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Abstract

Background: Thrombin-induced platelet activation is a major contributor to the formation of
the arterial thrombi that cause two of the most lethal manifestations of cardiovascular disease
— acute myocardial infarction and occlusive stroke. Thrombin activates human platelets via
protease-activated receptors 1 (PAR1) and 4 (PAR4). Much is known about the function of the
higher affinity receptor, PAR1, and a PARL1 antagonist is in clinical use for the prevention of
myocardial infarction. However, PAR1 inhibition increases the rate of intracranial
haemorrhage, suggesting there remains much to learn regarding how to best manipulate
thrombin signalling in platelets for safe and effective antithrombotic therapy. As a result, there
has been much recent interest in examining PAR4 as an antiplatelet drug target. However, in
contrast to PARL, far less is known about the function of PAR4 during platelet activation and

thrombus formation.

Aim: To examine the function of PAR4 during thrombosis in order to determine whether

targeting PAR4 represents a valid antithrombotic approach.

Key Findings: First, the function of PAR4 on human platelets during thrombosis was
determined. To achieve this, a function-blocking PAR4 polyclonal antibody was developed
and used to probe for platelet activation events dependent on PAR4. This approach determined
that thrombin-induced production of procoagulant platelets is mediated predominantly by
PAR4, and is largely independent of PARL. This effect translated into impaired thrombin
production and fibrin formation in an ex vivo human thrombosis model, rationalising PAR4 as
a novel antithrombotic target. Second, the effects of targeting PAR4 were examined in vivo
using mouse genetic models. Previous studies have shown that mice genetically deficient in
PARA4 are protected against thrombosis but do not bleed spontaneously. However, here, PAR4-

deficient mice exhibited a subtle but significant spontaneous bleeding phenotype in the



perinatal period, suggesting PAR4 inhibition in humans may cause unwanted bleeding effects.
However, in contrast to human platelets, mouse platelets do not express PAR1 and so thrombin
signalling in mouse platelets is reliant entirely on PAR4. These in vivo studies therefore
highlighted the need for an animal model of platelet-PAR expression that would more
accurately predict the impact of PAR4 inhibition in humans. Therefore, third, the production
of a mouse that expresses human PARL1 on the platelet surface was attempted. This approach
failed to provide platelet PAR1 expression and suggests alternative animal models will be
required for preclinical evaluation of PAR4 antagonism. Finally, the first human monoclonal
inhibitory antibody targeting PAR4 was developed as a potential therapeutic strategy in
humans. This antibody specifically and effectively inhibited thrombin-induced cleavage and
activation of PAR4 and provided marked antithrombotic effects in human blood. Furthermore,
this antibody-based approach to inhibiting PAR4 was equally effective against a commonly
expressed and clinically significant sequence variant of PAR4 that is resistant to an existing

PAR4 antagonist.

Conclusion: The findings from this thesis suggest that targeting PAR4 is valid antithrombotic
approach. These studies have uncovered a distinct role for PAR4 in the setting of human
thrombosis, developed an antibody against PAR4 with therapeutic potential, and shown that
antibody-based inhibition of PAR4 provides an antithrombotic effect distinct from all current
antiplatelet drugs and that may have advanced clinical utility over other PAR4 antagonists.
Together, these studies provide strong rationale for the pursuit of PAR4 antagonists for the

prevention of arterial thrombosis.
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Chapter 1 - Introduction

1.1 Cardiovascular disease and antithrombotic therapy
1.1.1 There is a significant clinical need for improved antithrombotic therapy

Cardiovascular disease, manifesting predominantly as ischaemic heart disease and ischaemic
stroke, is by far the most common cause of death and disability in the world, accounting for
approximately 30% of all deaths!. Strikingly, despite increased awareness and improved
management, and in contrast to most other high-impact communicable and non-communicable
diseases, the rates of cardiovascular disease rose over the past decade’. The increasing burden
of conditions such as diabetes, obesity, and depression, as well as an overall ageing population,
are likely to ensure that cardiovascular disease rates continue to rise into the foreseeable future,
with each of these conditions having increased prevalence of cardiovascular-related morbidity

and mortality.

Acrterial thrombosis precipitates the most prevalent cardiovascular disease manifestations, most
notably acute myocardial infarction (AMI), ischaemic stroke, and peripheral artery disease
(PAD). Activated platelets are the main cellular component of arterial thrombi. Therefore,
current therapies for the prevention of arterial thrombosis are predominantly antiplatelet agents,
which prevent platelet activation. The current clinical recommendation for the prevention of
primary or secondary cardiovascular events in patients with acute coronary syndrome (ACS)
is antiplatelet therapy alone?. Yet current standard-of-care treatments have limited efficacy and
are tempered by the attendant bleeding risk, meaning that improved antiplatelet approaches are

sought.



1.1.2 Current antiplatelet agents as antithrombotics

The processes controlling platelet function in the setting of arterial thrombosis have been
extensively studied for the purpose of rationalising the development of improved antiplatelet
therapies. Platelet behaviour during thrombus formation is generally agreed to involve cell
adhesion, activation, and aggregation® (Figure 1). Understanding these processes has been

highly informative in predicting the success of antiplatelet approaches.

i) Adhesion: In response to vascular damage, such as atherosclerotic plaque rupture in the case
of ACS, platelets adhere to the damaged vessel wall through a complex between sub-
endothelial proteins and cognate receptors on the platelet surface. Rapid initial adhesion is
mediated by von Willebrand factor (VWEF) binding to the glycoprotein (GP) Ib-1X-V receptor
complex?, although this interaction does not support stable adhesion and a second adhesive
step between collagen and GPVI and/or the integrin a2p1, as well as fibrinogen and the integrin

aubPs, is required for firm platelet adhesion to the vessel wall®.

ii) Activation: following adhesion, the captured platelets are activated and undergo a series of
morphological and functional changes including shape change, spreading, release of granular
contents, and the local generation of thrombin at the platelet surface as an endpoint of
coagulation®. This platelet activation is primarily driven by the triumvirate of thrombin, ADP,

and thromboxane Az (TxA2).

iii) Aggregation: regardless of the adhesion and activation mechanism, the final common result
is the activation of the integrin aunP3, which engages fibrinogen (also VWF and fibronectin) to
mediate platelet aggregation and ultimately stable thrombus formation, via thrombin-induced

fibrin production®.
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Figure 1. Activation and adhesion receptors on the platelet.

In response to vascular damage, platelets rapidly adhere to the vessel wall via the interaction
of subendothelial von Willebrand factor (VWF, green spheres) with the platelet glycoprotein
(GP) Ib-IX-V complex, and collagen (grey strands) with GPVI and integrin a2p1. Adherent
platelets become activated, and this activation is enhanced by signalling pathways initiated by:
thromboxane receptors (TP) activated by thromboxane Az (TxA2) generated from arachidonic
acid (AA) by cyclooxygenase (COX); P2Y1 and P2Y 1, receptors activated by ADP; and PAR1
and PAR4 activated by thrombin. Platelet activation culminates in the activation of integrin
anpPB3 which binds fibrinogen (blue dumbbell), VWF and fibronectin (not shown) to mediate
platelet aggregation. Current antiplatelet agents (in red) include the P2Y1> inhibitors
clopidogrel, prasugrel and ticagrelor; the COX inhibitor, aspirin; aupPs inhibitors, abciximab,

eptifibatide and tirofiban; and the most recent addition, vorapaxar, which inhibits PAR1.

(Source: French et al., 2015, Appendix I)



The current guidelines for treatment of ACS and associated diseases are dual therapy with
aspirin (an inhibitor of TxA: synthesis) and a P2Y1> receptor antagonist, such as the
thienopyridines, clopidogrel or prasugrel, or the cyclopentyl-triazolo-pyrimidine, ticagrelor
(American guidelines tend to favour the use of clopidogrel, whereas European guidelines
favour either ticagrelor or prasugrel, with clopidogrel as an alternative)?. However, aspirin and
clopidogrel prevent just 15 and 17% of lethal cardiovascular events respectively and are only
marginally more effective in combination®®. In addition, an increasing number of patients are
being reported as resistant to these agents® 1°. Large scale clinical trials assessing the efficacy
of aspirin and clopidogrel (together and separately) in reducing thrombotic risk in
cardiovascular disease (CAPRIE’ and CHARISMA®) have ultimately determined greater
efficacy when used in combination, with an associated minor increase in risk of bleeding
complications. Antagonists of the major platelet integrin, o3, such as tirofiban, eptifibatide,
and abciximab, are by far the most potent platelet inhibitors as they inhibit platelet aggregation
regardless of the activating pathway. However, these drugs all cause significant bleeding
complications!! 12 due to their disruption of the haemostatic function of platelets also
dependent on this pathway. Therefore, existing antiplatelet therapies have limitations in one or
both of safety and efficacy, with no current agent (or combination of agents) affording
sufficiently potent, safe, and orally active prevention of arterial thrombosis. As a result,
improved antiplatelet approaches are required to meet the significant clinical need for the safe

and effective prevention of arterial thrombosis.
1.2 Targeting protease-activated receptors as an antiplatelet approach
1.2.1 Thrombin-induced platelet activation is important during thrombosis

Thrombin is a multifunctional allosteric serine protease which is by far the most critical non-

cellular component of haemostasis. Thrombin interacts with a series of substrates via it’s



activate site, located in the centre of the enzyme, and two exosites (exosite | and exosite 1)
located on either side of the active site. Generation of thrombin occurs via the coagulation
cascade — a series of serine protease activation steps which ultimately produce and further
amplify thrombin generation. In flowing blood, activated platelets are the main cellular
contributors to thrombin amplification, via providing a phospholipid membrane surface for
coagulation factor assembly. Once generated, thrombin is able to mediate platelet activation,

while also engaging in the proteolysis of fibrinogen to facilitate stable thrombus formation.

