce these 57 

arguments to further substantiate the relevance of this problem. 58 

Transferring myoelectrical systems developed in the laboratory to clinical settings is a challenge that 59 

requires multidisciplinary efforts. Clinical tests, although not ideal, offer the most realistic prediction 60 

of the system performance in the daily use. These tests account for several of the challenges that 61 

laboratory-based assessment methodologies tend to neglect. For example, noiseless laboratory-based 62 

evaluation platforms fail to account for the end effector loads, poor socket fitting, and sweating. 63 

In this perspective, we briefly introduce evaluation methods regularly applied for prosthetics use, 64 

with a focus on offline approaches and some selected clinical measures. Moreover, we provide 65 

experimental data on seven conventional myoelectric users. The literature review and the 66 
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experimental data are limited to the primary aim of providing our view on assessment procedures for 67 

myocontrol and suggestions for their improvement. 68 

2 Performance evaluation 69 

Laboratory-based techniques and tests for measuring the performance in controlling a myoelectric 70 

interface are numerous and, in case of offline techniques, have been mainly derived or adapted from 71 

the machine learning literature. On the other hand, initially, clinicians have mostly adapted 72 

established hand and arm impairment assessment tools to the evaluation of functional recovery with 73 

prostheses. In recent years, clinical measures have however been introduced to target specifically the 74 

amputee patient population. 75 

2.1 Laboratory metrics 76 

Evaluation and assessment techniques for myocontrol in strictly laboratory conditions can be broadly 77 

divided in two groups – those quantifying the system performance through offline metrics and those 78 

based on online assessments using virtual prostheses or games. 79 

Depending on the type of the evaluated control algorithm, offline performance is most commonly 80 

assessed using either classification accuracy (Ortiz-Catalan et al., 2013) or the 𝑅2 error with respect 81 

to a given prompt (Ameri et al., 2014). The first approach relies on the number of correct estimates 82 

that the tested classifier makes, given the new, unseen data. The second compares the estimated 83 

command with respect to a reference cue. It has been shown that offline analysis fails to reflect the 84 

performance exhibited in online scenarios (Jiang et al., 2014b; Ortiz-Catalan et al., 2015). This is 85 

classically attributed to the fact that offline analyses do not account for adaptation of the user to non-86 

stationary signal features. 87 

Several virtual reality (VR) based assessment benches have been proposed in recent years. These 88 

systems simulate the online use of the prosthesis, at various levels of abstraction, while still being 89 

research-based settings. They offer the advantage of not dealing with the full implementation of the 90 

system, avoiding the challenges of socket design and hardware implementations. These VR systems 91 

are sometimes abstract with respect to the intended control (Ison et al., 2015) and commonly consist 92 

in steering a computer avatar in multiple directions to assess the performance when controlling 93 

specific DoFs. Alternatively, computer games can be presented to the users, e.g. controlling a cursor 94 

to hit targets on a computer screen (Ameri et al., 2014; Jiang et al., 2014a). Finally, users can also be 95 

instructed to move a virtual arm into a target posture (Simon et al., 2011), as a part of an elaborate 96 

VR test bench.  97 

The online systems are superior to the offline evaluations since they include the user in the loop and 98 

therefore account for his/her adaptation to the system. Parameters such as completion rate, path 99 

efficiency, number of overshoots or throughput, provide a solid quantitative evaluation of online 100 

performance. Further, (Fimbel et al., 2006) introduced the Fitts’ law (Fitts, 1954) in evaluating 101 

myocontrol. Through some iterations (Jiang et al., 2014b; Park et al., 2008; Scheme and Englehart, 102 

2013), a single statistical measure has been proposed to characterize a myocontroller online. 103 

Nonetheless, even if some of these test benches offer realistic testing scenarios, they have limitations. 104 

For example, weight bearing by the prosthesis and stump dynamics causing pressure changes within 105 

the socket fitting are important realistic factors of influence (Daly et al., 2014), not included in these 106 

tests. On the other hand, VR systems have found relevant applications in patient training (Roche et 107 

al., 2015; Sturma et al., 2015) and can be combined with table-top prosthetics (Stubblefield et al., 108 

2011). 109 
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2.2 Clinical metrics 110 