The rationale for targeting thrombin-induced platelet activation as an antithrombotic approach
has long held appeal. First, thrombin functions at a time and place that is predicted to provide
safe and effective antiplatelet activity. As outlined above, thrombin, in combination with ADP
and TxA2, mediates the platelet activation required for thrombus growth that follows initial cell
adhesion. Second, thrombin is the most potent endogenous activator of platelets. This suggests
that targeting thrombin-induced platelet activation may provide greater efficacy over existing
mechanisms that block the platelet activating functions of TxA; (aspirin) and ADP (clopidogrel
and co.). Third, existing drugs that block the production (e.g. rivaroxaban) or activity (e.g.
dabigatran) of thrombin are effective as antithrombotics. However these agents provide global
inhibition of thrombin’s actions and, consequently, incur a significant bleeding risk —
particularly at the high doses used for the prevention of platelet-rich arterial thrombi.
Specifically targeting thrombin-induced platelet activation whilst leaving the other functions
of thrombin intact may mitigate the bleeding risk and provide a more selective effect for arterial
thrombosis prevention. In combination, these factors provided the impetus to develop

inhibitors of platelet thrombin receptors.



1.2.2 Thrombin activates platelets via protease-activated receptors

Platelet responses to thrombin are predominately mediated by protease-activated receptors
(PARs)™ 4 PARs are G-coupled protein receptors (GPCRs) which are expressed on the
surface of numerous cell types. In the cardiovascular system this includes platelets'*, but also
leukocytes'®, vascular endothelial and smooth muscle cells®® 2°, cardiomyocytes?!, and cardiac
fibroblasts?>. Humans express four PARs, with PAR1, PAR3 and PAR4 being activated by
thrombin®>'’ and PAR2 by trypsin, tryptase, coagulation factors VVlla and Xa, and membrane-
bound serine proteases MTSP1 and TMPRSS2?*?%, The cleavage-based PAR activation
mechanism is unique. PARs are all activated the same way, whereby the protease agonist
cleaves the amino-terminus of the receptor to reveal a cryptic neo-amino terminal sequence
known as the “tethered ligand”?%. The newly exposed tethered ligand then activates the receptor
by binding intramolecularly to the second extracellular loop?®. This self-activation prompts the
conformational change of the receptor that allows interactions with G proteins of the Gq, G12/13
and Gi; families and consequent intracellular signalling events®® ?’. The interactions with G113
drive Rho-dependent cytoskeletal responses involved in platelet shape change?, whereas Gg-
mediated signalling facilitates the processes important for platelet granule release, activation
of cell surface integrins, and platelet aggregation?. Gi; proteins are involved in inhibition of
adenylyl cyclase, thereby removing a brake on platelet activation, while the G; protein family

is involved in modifying activities of enzymes such as PI3 kinase?’.

Human platelets express two thrombin-sensitive PARs, PARL and PAR4, and activation of
either receptor is capable of inducing platelet activation'*'®. Thrombin-induced platelet
activation initiates platelet shape change, promotes platelet aggregation, and provides the
procoagulant lipid surface that facilitates secondary coagulation reactions*® 3. Although often
described as a dual platelet thrombin receptor system, some distinctions between PAR1 and

PAR4 have been shown. PARI is a “high affinity” thrombin receptor, as it contains a high



affinity thrombin binding domain (TBD) (K°YEPF>®) which binds exosite | of thrombin and
aligns the active site with the specific cleavage site in the receptor®! 32, PAR1 is activated by
trace amounts of thrombin (sub-nM range) and is responsible for the initial and rapid rise in
intracellular calcium (Ca2*) induced in platelets by the coagulation protease®. However, the
PAR1-induced signal is transient and requires additional support from other platelet agonists
such as ADP34. In contrast to PARL, the interaction between PAR4 and thrombin occurs
primarily at the active site due to the absence of a high affinity TBD in the amino-terminal of
PARA4. Despite the lack of interaction between PAR4 and exosite | of thrombin, the receptor
does bind at the active site with high affinity due to two optimally-positioned proline residues
immediately amino-terminal to the thrombin cleavage site®. This interaction facilitates slowed
dissociation of thrombin from the receptor and results in a slower but more sustained
intracellular signalling profile®. As a result of these distinct receptor activation and signalling
kinetics, PAR4, in contrast to PARL, is capable of inducing irreversible platelet aggregation in
the absence of additional agonist activation®*. It has therefore been suggested that PAR1 and
PAR4 complement each other during thrombin-induced platelet aggregation. However,
historically, the major clinical focus has been on inhibiting PAR1 for antithrombotic activity

due to the significantly greater sensitivity of this receptor to thrombin.
1.2.3 Mice lacking platelet-thrombin receptor function are protected against thrombosis

As is the case in many other systems, mouse genetic models and other small animal in vivo
thrombosis experiments provided pre-clinical proof-of-concept studies. However the
interpretation of these studies has always been hampered by the differing platelet PAR profile
in these traditional model systems. Of the most commonly used animal models, only non-
human primates appear to have an identical platelet PAR profile to humans (PAR1 and
PAR4)%. In contrast, platelets from mice®’, rats®8, and rabbits®® express PAR3 and PAR4, while

platelets from guinea-pigs express PAR1, PAR3 and PAR4%. Despite these limitations,



significant insights have been gained from mouse genetic experiments. Although mouse PAR4
functions in an analogous manner to human PAR4, mouse PARS is incapable of mediating
transmembrane signalling by itself, instead functioning as a cofactor that facilitates cleavage
and activation of PAR4 at low thrombin concentrations*!: 42, As this model predicts, platelets
from PAR4-/- mice are unresponsive to thrombin®” %3 and provide a clean genetic model to

examine the overall contribution of thrombin-induced platelet activation in (patho)physiology.

The first phenotype reported in PAR4-/- mice was protection against thrombosis, with mild
associated bleeding®’. Initially, it was shown that after a ferric chloride-induced injury of mouse
mesenteric arterioles, the time to vessel occlusion was prolonged ~ 3 times in PAR4-/-
compared to wild type mice®’. Subsequent studies have shown a similar protection against
thromboplastin-induced pulmonary embolism*!, laser-induced endothelial cell ablation in
mesenteric arterioles* as well as electrolytic-*> and trauma-induced*® injury of the carotid
artery in PAR4-/- mice. Bone marrow transplantation studies confirmed that the antithrombotic
effects observed in PAR4-/- mice are due to deficiency of PAR4, and therefore thrombin
signalling, specifically in platelets*. Intriguingly, it appears that the protection against
thrombosis associated with PAR4 deficiency leaves other haemostatic responses intact®*.
PAR4 deficiency in mice is also associated with a mild bleeding phenotype. This haemostatic
effect has been most commonly assessed via tail bleeding time, where PAR4-/- mice are
consistently shown to have prolonged tail bleeding times compared with wild type mice®" 4,
Despite this commonly-reported effect upon active limb trauma, there has been no evidence
for spontaneous bleeding reported in PAR4-/- mice. PAR4 deficiency also has protective
benefits in a mouse transient middle cerebral artery occlusion model of stroke, in which PAR4-
/- mice exhibited lower cerebral infarct volume, improved neurologic and motor function, and
reduced blood brain barrier disruption and cerebral oedema, compared with wild type

animals*’. Despite the limitations of using mice as a model of human platelet PAR function,



these early proof-of-concept studies provided insight into the relative importance of thrombin-
induced platelet activation in the setting of in vivo thrombosis, and in large part drove the

development of PAR antagonists as a novel antiplatelet approach.