Clinical and rehabilitation specialists rely on a set of tests as well as questioners for assessing the 111 

user performance in myoelectric control. These tests prompt users to manipulate a variety of objects 112 

and to execute tasks mimicking those of daily living. The majority of the clinical scores validate the 113 

capability of executing certain tasks by quantifying the completion time. A battery of clinical tests 114 

requires the presence of certified examiners. 115 

The box and blocks (B&B) test is one of the simplest and most commonly used clinical tests for 116 

evaluating the severity of upper limb deficiency. It consists of transporting, one by one, a number of 117 

square wooden blocks over a barrier using the prosthesis. The quantitative performance index for this 118 

test is the number of blocks that are successfully moved in a fixed time interval (usually 1 min). This 119 

test is simple to implement but only focuses on a limited number of DoFs and requires a minimal 120 

skill by the user. 121 

The Clothes Pin Relocation Test (CPRT) requires the user to move a set of clothes pins of various 122 

resistances from a horizontal to a vertical bar. Since this is primarily a rehabilitation tool, the exact 123 

evaluation procedure has not been defined yet. However, most therapists use four clothespins of 124 

different resistances (1, 2, 4 and 8 lbs.) and request the subjects to relocate them from the lowest 125 

horizontal bar to the most convenient position on the vertical bar. The time of execution is then 126 

recorded from the starting neutral position to the final neutral position. The CPRT requires activation 127 

of several DoFs, although it often promotes compensatory movements which are not accounted for in 128 

the final outcome score. 129 

The Southampton Hand Assessment Protocol (SHAP) is one of the most elaborate hand impairment 130 

evaluation tests (Light et al., 2002). It consists of 26 individual tasks that include six grips and their 131 

combinations. It can be separated into abstract object handling and execution of activities of daily 132 

living (ADL). Its final outcome is a number in the range 0-100, where 0 corresponds to absence of 133 

hand function and 100 to a healthy hand function, which mainly reflects the time needed for 134 

completing the tasks. SHAP is a very elaborate hand assessment tool and therefore it is also lengthy 135 

and tiring for the patients, especially those with limited capabilities. Additionally, it mainly quantifies 136 

the time needed for execution and does not account for the way in which the tasks are completed. 137 

The Action Research Arm Test (ARAT) is a global arm function assessment procedure. It is divided 138 

into four sub-scales – grasp, grip, pinch and gross movement – that evaluate abstract object 139 

manipulation strategies. The maximum ARAT score is 57, corresponding to normal upper limb 140 

function. This score is based on the opinion of certified examiners that rate the quality of execution 141 

of each task on a scale from 0 (cannot perform) to 3 (performs normally). 142 

In addition to the above, several other clinical tests and questioners have been devised targeting 143 

different functions and ways of assessing upper limbs, such as the Assessment of Capacity for 144 

Myoelectric Control (ACMC) (Hermansson et al., 2005) and the Jebsen-Taylor Test of Hand 145 

Function (JTHF) (Davis Sears and Chung, 2010). The former is a clinical evaluation test specifically 146 

tailored for myocontrol and, although it suffers of a strong subjective component and it has not yet 147 

received wide recognition, may be a promising evaluation tool. 148 

3 Experiments 149 

We provide data on amputees that compare the accuracy estimated offline, for one of the classic 150 

control schemes developed over the past decades, with clinical scores. These data serve the purpose 151 
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of reinforcing the conclusion for the need of clinical tests in an exemplary way. Therefore, the 152 

experiment and results do not aim at providing general conclusions on all myocontrol schemes and 153 

evaluation methods but rather support the view presented in this perspective.  154 