1.2.4 Considerations of the first clinically approved PAR1 antagonist

In May 2014 the US FDA approved the first clinical PAR1 antagonist, vorapaxar, for use in
the prevention of thrombotic cardiovascular events in patients with a history of myocardial
infarction or peripheral artery disease. After showing promising results in phase 2 trials,
vorapaxar was assessed in two large scale phase 3 trials in patients with ACS (TRACER*®) and
stable atherosclerosis (TRA 2°P — TIMI 50*°). The overall findings of these trials showed that
vorapaxar, when combined with standard-of-care therapy, reduced the risk of cardiovascular
events at the cost of increased bleeding*® “°. However, several key issues and a narrow

therapeutic window have limited the clinical utility of vorapaxar.

The major concerns associated with vorapaxar use were increased rates of intracranial bleeding
and poor compatibility with standard-of-care antiplatelet agents. During the TRACER trial,
intracranial haemorrhage increased more than 5-fold in the vorapaxar group. This effect was
especially noted in patients with a prior history of stroke or transient ischaemic attack (TIA)
and increased incrementally over time*®. As a result, patients with a history of stroke or TIA
were removed from the TRAP 2°P — TIMI 50 trial, however intracranial haemorrhage was still
increased two-fold in the vorapaxar group*. The trials showed that these bleeding rates
increased in patients receiving vorapaxar in combination with a thienopyridine compared to
those receiving a thienopyridine alone®®. Further, in patients receiving high dose aspirin (> 300
mg daily at both baseline and time of discharge), a consistent, albeit non-statistically
significant, trend toward higher bleeding and ischaemic outcomes was recorded®. It remains
unknown whether the bleeding complications observed in these trials were due to PARL

inhibition per se, the concurrent use of three antiplatelet drugs, or to a particular drug



combination. Regardless, overall, in patients with no history of stroke or TIA, and with a body
weight above 60 kg, the data from TRA 2°P — TIMI 50 translated into 6 fewer cardiovascular
deaths at the cost of two intracranial haemorrhages for every 1000 patients treated with

vorapaxar°?.

Despite these setbacks, PARL inhibition did demonstrate consistent efficacy in certain
pathological conditions where thrombin-mediated platelet activation is known to play a
significant role. For example, PAR1 inhibition demonstrated a consistent reduction in the rate
of type 1 (spontaneous) MI in vorapaxar-treated patients across the phase 2 and phase 3
studies®. This is perhaps unsurprising given the well-known role of thrombin generation in
acute MI, particularly in patients with a background of unstable angina and/or coronary artery
disease®*°. Vorapaxar was also shown to reduce the complications associated with PAD,
notably limb ischemia and the requirement for peripheral vascularisation®®. One explanation
for this effect is recent work which has shown that thrombin-dependent platelet activation (via
PARs) is more prevalent at lower blood shear rates*®, presumably due to limited assembly of
blood borne coagulation factors on the surface of activated platelets at higher blood flow/shear
rates. Understanding the relative contribution of thrombin-mediated platelet activation to
thrombus formation in particular pathologies will likely be of significant use in predicting the
clinical success of PAR inhibitors. Further, the limitations of PAR1 antagonism (i.e. increased
bleeding, poor compatibility with other agents) have led researchers to revisit PAR4

antagonism as a novel antithrombotic approach.
1.3 Is selectively targeting PAR4 a viable antiplatelet strategy?
1.3.1 PARA4 structure and biology

Despite being traditionally thought of as a “back-up” receptor to PAR1, PAR4 has several

structural and biologically distinct characteristics to the rest of the PAR family. PAR4 was first
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cloned in 1998 ¢ and is the most recently cloned member of the PAR family. It is a 300
amino acid seven transmembrane-spanning domain GPCR (Figure 2) that retains most of the
core features of the other PARs despite its genetic departure from the family** 6. The human
PAR4 gene is remarkably smaller than those of the other PARSs, and it resides at a distinct
location on chromosome 19pl12, with the genes for PARs 1-3 located in tandem on
chromosome 5q13%% 7. This genetic divergence of PAR4 from the other PARSs is thought to
have arisen from a remote gene duplication and subsequent translocation event which gave rise
to ancestral PAR4 and PAR1/2/3 genes®’. More recently, two gene duplication events have
occurred to separate PAR1 and PAR2 from PAR3; and then PAR1 from PAR2°’. These genetic
differences may underlie some of the key differences in receptor structure and function within

the PAR family.

The N-terminus of PAR4 contains a hydrophobic signal peptide sequence, with a signal
peptidase cleavage site present at S'’/G*8, The extracellular amino-terminus also contains a
serine protease cleavage site at R*’/G*® that is essential for proteolytic receptor activation.
Mutation of the serine protease cleavage site (R*’ = A) renders the receptor completely
unresponsive to proteolytic activation. Site-specific receptor cleavage unmasks a cryptic
tethered ligand sequence (GYPGQV)® which then binds intra-molecularly to a defined region
in the second extracellular loop of the receptor (Figure 2), resulting in conformational change
of the receptor and subsequent coupling to intracellular effectors, as per other GPCR family
members. While this proteolytic activation mechanism is common amongst PARs, there are
several notable differences in the structure of PAR4 versus the other receptors of the family.
First, both the extracellular amino terminus and intracellular carboxy terminus have little
sequence similarity to the corresponding regions of other PARs®®. Second, the tethered ligand

binding site of PAR4 contains only three core amino acids (CHD; Figure 2) of the consensus
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Figure 2. PAR4 structure. Depicted is a cartoon of the proposed structure of the 300 amino
acid GPCR, PARA4. Site-specific proteolytic cleavage of the receptor’s amino-terminus
(thrombin cleavage site, R*/G*; black arrow) reveals a neo-amino-terminus (tethered ligand
sequence; G®¥YPGQV:; orange) which binds intra-molecularly to the second extracellular loop
of the receptor (tethered ligand binding region; green). PAR4 contains two regions for
enhanced thrombin interaction — the anionic retention region (pink) which interacts with
thrombin’s exosite I; and the PAPR sequence (grey) which binds at the active site of thrombin

with high affinity.

(Source: French and Hamilton, 2016, Appendix I1)
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sequence conserved in PARs 1-3 (ITTCHDV)®. PARA4 also lacks the high affinity thrombin

binding domain that is present in the other two thrombin receptors, PAR1 and PAR34 17 %8.59,

PAR4 is broadly expressed, with gene expression by Northern blot most readily detected in the
lungs, pancreas, thyroid, testis and small intestine!* 6, Moderate expression has also been
detected in placenta, skeletal muscle, lymph nodes, adrenal gland, prostate, uterus and colon*
18, In the nervous system, PAR4 protein and mRNA have been detected in rat dorsal root
ganglion (DRG) non-neuronal cells (conversely, PARs 1-3 were detected in DRG neurons)®.
Despite this vast expression profile of PAR4, most research has focussed on the physiological
functions of this receptor in cardiovascular and inflammatory settings. In humans, key vascular
cell types which express PAR4 include platelets* 8, leukocytes®®, endothelial cells®?, and
smooth muscle cells®®%°. In addition to the well-known pro-thrombotic and pro-inflammatory
actions of PAR4-activating proteases, perhaps one reason for this is that several important
animal models, including mice, rats, guinea pigs, rabbits, dogs and monkeys have similar PAR4
expression to humans throughout the vasculature (platelets are one example of such conserved
PAR4 expression). Despite this relatively conserved expression of PAR4 in vascular cells,
there is some evidence to suggest that PAR4 may function differently between species.
Specifically, it is known that PAR4 contributes to thrombin responses of mouse endothelial
cells®?, and, that PAR4 activation causes endothelium-dependent relaxation of rat aorta 2.
However, in human artery preparations as well as lung fibroblasts, these responses are only
elicited when treated with additional inflammatory mediators®* . This distinct regulation of
PAR4 expression and function between species remains an important consideration for

interpretation of animal studies.

1.3.2 PAR4 activation and signalling: distinctions from PAR1

The setbacks of clinical PAR1 antagonists have sparked research interest into whether selective

PAR4 antagonism may be an alternative approach to inhibiting thrombin-induced platelet

13



activation. Indeed, a significant line of evidence suggests that PAR4 signals differently and
independently of PAR1 activation, and therefore potentially regulates distinct platelet

activation mechanisms.