Seven male transradial myoelectric users agreed to participate. They were all fit with custom-made 155 

sockets and with the Michelangelo hand (Ottobock Healthcare GmbH, Austria) with additional wrist 156 

rotation and flexion/extension units. The study was performed in accordance with the 157 

recommendations of the local ethics board of the Medical University of Vienna (Ethics Commission 158 

number 1044/2015), with written informed consent from all subjects. All given consents are in 159 

accordance with the Declaration of Helsinki. 160 

The control of the prosthesis was based on the common spatial pattern (CSP) based classifier, as 161 

described by (Amsuess et al., 2015). The EMG signals were recorded with 8 bipolar surface 162 

electrodes (Otto Bock raw signal electrodes 13E200=50AC). The control system allowed the subjects 163 

to access seven prosthetic functions – wrist flexion/extension, wrist pronation/supination, hand open, 164 

pinch, and key grip. All the motions were recorded in three arm positions (relaxed, fully extend arm 165 

in front of the ipsilateral shoulder and fully extended arm across the contralateral shoulder) and at 166 

three forces (30%, 60% and 90% of the EMG level at maximum voluntary contraction force, for each 167 

motion) while wearing the full prosthetic fitting. For offline accuracy assessment, the classifier was 168 

trained by data collected in only one arm position and tested against the remaining two data sub-sets. 169 

The average of the three scores was the reference performance of the subject. The entire data set was 170 

used for training the same CSP classifier that allowed execution of the B&B and SHAP tests. These 171 

particular clinical tests have been representatively chosen since they cover a wide range of 172 

assessment goals while being entirely objective. Additionally, these two tests have been widely 173 

recognized and familiar to academic and industry-based developers as well as clinical experts. 174 

The performance scores in both offline and clinical tests are presented in Figure 1. The offline 175 

classification accuracies are slightly lower than in other studies (Ahsan et al., 2010; Liu et al., 2013) 176 

because of the different arm positions used for training and testing as well as the full prosthetic fitting 177 

which is not usual in offline evaluation studies. Although with these choices we have maximized the 178 

prediction capacity of offline indexes for clinical scores, still the clinical scores did not strongly 179 

correlate with the offline performance measures. For example, there were two patients who achieved 180 

a similar SHAP score just below 40 whereas they showed substantially different classification 181 

accuracies of < 70% and > 85% (Figure 1A). Similarly, two patients who had very similar 182 

classification accuracies of 70-75% had SHAP scores of 27 and 47 (Figure 1A). The B&B test 183 

requires less skill to be performed than the SHAP. However, the B&B score was even less associated 184 

to the offline classification than the SHAP (Figure 1B). For example, subjects with an offline 185 

accuracy >95% performed very differently in this test (Figure 1B). Furthermore, when considering 186 

strictly the hand movements – hand open, fine pinch and key grip - that are primarily used for this 187 

test, the mismatch between this test and offline performance was even more substantial. This was 188 

observed consistently in all patients but it is shown representatively for only two patients in Figure 2. 189 

For these patients, the average classification rate across the three hand motions was 89% and 79% 190 

whereas the transferred blocks (score of the B&B) were 5 and 12, respectively.  191 

When the offline evaluation was performed by using data collected without wearing the prosthesis 192 

and tested on the same arm position as the training, as more commonly done in laboratory tests (e.g., 193 

(Englehart et al., 1999; Hargrove et al., 2009; Li et al., 2010; Ortiz-Catalan et al., 2014b)), the 194 

resulting offline classification rates were high and comparable to those reported in the literature 195 

(>90% on average). However, once fully fitted, the majority of patients were unable to successfully 196 
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conclude the clinical evaluations without retraining, indicating that the classic offline evaluation 197 

procedure performed in several research studies does not provide strongly relevant clinical 198 

information. 199 

4 Discussion 200 

Abandonment rates among upper limb myoelectric prosthetic users are still very high (Burrough and 201 

Brook, 1985; Glynn et al., 1986; Østlie et al., 2012). At the same time, research efforts have provided 202 

several new solutions for myocontrol that have been proven to be highly functional strictly under 203 

laboratory conditions. The negligible transfer from research to real world applications likely depends, 204 

as one of the most relevant factors, on an insufficient level of evaluation procedures. 205 

Using novel prototypes of myoelectric systems in daily life would provide the ultimate assessment 206 

but this strategy would neither be safe nor always legal. Daily-usage tests often require a full 207 

development with proper certifications. The COAPT (Coapt LLC, 2016) is one of the first systems 208 

that has reached this level of testing. Clinical evaluations at earlier stages are a compromise between 209 

laboratory conditions and real-life tests. Although not perfect, clinical tests are closer to the 210 

conditions of interest for the users than offline assessments or online tests using virtual prostheses. 211 

Here we have presented an example of this dissociation on a small sample of amputee and focusing 212 

on offline metrics, for demonstration purposes. We have compared clinical scores with offline 213 

indexes of performance extracted in the most realistic offline conditions (patients wearing their own 214 

prosthesis, training and test sets on different arm postures). Despite these conditions rarely being met 215 

in the offline studies, the prediction capacity for clinical outcome was not strong. On the other hand, 216 

when the offline indexes were obtained in more common laboratory conditions without the prosthesis 217 

and for the same arm posture for test and training, the clinical information they provided was almost 218 

null. Further extrapolating, it is obvious that an offline analysis performed in these simple conditions 219 

and, in addition, on able-bodied individuals instead of patients, cannot be of strong clinical value. 220 

While we are fully aware that in the initial evaluation of a new myocontrol scheme the strict 221 

laboratory tests on healthy individuals is extremely valuable and needed for assessing the basic 222 

working principles, there is also the need to make efforts in continuing the evaluations of promising 223 

algorithms in clinically-relevant settings. We believe that the evaluation stages after the laboratory 224 

level have had a slower progress, and less academic interest, in the past with respect to the proposal 225 

of new algorithms. 226 

Considering the discrepancy presented in the literature and supported here with the representative 227 

data shown, it is necessary that novel myoelectric systems that passed laboratory testing are then 228 

fully clinically evaluated for assessing their performance. For this purpose, researchers and clinicians 229 

should jointly devise a standardized testing framework for quantitatively and qualitatively assessing 230 

the performance of upper limb prosthetic devices and their users to boost the process of 231 

commercialization and availability for the patients. This need does not only relate to the feed-forward 232 

control aspects, on which we focused here, but also fully closed-loop systems that include sensory 233 

feedback integration (González and Yu, 2009; Jorgovanovic et al., 2014; Ortiz-Catalan et al., 2014a). 234 

5 References 235 

Ahsan, M. R., Ibrahimy, M. I., and Khalifa, O. O. (2010). Advances in Electromyogram Signal 236 

Classification to Improve the Quality of Life for the Disabled and Aged People. J. Comput. Sci. 237 

6, 706–715. doi:10.3844/jcssp.2010.706.715. 238 

Ameri, A., Scheme, E. J., Kamavuako, E. N., Englehart, K. B., and Parker, P. a. (2014). Real-time, 239 



   Myoelectric upper limb prosthesis assessment 

 
7 

simultaneous myoelectric control using force and position-based training paradigms. IEEE 240 

Trans. Biomed. Eng. 61, 279–287. doi:10.1109/TBME.2013.2281595. 241 

Amsuess, S., Vujaklija, I., Gobel, P., Roche, A., Graimann, B., Aszmann, O., et al. (2015). Context-242 

Dependent Upper Limb Prosthesis Control for Natural and Robust Use. IEEE Trans. Neural 243 

Syst. Rehabil. Eng., 1–1. doi:10.1109/TNSRE.2015.2454240. 244 

Aszmann, O. C., Roche, A. D., Salminger, S., Paternostro-sluga, T., Herceg, M., Sturma, A., et al. 245 

(2015). Bionic reconstruction to restore hand function after brachial plexus injury : a case series 246 

of three patients. Lancet 6736, 1–7. doi:10.1016/S0140-6736(14)61776-1. 247 

Burrough, S. F., and Brook, J. A. (1985). Patterns of Acceptance and Rejection of Upper Limb 248 

Prostheses. Orthot. Prosthetics 39, 40–47. 249 

Catalano, M. G., Grioli, G., Farnioli, E., Serio,  a., Piazza, C., and Bicchi,  a. (2014). Adaptive 250 

synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res.  33, 768–782. 251 

doi:10.1177/0278364913518998. 252 

Cipriani, C., Controzzi, M., and Carrozza, M. C. (2011). The SmartHand transradial prosthesis. J. 253 

Neuroeng. Rehabil. 8, 29. doi:10.1186/1743-0003-8-29. 254 

Cipriani, C., Segil, J. L., Birdwell, J. A., and Weir, R. F. (2014). Dexterous control of a prosthetic 255 

hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans. Neural 256 

Syst. Rehabil. Eng. 22, 828–836. doi:10.1109/TNSRE.2014.2301234. 257 

Coapt LLC (2016). Coapt engineering. Available at: http://www.coaptengineering.com/ [Accessed 258 