The serine proteases capable of cleaving PAR4 are generally key regulators of coagulation (e.g.
thrombin and coagulation factor Xa) and/or inflammation (e.qg. trypsin and cathepsin G released
from neutrophils, and bacterial proteases such as gingipains)** & 37 87 Additional serine
proteases that are specific for arginine or lysine cleavage include coagulation factors Vlla, 1Xa,
Xa, Xla, urokinase, and plasmin; however, none of these have significant activity on PAR4,
with the exception of factor Xa which showed small effects at non-physiological
concentrations®®. Initial studies indicated that PAR4 is activated by thrombin and trypsin at
similar concentrations, with an ECso of ~ 5 nM each'® — significantly higher than the ECso for
thrombin at either PAR1 or PAR3 (~ 0.2 nM). The comparatively lower affinity of PAR4 for
thrombin is a reflection of differences in the macromolecular association between the receptor
and enzyme. As previously described, PARL is a high affinity thrombin receptor due to the
presence of a thrombin binding domain (TBD) in its N-terminal exodomain®. The TBD
sequence, K®YEPF®, interacts with exosite 1 of thrombin and upon binding causes significant
allosteric effects essential for rapid association of thrombin®. PAR4 does not contain this
TBD?. In fact, evidence indicates that PAR4 appears to have only limited interaction with
exosite | of thrombin, since y-thrombin (which lacks a functional exosite I) activates PAR4 as
effectively as a-thrombin®® and mutations in the exosite | of thrombin have significantly less
effect on cleavage of PAR4 than of PAR1%. Instead, PAR4 primarily interacts with the active
site of thrombin via two optimally positioned proline residues (P** and P*®) in the receptor®,
just upstream of the thrombin cleavage site at R*'/G*. A possible role for L*? in the thrombin-
PAR4 interaction has also been identified, and believed to be in facilitating high-affinity

binding of the PAR4 amino-terminal to thrombin’s active site®®. PAR4 also contains an anionic
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cluster, D*'...D*...E®%...D®%, just C-terminal of the thrombin cleavage site that is thought to
interact with cationic residues that border exosite I of thrombin® and slow the dissociation rate
of thrombin from PAR4%®. This is reflected in the more sustained intracellular signals elicited
by PAR4 activation compared with the more transient signals in response to PAR1 activation®®.
These differences in receptor structure and activation kinetics between PAR1 and PAR4

indicate the two receptors have the potential to initiate distinct intracellular signalling events.

Cleavage and activation of PARs prompts a conformational change in the receptor that allows
G protein coupling and initiates multiple intracellular signalling events. Ggq, Gi, and G12/13 have
all been demonstrated to mediate signals in response to activation of PARs, with PAR4
specifically being shown to couple to both Gq and Gi2i3 family proteins®® 7, but not Gis'*
(Figure 3). PAR4 coupling to Gi2n3 initiates binding of RhoGEFs (guanine-nucleotide
exchange factors that activate Rho) to the a-subunit. Consequent Rho activation induces a
series of Rho-dependent cytoskeletal responses and PLC activation (Figure 3). For example, in
platelets, activation of Rho-kinase dependent cytoskeletal responses via such Giz/13-mediated
PARA4 signalling triggers platelet shape change'® "> 3 — one of the key initial events in platelet
aggregation during thrombosis. Evidence also exists for PAR4 activation eliciting a prolonged
signal via G213, which is thought to involve the regulation of MLC phosphorylation and
RhoA™ ™. PAR4 coupling to Gq causes intracellular Ca?* mobilisation via activation of
phospholipase CB and consequent phosphoinositide hydrolysis (Figure 3). PAR4-induced Ca?*
mobilisation promotes the activity of several Ca?*-regulated kinases and phosphatases (e.g.
MAP kinases, protein kinase Cs, phospholipase A2, and calpain)®®, with wide-ranging effects.
For example, PAR4 activation mediates several key platelet responses that are induced by Gq-
dependent Ca?" mobilisation, including the secretion of platelet storage granules and integrin

activation — both of which are critical for effective platelet aggregation®3 7®.
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Figure 3. PAR4 signalling. Following cleavage and activation of the receptor, PAR4 signals
via coupling to Gq and/or Giz13 family members. The most well characterised signalling
downstream of Gq is via phospholipase Cp-mediated phosphoinositide hydrolysis and resultant
intracellular Ca?* mobilisation. This promotes the activity of several Ca?*regulated kinases and
phosphatases (e.g. MAP kinases, protein kinase C, phospholipase A2, and calpain) which
underlie PAR4-induced cellular responses such as platelet activation and vascular remodelling.
The most well characterised signalling downstream of PAR4-G12/13 coupling is via RhoGEF
and consequent Rho activation, which underlie PAR4-induced cellular responses such as

cytoskeletal responses in platelets and vascular smooth muscle and endothelial cells.

(Source: French and Hamilton, 2016, Appendix I1)
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As indicated above, one key difference between PAR4 and PARL1 is the kinetics of receptor
activation and signalling. Regarding Gq-mediated signalling, it is known that PAR1 activation
stimulates a rapid burst of intracellular Ca?* mobilisation, whereas PAR4 activation elicits a
slower rise which is much more sustained over time®. This is likely a result of the slower
cleavage of PAR4 allowing prolonged G protein signalling. Given that mice deficient in Gq
lack thrombin-dependent IP; and Ca®* responses?® 77 and that PAR4 activation stimulates
ongoing IP3; and DAG, differences in Ca?" mobilisation are likely a result of prolonged Gq
signalling through PAR43* 78 1t is thought that this may be important for ongoing cell
signalling under conditions of prolonged agonist exposure. In platelets, PAR1-mediated Ca?*
signalling undergoes rapid desensitisation but can be rescued by subsequent PAR4 activation”®.
Receptor desensitisation is of particular importance for PARs due to the irreversible, cleavage-
based, endogenous activation of these receptors, with continued responsiveness to agonists
requiring new receptors to be trafficked to the cell surface. After receptor cleavage and
activation, PARs are rapidly internalised on a phosphorylation signal in regions of the C-
terminus of the receptor®. Yet PAR4 has a shorter C-terminus than PAR1 and does not have
many of the phosphorylation sites shown to be necessary for desensitisation of these
receptors®’. As a result, agonist-triggered phosphorylation and consequent receptor
internalisation is significantly slower for PAR4 than for PAR18!, providing a further
mechanism for the comparatively prolonged intracellular signalling downstream of PAR4

activation.

1.3.3 PAR4 antagonists

The unique structure and activation mechanism of PARs has long posed a problem for the
development of inhibitors. In particular, activation by proteolytic cleavage is a highly efficient
and irreversible system, while the tethered ligand-based activation mechanism requires

antagonism of the binding of an agonist intrinsic to the receptor and presumably with
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considerable steric advantage. These issues have hindered the development of PAR4
antagonists, although recent efforts have begun to overcome these challenges, with several
distinct antagonist classes emerging (Table 1). This diverse set of PAR4 antagonists developed
over recent years have been invaluable for investigations into the physiological roles of PAR4,
and have also served to promote the idea of targeting this receptor as a novel therapeutic
approach. However, there remains a lack of PAR4 antagonists that are able to demonstrate the

necessary levels of specificity and efficacy required for clinical evaluation.

The earlier classes of PAR4 antagonists include peptidomimetics, pepducins and function-
blocking antibodies. These inhibitors have been predominately research-focused. The first
approach taken to identify potential inhibitors of PAR4, was the peptidomimetic approach
which resulted in the generation of numerous peptide analogues based on the tethered ligand
sequences of human, mouse, and rat PAR4. The resulting compound, tc-YPGKF-NH,
appeared to bind but not activate PAR4 and was shown to abolish PAR4-activating peptide
(PAR4-AP)-induced aggregation of rat platelets and significantly reduce thrombin-induced
platelet aggregation, at very high concentrations (400 pM)®. tc-YPGKF-NH: has also been
reported to inhibit thrombin-induced platelet aggregation in human platelets®, although there
is limited other evidence of this agent inhibiting human PAR483, Pepducins are a distinct class
of PAR4 inhibitors that mimic the region of the receptor that binds G proteins and essentially
work by absorbing the interactions between the receptor and effector G protein®*. The anti-
PAR4 pepducins, P4pal-10 (pal-SGRRYGHALR-NH>) and P4pal-i1%®, have been shown to
inhibit ~85% of thrombin-induced aggregation of both human and mouse platelets. However,
the specificity of these remain debatable, as they reportedly display a level of cross-reactivity
with PAR1-AP-induced platelet activation®? as well as collagen and TxA; %. Several function-
blocking anti-PAR4 antibodies have also been developed and proven to be useful PAR4

antagonists. These include rabbit polyclonal antibodies against the thrombin cleavage site of
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Table 1. Properties of experimental PAR4 antagonists.

Class
Peptidomi
-metics

Small
molecules

Pepducins

Function-
blocking
antibodies

TLS = tethered ligand binding site

Compound

tc-YPGKF-NH:

YD-3

19, 25,31

ML354

P4pal-10

P4pal-il

Rabbit polyclonal
Rabbit polyclonal
(Canl12)

Mouse monoclonal
(14Hs6, 5F10)

Target

TLS binding
site

TLS binding
site

TLS binding
site
TLS binding
site

Third-
intracellular
loop

First-
intracellular
loop

Thrombin
cleavage site

Anionic
region

Thrombin
cleavage site

IC50*

100 uM

28 uM

>36 uM

140 nm*

1uM

5 pmol/L*

1 mg/mL*

10 ng/mL™?