April 29, 2016]. 259 

Daly, W., Voo, L., Rosenbaum-Chou, T., Arabian, A., and Boone, D. (2014). Socket Pressure and 260 

Discomfort in Upper-Limb Prostheses: A Preliminary Study. JPO J. Prosthetics Orthot. 26, 99–261 

106. doi:10.1097/JPO.0000000000000021. 262 

Davis Sears, E., and Chung, K. C. (2010). Validity and Responsiveness of the Jebsen–Taylor Hand 263 

Function Test. J. Hand Surg. Am. 35, 30–37. doi:10.1016/j.jhsa.2009.09.008. 264 

Dosen, S., Cipriani, C., Kostić, M., Controzzi, M., Carrozza, M. C., and Popović, D. B. (2010). 265 

Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. J. 266 

Neuroeng. Rehabil. 7, 42. doi:10.1186/1743-0003-7-42. 267 

Englehart, K., Hudgins, B., Parker, P. a, and Stevenson, M. (1999). Classification of the myoelectric 268 

signal using time-frequency based representations. Med. Eng. Phys. 21, 431–8. Available at: 269 

http://www.ncbi.nlm.nih.gov/pubmed/10624739. 270 

Fimbel, E. J., Lemay, M., and Arguin, M. (2006). Speed-accuracy trade-offs in myocontrol. Hum. 271 

Mov. Sci. 25, 165–180. doi:10.1016/j.humov.2005.12.001. 272 

Fitts, P. M. (1954). The Information Capacity of the Human Motor. J. Exp. Biol. 47, 381–391. 273 

doi:10.1037/h0055392. 274 

Glynn, M. K., Galway, H. R., Hunter, G., and Sauter, W. F. (1986). Management of the upper-limb-275 



   Myoelectric upper limb prosthesis assessment 

 
8 

deficient child with a powered prosthetic device. Clin. Orthop. Relat. Res. 209, 202–5. 276 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/3731596. 277 

González, J., and Yu, W. (2009). Multichannel audio aided dynamical perception for prosthetic hand 278 

biofeedback. 2009 IEEE Int. Conf. Rehabil. Robot. ICORR 2009, 240–245. 279 

doi:10.1109/ICORR.2009.5209521. 280 

Grebenstein, M., Albu-Schäffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., et al. (2011). 281 

The DLR hand arm system. Proc. - IEEE Int. Conf. Robot. Autom., 3175–3182. 282 

doi:10.1109/ICRA.2011.5980371. 283 

Hargrove, L., Member, S., Li, G., Englehart, K., and Hargrove, L. (2009). Principal Components 284 

Analysis Preprocessing to improve Classification Accuracies in Pattern Recognition Based 285 

Myoelectric Control Corresponding author. 56, 1–28. doi:10.1109/TBME.2008.2008171. 286 

Hermansson, L. N., Fisher, A. G., Bernspang, B., and Eliasson, A. C. (2005). Assessment of capacity 287 

for myoelectric control: a new Rasch-built measure of prosthetic hand control. J. Rehabil. Med. 288 

37, 166–71. 289 

Hill, W., Stavdahl, Ø., Hermansson, L. N., Kyberd, P., Swanson, S., and Hubbard, S. (2009). 290 

Functional Outcomes in the WHO-ICF Model: Establishment of the Upper Limb Prosthetic 291 

Outcome Measures Group. J. Prosthetics Orthot. 21, 115–119. 292 

doi:10.1097/JPO.0b013e3181a1d2dc. 293 

Ison, M., Vujaklija, I., Whitsell, B., Farina, D., and Artemiadis, P. (2015). High-Density 294 

Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot 295 

Arm. IEEE Trans. Neural Syst. Rehabil. Eng. to appear, 1–10. 296 

Jiang, N., Dosen, S., and Farina, D. (2012). Myoelectric control of artificial limbs: is there the need 297 

for a change of focus? IEEE Signal Process. Mag., 12–15. Available at: 298 

http://www.lifesciences.ieee.org/articles/174-myoelectric-control-of-artificial-limbs-is-there-a-299 

need-to-change-focus [Accessed June 27, 2013]. 300 

Jiang, N., Rehbaum, H., Vujaklija, I., Graimann, B., and Farina, D. (2014a). Intuitive, Online, 301 