50 pg/mL*
partial
inhibition

Species
Rat,
human

Rabbit, rat,
human
Human
Human

Mouse,
human

Guinea

pigs,
human

Human,
rat

Mouse,
human

Human

T 1Cso values correspond to inhibition of thrombin-induced PAR4 activation

# 1Cso values correspond to inhibition of PAR4 agonist peptide-induced activation

*Values are concentration reported to inhibit thrombin-induced PAR4 activation

(Source: Adapted from French and Hamilton, 2017, Appendix I11)

Cell Type

Platelets

Platelets,
smooth
muscle cells
Platelets

Platelets

Platelets

Platelets

Platelets,
fibroblasts

Platelets

Platelets,
HEK-293s

Reference
Hollenberg, 2001 %
Hollenberg, 2004 %
Ma, 2005 &

Wu, 2002 86

Wu, 2003 &

Peng, 2004 8
Huang, 2006 &

Young, 2013 %
Wen, 2014 %

Covic, 2002a 8
Covic, 2002b

Leger, 2006 %

Kahn, 1999 0

Mumaw, 2014 %

Mumaw, 2015 %
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PAR4* and anionic region of the receptor (C>*ANDSDTLTLPD), just downstream of the
thrombin cleavage site®3. However, despite being valuable research tools, these antibodies have

also struggled to demonstrate efficacy®® and specificity®.

To date, the most widely used and desired inhibitor class are the small molecule PAR4
antagonists which have been developed via extensive screening of various heterocyclic
structures. The first compound identified to selectively inhibit PAR4 was the indazole
derivative YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]® %. YD-3 has been shown to
inhibit thrombin-induced platelet aggregation in rabbits with an ICso of 28 uM; however in
humans, it was shown to only partially inhibit platelet aggregation in response to thrombin
concentrations lower than 0.5 nM®: 87, Several studies have aimed to increase the efficacy of
YD-3, and have produced several derivatives® % including the N?-(substituted benzyl)-3-(4-
methylphenyl)-2H-indazoles, compounds 19, 25, and 318, and ML354, a substituted indole
derivative® %1, However, these compounds have been shown to inhibit PAR1-AP induced
activation with an ICsp of 10 pM, and demonstrate limited efficacy in inhibiting thrombin-
induced PAR4 activation. Despite the challenges associated with developing suitable
compounds for both research and therapeutic use, there remains a strong interest in continuing

development of PAR4 antagonists.

1.3.3 Targeting PAR4 as an antithrombotic approach

During the course of this thesis, a number of major advances were made regarding the clinical
significance of platelet PAR4 and the utility of PAR4 antagonists during arterial thrombosis.
Firstly, the pharmaceutical sector developed a clinically viable small molecule PAR4
antagonist. In a recent study by Wong and colleagues®, a library of over 1 million compounds
was screened to identify a lead candidate that was then subject to iterative rounds of medicinal
chemistry and testing to result in BMS-986120 — a potent and selective PAR4 antagonist with

impressive oral bioavailability and antithrombotic efficacy (Table 2). In contrast to previously
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generated antagonists, BMS-986120 demonstrated specificity in human platelets, and
effectively suppressed platelet aggregation in response to thrombin with concomitant PAR1
inhibition. Further, binding studies revealed that BMS-986120 is a high affinity and reversible
binder of PAR4, which translated to normalised aggregation 24 h after a single dose of 0.2
mg/kg. Most importantly though, BMS-986120 appeared to provide an impressive therapeutic
window, with a single oral dose of BMS-986120 providing marked antithrombotic effects and
a low bleeding profile in a series of in vivo models in the cynomolgus monkey. Importantly,
when compared directly with clopidogrel, at doses of these two agents that caused equivalent
antithrombotic effects, markedly more bleeding was observed with clopidogrel compared with
BMS-986120. This work indicates that PAR4 antagonism exhibits a markedly improved

therapeutic window over at least one of the standard antiplatelet drugs.

The second major advance to occur during this thesis regarding the clinical utility of targeting
PAR4 for arterial thrombosis prevention was the identification of a sequence variant in PAR4
that affects the receptor’s pharmacology®1. Specifically, platelets from healthy North
American black subjects were shown to be hyper-responsive to PAR4 activation when
compared with platelets from non-blacks. This increased sensitivity persisted in the face of
PAR1 antagonism (vorapaxar) or aspirin treatment and led to the identification of a genetic
variant of PAR4, Alal?Thr, which is associated with greater PAR4 reactivity and occurs at a
much higher frequency in blacks versus non-blacks. This Thr?® PAR4 variant, expressed in 20
— 80% of people depending on the population, markedly impacts PAR4 pharmacology by
rendering the receptor hyper-sensitive to agonists and hypo-sensitive to antagonists'® 11, The
mechanism behind this change in PAR4 pharmacology remains unknown, as does whether all
PAR4 antagonists will be similarly affected and whether this sequence variant is associated

with poorer cardiovascular outcomes. Studies directly addressing these points will be critical
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Table 2. Pharmacological characteristics of a leading PAR4 antagonist, BMS-986120.

Cell Parameter measured BMS-986120
Binding studies | PAR4-HEK293T Ko 0.098 nM
membranes Kon 0.12 M
Kot 0.0082 nM
Selectivity/specificity | HEK293-PAR4 + Ca®" mobilisation 0.56 nM
studies | PAR4-AP (PAR4-AP)
HEK293-PAR1 + Ca?* mobilisation >5000 nM
PAR1-AP (PAR1-AP)
CHO-PAR2 + PAR2-  Ca?* mobilisation >42000 nM
AP (PAR2-AP)
Inhibition of PAR4 | PAR4-HEK293T G-protein activation Gall -3.4nM
signaling Gaq—3.9nM
Gal4 - 31 nM
B-arrestin 2 7.2nM
recruitment
ERK 1/2 activation 47 nM
Platelet aggregation | Platelet-rich plasma y-thrombin 7.3nM
(human)
Whole blood (human) PAR4-AP 9.5 nM
Whole blood PAR4-AP 2.1 nM
(monkey; ex vivo) PARL-AP No effect (1 mg/kg)
Collagen No effect (1 mg/kg)
ADP No effect (1 mg/kg)
Coagulation studies | Whole blood APTT No effect (0.2-1 mg/kg)
(monkey; ex vivo) PT No effect (0.2-1 mg/kg)
TT No effect (0.2-1 mg/kg)

In vivo thrombosis

In vivo haemostasis

Whole blood
(monkey)

Whole blood
(monkey)

Occlusion time

Thrombus weight (%
reduction from
vehicle)

Kidney bleeding time
(fold above vehicle
control)

Mesenteric bleeding
time

0.2mg/kg - ~75 min
0.5mg/kg - ~75 min
1mg/kg — did not occlude

0.2mg/kg - -36%
0.5mg/kg - -50%
1mg/kg — -82%

0.2mg/kg — 1.4X
0.5mg/kg — 1.9X
1mg/kg — 2.2X

0.2mg/kg — 1.4X
0.5mg/kg — 1.7X
1mg/kg — 1.8X

PAR-AP = protease-activated receptor-activating peptide; HEK = human embryonic kidney; CHO = Chinese
hamster ovary; ERK = Extracellular signal-related kinase; ADP = adenosine diphosphate; APTT = activated
partial thromboplastin time; prothrombin time; TT = thrombin time.

(Source: Adapted from French and Hamilton, 2017, Appendix I11)
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in determining the approach to PAR4 antagonism that will afford consistent antithrombotic

benefit across the population.

1.4 Aims of this thesis

As discussed above, thrombin-induced platelet activation is a key driver in the formation of the
arterial thrombi that cause two of the most lethal manifestations of cardiovascular disease —
acute myocardial infarction and occlusive stroke. However, there remains much to learn
regarding how to best manipulate thrombin signalling in platelets for safe and effective
antithrombotic therapy. Despite known differences in receptor structure and signalling, the
specific function of PAR4 during platelet activation and thrombus formation in humans has
gone largely unstudied, in large part due to several crucial limitations hindering research into
PARs. The purpose of this project was to examine whether targeting PAR4 is a valid
antithrombotic approach by examining the relative roles of platelet PAR1 vs PAR4 in the
setting of thrombosis, and determining whether PAR4 antagonism is an effective and safe

strategy for the prevention of arterial thrombosis. Specifically, this thesis aimed to:

1: Determine the relative roles of PAR1 and PAR4 on human platelets in the setting of

thrombosis (Chapter 2).

2: Assess the safety and efficacy of PAR4 inhibition in vivo using animal models (Chapters 3

and 4).

3: Examine the utility of PAR4 antagonism for the prevention of human thrombosis (Chapter

).
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Chapter 2 — Inhibition of protease-activated receptor 4 impairs platelet

procoagulant activity during thrombus formation in human blood

2.1 Introduction

The overall goal of this thesis was to examine the validity and utility of blocking PAR4 as a
novel antithrombotic approach. As a first step, the specific functions of PAR4 on human
platelets during thrombosis were determined. At the time of these studies, suitably specific and
effective inhibitors of PAR4 were not freely available. Therefore this thesis began by
developing a function-blocking anti-PAR4 antibody and then using it to probe for platelet

activation events reliant on PARA4.