Simultaneous, and Proportional Myoelectric Control Over Two Degrees-of-Freedom in Upper 302 

Limb Amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 501–10. 303 

doi:10.1109/TNSRE.2013.2278411. 304 

Jiang, N., Vujaklija, I., Rehbaum, H., Graimann, B., and Farina, D. (2014b). Is accurate mapping of 305 

EMG signals on kinematics needed for precise online myoelectric control? IEEE Trans. Neural 306 

Syst. Rehabil. Eng. 22, 549–58. doi:10.1109/TNSRE.2013.2287383. 307 

Jorgovanovic, N., Dosen, S., Djozic, D. J., Krajoski, G., and Farina, D. (2014). Virtual Grasping: 308 

Closed-Loop Force Control Using Electrotactile Feedback. Comput. Math. Methods Med. 2014, 309 

1–13. doi:10.1155/2014/120357. 310 

Kuiken, T. a, Dumanian, G. a, Lipschutz, R. D., Miller, L. a, and Stubblefield, K. a (2004). The use 311 

of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral 312 

shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–53. Available at: 313 

http://www.ncbi.nlm.nih.gov/pubmed/15658637. 314 



   Myoelectric upper limb prosthesis assessment 

 
9 

Li, G., Schultz, A. E., and Kuiken, T. A. (2010). Quantifying Pattern Recognition - Based 315 

Myoelectric Control of Multifunctional Transradial Prostheses. IEEE Trans. Neural Syst. 316 

Rehabil. Eng. 18, 185–192. doi:10.1109/TNSRE.2009.2039619. 317 

Light, C. M., Chappell, P. H., and Kyberd, P. J. (2002). Establishing a Standardized Clinical 318 

Assessment Tool of Pathologic and Prosthetic Hand Function: Normative Data, Reliability, and 319 

Validity. Arch. Phys. Med. Rehabil. 83, 776–783. doi:10.1053/apmr.2002.32737. 320 

Liu, L., Liu, P., Clancy, E. a., Scheme, E., and Englehart, K. B. (2013). Electromyogram whitening 321 

for improved classification accuracy in upper limb prosthesis control. IEEE Trans. Neural Syst. 322 

Rehabil. Eng. 21, 767–774. doi:10.1109/TNSRE.2013.2243470. 323 

Nissler, C., Mouriki, N., and Castellini, C. (2016). Optical Myography: Detecting Finger Movements 324 

by Looking at the Forearm. Front. Neurorobot. 10, 1–10. doi:10.3389/fnbot.2016.00003. 325 

Ortenzi, V., Tarantino, S., Castellini, C., and Cipriani, C. (2015). Ultrasound imaging for hand 326 

prosthesis control: A comparative study of features and classification methods. IEEE Int. Conf. 327 

Rehabil. Robot. 2015–Septe, 1–6. doi:10.1109/ICORR.2015.7281166. 328 

Ortiz-Catalan, M., Brånemark, R., and Håkansson, B. (2013). BioPatRec: A modular research 329 

platform for the control of artificial limbs based on pattern recognition algorithms. Source Code 330 

Biol. Med. 8, 11. doi:10.1186/1751-0473-8-11. 331 

Ortiz-Catalan, M., Hakansson, B., and Branemark, R. (2014a). An osseointegrated human-machine 332 

gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 333 

6, 257re6-257re6. doi:10.1126/scitranslmed.3008933. 334 

Ortiz-Catalan, M., Håkansson, B., and Brånemark, R. (2014b). Real-time and simultaneous control of 335 

artificial limbs based on pattern recognition algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 336 

22, 756–764. doi:10.1109/TNSRE.2014.2305097. 337 

Ortiz-Catalan, M., Rouhani, F., Branemark, R., and Hakansson, B. (2015). Offline accuracy: A 338 

potentially misleading metric in myoelectric pattern recognition for prosthetic control. Proc. 339 

Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2015–Novem, 1140–1143. 340 

doi:10.1109/EMBC.2015.7318567. 341 

Østlie, K., Lesjø, I. M., Franklin, R. J., Garfelt, B., Skjeldal, O. H., and Magnus, P. (2012). Prosthesis 342 

rejection in acquired major upper-limb amputees: a population-based survey. Disabil. Rehabil. 343 

Assist. Technol. 7, 294–303. doi:10.3109/17483107.2011.635405. 344 

Park, J., Bae, W., Kim, H., and Park, S. (2008). EMG — force correlation considering Fitts’ law. 345 

2008 IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., 644–649. 346 

doi:10.1109/MFI.2008.4648017. 347 

Roche, A. D., Vujaklija, I., Amsüss, S., Sturma, A., Göbel, P., Farina, D., et al. (2015). A Structured 348 

Rehabilitation Protocol for Improved Multifunctional Prosthetic Control: A Case Study. J. Vis. 349 

Exp., e52968. doi:10.3791/52968. 350 

Scheme, E., and Englehart, K. (2011). Electromyogram pattern recognition for control of powered 351 

upper-limb prostheses: State of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48, 352 



   Myoelectric upper limb prosthesis assessment 

 
10 

643. doi:10.1682/JRRD.2010.09.0177. 353 

Scheme, E. J., and Englehart, K. B. (2013). Validation of a selective ensemble-based classification 354 

scheme for myoelectric control using a three-dimensional fitts’ law test. IEEE Trans. Neural 355 

Syst. Rehabil. Eng. 21, 616–623. doi:10.1109/TNSRE.2012.2226189. 356 

Simon, A. M., Hargrove, L. J., Lock, B. a., and Kuiken, T. a. (2011). Target Achievement Control 357 

Test: Evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb 358 

prostheses. J. Rehabil. Res. Dev. 48, 619. doi:10.1682/JRRD.2010.08.0149. 359 

Stubblefield, K., Finucane, S. B., Miller, L. A., and Lock, B. A. (2011). Training Individuals to Use 360 

Pattern Recognition to Control an Upper Limb Prosthesis. Proc. 2011 MyoElectric Control. 361 

Prosthetics Symp., 1–4. 362 

Sturma, A., Roche, A. D., Göbel, P., Herceg, M., Ge, N., Fialka-Moser, V., et al. (2015). A surface 363 

EMG test tool to measure proportional prosthetic control. Biomed. Tech. 60, 207–213. 364 

doi:10.1515/bmt-2014-0022. 365 

Weir, R. F., Troyk, P. R., DeMichele, G., Kuiken, T., and Ku, T. (2003). Implantable myoelectric 366 

sensors (IMES) for upper-extremity prosthesis control- preliminary work. Annu. Int. Conf. IEEE 367 

Eng. Med. Biol. Soc. 25, 1562–1565. doi:10.1109/IEMBS.2003.1279658. 368 

 369 

Figure 1 – (A) Correlation between the clinical SHAP score and offline classification accuracy. The 370 

offline scores have been obtained in realistic conditions with the patients wearing their prostheses 371 

and training and testing performed on sets of data obtained in different arm positions. Despite the 372 

realistic conditions, the associations shown here are not strong. For example, a SHAP score of 373 

approximately 40 may correspond to classification accuracy lower than 70% or greater than 85% 374 

depending on the user. The SHAP requires precise manipulation over short periods of time which is 375 

not captured by this offline metrics. (B) The correlation between the clinical Box&Blocks test and 376 

the offline classification accuracy shows almost complete absence of association between the two. 377 

For instance, the two patients who achieved classification accuracies >95% were radically different 378 

for the number of blocks they could transfer. When computed in less realistic conditions (without 379 

prosthesis and testing on the same arm posture as training) the offline scores were greater than in the 380 

presented conditions but showed almost no correlation with clinical tests, since the majority of the 381 

patients were not able to conclude the clinical evaluation without substantial retraining. 382 

Figure 2 – Classification output for two patients with substantially different outcome of the 383 

Box&Blocks test but very similar classification accuracies over all motions. The focus here is on the 384 

three hand motions that are most relevant for the Box&Blocks task – hand open, key grip and fine 385 

pinch. The offline accuracy for these motions is lower for the subject with the higher clinical score. 386 

 387 
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