Defining the relative functions of the two platelet PARs is of patent interest for any
rationalisation of PAR4 as an antiplatelet drug target. Whether PAR4 performs distinct
functions to PAR1 on human platelets or simply acts in a redundant manner as a ‘back-up’
receptor has long been debated, although recent studies suggest the former alternative is more
likely. As outlined in Chapter 1, one major distinction between the two platelet PARs relates
to the kinetics of intracellular signalling, where PAR4 activation induces a slower and more
sustained intracellular Ca®* signal compared with PAR1 activation. This temporal difference
in Ca?* signalling was recently shown to prolong the thrombin-PAR4 interaction and facilitate
persistent receptor activation. However, the cellular consequences of such sustained platelet
activation downstream of PAR4 have not yet been completely characterised — most likely due
to the limited availability of appropriate PAR4 antagonists required for such studies. The
studies in this Chapter developed such an antagonist and then went on to directly address this

question.

The findings from this Chapter demonstrate that thrombin-dependent platelet procoagulant

activity — and consequent thrombin generation and fibrin formation — is mediated
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predominantly by PAR4 and is largely independent of PARL in the setting of thrombus

formation.

These findings suggest that PAR1 and PAR4 have distinct functions in platelets, and that the
function of PAR4 may be important for thrombus formation and/or stabilisation. These findings
suggest blocking PAR4 function may have utility in the prevention of arterial thrombosis and

help rationalise the development of PAR4 antagonists for this purpose.

This chapter has been published as:

French SL, Arthur JF, Lee H, Nesbitt WS, Andrews RK, Gardiner EE, Hamilton JR. Inhibition
of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus

formation in human blood. Journal of Thrombosis and Haemostasis, 2016, 14(8): 1642-54.
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Essentials

e The platelet thrombin receptor, PAR4, is an emerging
anti-thrombotic drug target.

e We examined the anti-platelet & anti-thrombotic effects
of PAR4 inhibition in human blood.

e PAR4 inhibition impaired platelet procoagulant activity
in isolated cells and during thrombosis.

e Our study shows PAR4 is required for platelet proco-
agulant function & thrombosis in human blood.

Summary. Background: Thrombin-induced platelet activa-
tion is important for arterial thrombosis. Thrombin acti-
vates human platelets predominantly via protease-
activated receptor (PAR)l and PAR4. PARI has higher
affinity for thrombin, and the first PARI1 antagonist,
vorapaxar, was recently approved for use as an antiplate-
let agent. However, vorapaxar is contraindicated in a sig-
nificant number of patients, owing to adverse bleeding
events. Consequently, there is renewed interest in the role
of platelet PAR4 in the setting of thrombus formation.
Objectives: To determine the specific antiplatelet effects of
inhibiting PAR4 function during thrombus formation in
human whole blood. Methods and Results: We developed
a rabbit polyclonal antibody against the thrombin cleav-
age site of PAR4, and showed it to be a highly specific
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inhibitor of PAR4-mediated platelet function. This func-
tion-blocking anti-PAR4 antibody was used to probe for
PARA4-dependent platelet functions in human isolated pla-
telets in the absence and presence of concomitant PAR1
inhibition. The anti-PAR4 antibody alone was sufficient
to abolish the sustained elevation of cytosolic calcium
level and consequent phosphatidylserine exposure induced
by thrombin, but did not significantly inhibit integrin
oipP3 activation, o-granule secretion, or aggregation. In
accord with these in vitro experiments on isolated plate-
lets, selective inhibition of PAR4, but not of PARI,
impaired thrombin activity (fluorescence resonance energy
transfer-based thrombin sensor) and fibrin formation
(anti-fibrin antibody) in an ex vivo whole blood flow
thrombosis assay. Conclusions: These findings demon-
strate that PAR4 is required for platelet procoagulant
function during thrombus formation in human blood,
and suggest PAR4 inhibition as a potential target for the
prevention of arterial thrombosis.

Keywords: antiplatelet drugs; platelets; protease-activated
receptors; thrombin; thrombosis.

Introduction

Activated platelets are the key cellular components of
arterial thrombosis — the most common cause of death
and disability in the world [1,2]. Platelets are activated by
a combination of endogenous agonists that trigger plate-
let aggregation and the promotion of coagulation, which
together facilitate pathologic thrombus formation. Anti-
platelet drugs therefore constitute the main pharma-
cotherapy for the prevention of arterial thrombosis.
However, despite an array of such agents, limitations in
safety and/or efficacy necessitate the rationalization of
new antiplatelet drug targets.

© 2016 International Society on Thrombosis and Haemostasis

27


info:doi/10.1111/jth.13292
info:doi/10.1111/jth.13292

Thrombin is the most potent known activator of
human platelets, and is also the key effector protease of
the coagulation cascade. Thrombin activates platelets
predominantly via protease-activated receptors (PARs)
[3-9]. Mice lacking all platelet PAR function (PAR47/")
are protected against thrombosis without showing sponta-
neous bleeding [10-15], indicating the potential of target-
ing these receptors for antithrombotic therapy. There are
two PARs on human platelets, PAR1 and PAR4. Of
these, PAR1 is the higher-affinity thrombin receptor and
has been the focus of antiplatelet drug development with
two PARI antagonists, atopaxar (E5555) [16] and vora-
paxar [17,18], having been evaluated in clinical trials.
Vorapaxar was recently granted Food and Drug Adminis-
tration approval for use in the USA for the prevention of
thrombotic events in patients with a history of myocardial
infarction or peripheral artery disease [19]. However,
vorapaxar in combination with single or dual antiplatelet
therapy was also associated with significantly increased
rates of intracranial bleeding, particularly in patients with
a history of stroke or other predisposing factors [17,18].
These observations suggest that there remains much to
learn regarding how to best manipulate thrombin signal-
ing in platelets for safe and effective antithrombotic ther-
apy. With this in mind, there has been renewed interest in
the function of PAR4 on human platelets in the setting of
thrombus formation.

Whether PAR4 performs distinct functions from PARI
on human platelets or simply acts in a redundant manner
as a ‘back-up’ receptor has long been debated, although
recent studies suggest that the former alternative is more
likely [20-25]. One major distinction between the two pla-
telet PARs relates to the kinetics of intracellular signaling
[20,21,26-28]. Both PAR1 and PAR4 signal via Gq to
mobilize intracellular calcium and drive platelet functions,
including integrin activation, granule secretion, and phos-
phatidylserine (PS) exposure. However, PAR4 activation
induces a slower and more sustained intracellular calcium
signal than PAR1 activation [26,29]. This temporal differ-
ence in calcium signaling may be attributable, in part, to
an anionic sequence C-terminal to the PAR4 cleavage site
that was recently shown to prolong the thrombin—-PAR4
interaction and facilitate persistent receptor activation
[29]. The cellular consequences of such sustained platelet
activation downstream of PAR4 have not yet been com-
pletely characterized, but may involve sustained platelet-
secretion kinetics [30] and platelet procoagulant function,
given the reliance of these phenomena on sustained, ele-
vated, intracellular calcium levels [31,32]. This hypothesis
is supported by studies showing that selective activation
of PAR4, but not of PARI, results in the release of coag-
ulation factor V from a-granules [22], microparticle shed-
ding [22], and partially sustained Akt phosphorylation
[33].

Despite this previous work, there have been no studies
examining the contribution of PAR4 to procoagulant
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activity in the setting of human thrombus formation. This
may be because of the limited availability of appropriate
PAR4 antagonists required for such studies. The most
commonly used PAR4 antagonists are the small molecule
YD-3 [34], the peptidomimetic tc-YPGKF-NH, [35], and
the pepducins P4pal-10 and P4pal-il [36-38]. However,
these agents are either not widely available (YD-3) or
have been reported to lack specificity (pepducins) and/or
efficacy (tc-YPGKF-NH,) in studies using human plate-
lets [39-41].

In order to determine the impact of selectively inhibit-
ing PAR4, we developed a function-blocking anti-PAR4
antibody, and used it to probe for platelet activation
events that are reliant on PAR4. Selective inhibition of
PAR4 with the anti-PAR4 antibody, but not selective
inhibition of PAR1 with atopaxar, impaired platelet pro-
coagulant activity in human isolated platelets and in a
whole blood thrombosis assay. Defining the relative func-
tions of the two platelet PARs is of patent interest for
any rationalization of PAR4 as an antiplatelet drug tar-
get. Our findings demonstrate that thrombin-dependent
platelet procoagulant activity — and consequent thrombin
generation and fibrin formation — is mediated predomi-
nantly by PAR4 and is largely independent of PARI in
the setting of thrombus formation. These findings suggest
that PAR1 and PAR4 have divergent functions on plate-
lets that may be important for thrombus formation and/
or stabilization, and that PAR4 antagonists may have
additional and/or distinct utility in the prevention of arte-
rial thrombosis.

Materials and methods

Materials

A rabbit polyclonal anti-PAR4 antibody was raised
against a 2l-residue peptide with the sequence
GGDDSTPSILPAPR‘GYPGQVC [42], matching
residues 34-54 of human PAR4, which spans the throm-
bin cleavage site (indicated by “in the peptide sequence),
as previously described [43]. All antibody production pro-
tocols were approved by the Alfred Medical Research
and Education Precinct Animal Ethics Committee. Anti-
bodies in pooled sera from immunized rabbits were affin-
ity-purified with an AffiGel 10-15 column (BioRad,
Hercules, CA, USA) conjugated with the antigen peptide.
Preimmune antibody was isolated from sera with pro-
tein G—Sepharose (BioRad). The following reagents were
stored according to the manufacturers’ recommendations:
E5555 (atopaxar, gift from P. Little, University of
Queensland Brisbane, QLD, Australia), fluorescein isoth-
iocyanate (FITC)-conjugated anti-rabbit IgG (Millipore,
Lake Placid, NY, USA), FITC-conjugated PAC-1 anti-
body (BD Biosciences, San Jose, CA, USA), AK4 anti-P-
selectin antibody (Santa Cruz Biotech, Santa Cruz, CA,
USA), FITC-conjugated anti-mouse antibody (Millipore),
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Alexa Fluor 488-conjugated annexin-V (Sigma, St Louis,
MO, USA), anti-CD9-phycoerythrin (PE) (BD Bio-
sciences), anti-CD41a antibody (BD Biosciences), Alexa
Fluor 488-conjugated anti-fibrin antibody (clone 59DS§
[44,45]; generous gift from V. Chen, University of New
South Wales, Sydney, NSW, Australia), Oregon Green
BAPTA-1 AM, Fura Red AM, DM-BAPTA AM (all
from ThermoFisher Scientific, Waltham, MA, USA),
human o-thrombin (Sigma; activity expressed in NIH
Units [U] obtained by direct comparison with NIH
thrombin reference standard), PAR4-activating peptide
(PAR4-AP; AYPGKF), PARI-activating peptide (PARI1-
AP; TFLLR) (both from Auspep, Melbourne, Victoria,
Australia), ADP (Sigma), cross-linked collagen-related
peptide (CRP) (from R. Farndale, University of Cam-
bridge, Cambridge, UK), calcium ionophore A23187
(Sigma), bovine type 1 collagen (Sigma), and hirudin
(lepirudin; Celgene, Melbourne, Victoria, Australia). A
fluorescence resonance energy transfer (FRET)-based
thrombin activity sensor (Thr-SP, a generous gift from S.
Diamond, University of Pennsylvania, Philadelphia, PA,
USA), was linked to the anti-CD41a antibody via CLICK
chemistry as previously described [46], to examine throm-
bin activity in human whole blood under flow.

Human blood samples

All human studies were approved by the Monash Univer-
sity Human Research Ethics Committee. Blood was col-
lected after informed consent had been obtained from
healthy adults (aged 21-50 years, of both sexes) who had
not taken antiplatelet medications in the past 10 days.
Blood was drawn from the antecubital vein with a 19-gauge
butterfly needle into syringes containing either one-seventh
volume acid citrate dextrose (ACD) (7 : 1 v/v, final con-
centration) for platelet isolation, or one-tenth volume triso-
dium citrate (0.32% w/v, final concentration) for whole
blood flow experiments, as previously described [47].

Mice

All mouse studies were approved by the Alfred Medical
Research and Education Precinct Animal Ethics Committee.
Mice in these studies were either PAR4-deficient (PAR4 /")
[10] or wild-type (PAR4 /™). Mouse whole blood was col-
lected into ACD (7 : 1 v/v, final concentration), and plate-
lets were isolated as previously described [47].

Detection of PAR4 via flow cytometry

Human or mouse washed platelets (5 x 10’ mL™") were
incubated with the anti-PAR4 antibody (0.1 mg mL™")
for 30 min at 37 °C, and then fixed with paraformalde-
hyde (1% v/v, final concentration). The suspension was
then centrifuged at 1000 x g for 2 min to obtain the
platelet pellet, which was then resuspended in modified

Tyrode’s buffer (12 mm NaHCO;, 10 mm HEPES, pH 7.4,
137 mm NaCl, 2.7 mm KCI, 5.5 mm D-glucose, 1 mm
CaCl,) containing a 1 : 50 dilution of an FITC-conjugated
anti-rabbit IgG. After 30 min at room temperature,
the samples were centrifuged again, and the platelet pellet
was resuspended in modified Tyrode’s buffer and analyzed
by use of a flow cytometer (FACSCalibur, BD Bio-
sciences).

Platelet aggregation

Human isolated platelets (3 x 10® mL™") were pretreated
for 10 min at 37 °C with dimethylsulfoxide (DSMO)
(0.1% v/v), the PAR1 antagonist E5555 (0.1 um; mini-
mum concentration required for inhibition of PARI-AP
[48]), the anti-PAR4 antibody (0.1 mg mL™"), or a com-
bination of E5555 and the anti-PAR4 antibody. Platelets
were treated with one of thrombin (0.1 or 1 U mL™"),
PAR4-AP (100 pum), PARI-AP (10 pm), ADP (10 pm), or
CRP (10 pg mL™"). Platelet aggregation was measured
with a platelet aggregometer (Helena Laboratory, Beau-
mont, TX, USA).

Microplate-based platelet aggregometry

Human and mouse washed platelets were adjusted to a
concentration of 2 x 10® platelets mL ™" in Tyrode’s buf-
fer supplemented with 1.8 mm CaCl,, 10% bovine serum
albumin, and 0.02 U mL~' apyrase. Platelets (100 pL)
were pipetted into each well of a clear, flat-bottomed 96-
well tissue culture plate (BD Falcon (TM); BD Bios-
ciences). Buffer alone was set to the maximum aggrega-
tion level, and unstimulated platelets were used set to the
baseline light transmission (no aggregation). Agonists
were added, and the plate was analyzed in a FLUOstar
OPTIMA (BMG Labtech, Ortenberg, Germany) plate
reader with a 595-nm excitation filter. After each reading
cycle, the plate was subjected to a 5-min shake period
(double orbital shake; shaking width of 4 mm), and this
was repeated for a total of 10 cycles. Platelets were main-
tained at 37 °C throughout the experiment with the in-

built incubator in the plate reader. Ability to aggregate

OD(NoAgonist)—OD(Agonist) .
was calculated as OD(Nodgonisr) 0D blank) < 100 at the time

point when aggregation was at a maximum.

Platelet calcium signaling dynamics

Calcium flux was measured in human isolated platelets
with a dual-dye (ratiometric) microimaging assay, as pre-
viously described [49]. Briefly, isolated human platelets
(3 x 10®* mL™") were loaded with Oregon Green BAPTA-
1 AM (0.625 pum) and Fura Red AM (0.625 pm) at 37 °C
for 30 min, as in [49]. Dye-loaded platelets were subse-
quently treated with PAR antagonists (as above), and
stimulated with thrombin (1 U mL™"). Cells were moni-
tored in real time, and emission at 500-570 nm and
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600-710 nm was recorded every 10 s for 10 min (Nikon
Alr). The increase in cytosolic calcium concentration
(nm) was determined according to [49].

Platelet activation events

The platelet activation events measured were integrin
activation (PAC-1 antibody binding), P-selectin expres-
sion (AK4 antibody binding), and PS exposure (annexin-
V binding). Human isolated platelets (5 x 10" mL™")
were pretreated with PAR antagonists as described
above, and incubated with either FITC-conjugated PAC-
1 antibody (1 :100), AK4 anti-P-selectin antibody
(1:100) followed by an FITC-conjugated anti-mouse
antibody (1 : 10 000), or Alexa Fluor 488-conjugated
annexin-V (1 : 100), prior to stimulation with either
PARI1-AP, PAR4-AP, thrombin, CRP, or calcium iono-
phore A23187, as described above. After stimulation,
platelets were resuspended in modified Tyrode’s buffer
for flow cytometry analysis (FACSCalibur; BD Bio-
sciences).

Whole blood thrombosis assay

Human whole blood collected in citrate (3.2%) was
preincubated for 15 min at 37 °C with both PE-conju-
ated anti-CD9 antibody (4 pg mL™") and Thr-SP (5 um),
and one of hirudin (800 U mL™"), DMSO (1% v/v),
PAR-1 antagonist E5555 (1 pum), anti-PAR4 antibody
(0.2 mg mL™"), or the combination of both PAR inhibi-
tors. In parallel experiments, an Alexa Fluor 488-conju-
gated anti-fibrin antibody (5 pg mL™") was substituted
for the thrombin sensor in order to analyze fibrin depo-
sition. Whole blood was recalcified with 5-7.5 mm CaCl,
(final concentration) to initiate coagulation, and drawn
over glass microslides (1 x 0.1-mm internal diameter;
Vitrotubes, Vitrocom, NJ, USA) coated with bovine
type 1 collagen (250 pg mL) by use of a Harvard pump
(Instech Laboratories, Plymouth Meeting, PA, USA) at
a fixed flow rate of 0.06 mL min~', resulting in a wall
shear rate of 600 s~'. Dual-color confocal fluorescence
images were recorded at excitation wavelengths of
488 nm and 561 nm, and collected through a x 40
water immersion objective. Confocal Z-stacks were con-
tinuously recorded (16-bit images of 512 x 512 pixels;
317 x 317 pym, Z-step 0.5 um; Nikon Alr, with NIS
software) for 2 min, and modified, calcium-free Tyrode’s
buffer was then passed over the thrombi, and Z-stacks
encompassing the entire height of the thrombus field
were recorded over a period of 10 min. Offline analysis
of thrombi parameters was performed with NIS soft-
ware. Image series were initially thresholded empirically,
and the same threshold was then applied to all subse-
quent experiments, as identical experimental and confo-
cal settings were used throughout. Platelet thrombi were
defined by the use of anti-CD9-PE, and thrombin activ-
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ity and fibrin volume were quantified according to the
average fluorescence of the thrombus field. Data were
normalized against the hirudin baseline, and expressed
as a percentage of the control.

Statistical analyses

Statistical analyses were performed with GRAPHPAD PRISM
(version 6.0, La Jolla, CA, USA). Significance was
defined at P <0.05 as determined with either an
unpaired, two-tailed Student’s z-test or one-way ANOVA
with Fisher’s LSD test for multiple comparisons, as
advised and indicated in the relevant figure legends.

Results

Selective inhibition of PAR4-mediated platelet activation by
an anti-PAR4 antibody

A rabbit polyclonal anti-PAR4 antibody was raised
against a peptide with sequence matching a region span-
ning the thrombin cleavage site of human PAR4
(Fig. 1A). Affinity-purified anti-PAR4 antibody recog-
nized both human and mouse PAR4 on platelets as
assessed by flow cytometry. The anti-PAR4 antibody pro-
duced a consistent rightward shift in fluorescence intensity
as compared with the same concentration of preimmune
rabbit IgG in platelets isolated from either humans or
wild-type mice (Fig. 1B). This signal was entirely absent
in platelets isolated from PAR4~/~ mice (Fig. 1B), indi-
cating that the antibody selectively binds to PAR4 on the
native platelet surface.

The inhibitory function of the anti-PAR4 antibody was
first assessed via aggregation of human washed platelets.
Such studies were confounded by the requirement to use
thrombin as the agonist (the anti-PAR4 antibody is pre-
dicted to inhibit thrombin-induced but not PARI-AP-
induced or PAR4-AP-induced receptor activation). As
thrombin activates human platelets via both PAR1 and
PAR4, we first established conditions of thrombin-induced
platelet aggregation that were largely PAR4-dependent
(Fig. S1). To this end, 0.1 UmL™" was the minimum
thrombin concentration required to reliably induce maxi-
mum aggregation of human platelets (Fig. S1C).
Responses to 0.1 U mL™' thrombin were partially inhib-
ited in a concentration-dependent manner by the PARI1
antagonist E5555, but remained largely intact in the pres-
ence of 0.1 pm E5555 (Fig. S1D). This residual response to
0.1 U mL~' thrombin in the presence of 0.1 pm E5555 was
inhibited in a concentration-dependent manner by the anti-
PAR4 antibody, and was almost abolished with an anti-
body concentration of 0.1 mg mL ™' (Fig. S1E).

The specificity of this inhibitory effect of the anti-PAR4
antibody was then assessed under these conditions (Fig. 2).
Here, aggregation of human platelets stimulated with
thrombin (0.1 U mL™") was unaffected by pretreatment
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Fig. 1. The anti-protease-activated receptor (PAR)4 antibody selectively binds to PAR4 on the platelet surface. (A) Schematic of PAR4 show-
ing the region corresponding to the antigen peptide sequence (yellow), which spans the thrombin cleavage site (gray arrow). Note the homology
between the mouse and human PAR4 sequences in this region. (B) Representative (N = 3-6) flow cytometry traces showing binding of the
anti-PAR4 antibody (blue line, 0.1 mg mL™") versus preimmune rabbit IgG (gray line, 0.1 mg mL™") to platelets isolated from a human or a
wild-type (PAR4 /") or PAR4-deficient (PAR4~/7) mouse. Note the complete loss of binding in platelets from the PAR4™~ mouse.

with either a PAR1 antagonist (E5555; 0.1 pum) or the anti- in the cytosolic calcium concentration in human platelets
PARA4 antibody (0.1 mg mL™") alone, but was abolished in that was followed by a sustained plateau (Fig. 3A). Inhi-
the presence of both inhibitors combined (Fig. 2A). This bition of PARI alone (E5555; 0.1 um) significantly atten-
inhibitory effect was overcome by increased thrombin con- uated the initial transient increase in the cytosolic calcium
centrations (Figs. 2B and SI1F), indicating that the concentration (Fig. 3A,B) but had no effect on the sus-
anti-PAR4 antibody functions as a competitive inhibitor of ~ tained increase in the cytosolic calcium concentration
thrombin-induced platelet aggregation. The anti-PAR4 (Fig. 3A,C). In contrast, inhibition of PAR4 alone (anti-
antibody had no effect on platelet aggregation induced by PAR4 antibody; 0.1 mg mL™") significantly decreased the
PAR4-AP (AYPGKF, 100 pm; Fig. 2C), demonstrating initial transient increase (Fig. 3A,B) and abolished the
specificity of the anti-PAR4 antibody against thrombin sustained plateau (Fig. 3A,C). Pretreatment of platelets
cleavage of the receptor over other PAR4 activation mech- with both PAR inhibitors essentially eliminated all throm-
anisms. Furthermore, the anti-PAR4 antibody had no bin-induced calcium signaling within the 10-min observa-
effect on aggregation induced by any of PAR1-AP, ADP, tion period (Fig. 3A—D). These studies are suggestive of a
or CRP (Fig. 2D-F). Importantly, PARI1-AP-induced role for PAR4 in mediating platelet activation events that
aggregation was abolished by the PARI antagonist are reliant on sustained calcium signaling. Therefore, we
(E5555; 0.1 um), confirming effective PAR1 antagonism next examined the effect of PAR4 inhibition on specific
under the conditions used here (Fig. 2D). platelet activation readouts that are known to be depen-
dent on either acute (integrin oyp,P3 activation; a-granule
release) or sustained (PS externalization) elevations in

Selective inhibition of PAR4 abolishes sustained thrombin- . .
intracellular calcium.

induced calcium signals in human platelets

To confirm the inhibition of thrombin-induced platelet
function by the anti-PAR4 antibody, we examined
changes in cytosolic calcium flux. In accord with the well-
characterized thrombin-induced calcium signaling profile
in platelets and other cells [50-53], we observed that We examined the effect of PAR inhibition on three sepa-
thrombin (1 U mL ") induced an initial transient increase rate markers of platelet activation: o5 activation

Selective inhibition of PAR4 is sufficient to impair thrombin-
induced PS exposure, but not o,[33 activation or P-selectin
expression, on human platelets
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Fig. 2. The anti-protease-activated receptor (PAR)4 antibody specifically inhibits thrombin-induced PAR4 activation of human platelets.
Shown are representative (N > 3) aggregation traces of human isolated platelets in the presence of a vehicle control (black; dimethylsulfoxide
[DMSO], 0.1% v/v), a PARI inhibitor (green; E5555, 0.1 um), the anti-PAR4 antibody (blue; 0.1 mg mL "), or both PAR inhibitors (orange).
Platelets were stimulated with (A) 0.1 U mL~" thrombin, (B) 1 U mL~' thrombin, (C) 100 um PAR4-activating peptide (PAR4-AP), (D)

10 pm PARI-activating peptide (PAR1-AP), (E) 10 pm ADP, or (F) 10 pg mL™" collagen-related peptide (CRP). Note that the anti-PAR4 anti-
body inhibits thrombin-induced (0.1 pm) platelet aggregation in the presence of concomitant PARI antagonism, but that no inhibition is
observed at a higher thrombin concentration (I U mL™") or with other platelet activation mechanisms. Arrows indicate the time point of ago-

nist addition. Ab, antibody.

(PAC-1 antibody binding), a-granule release (AK4 anti-
body binding to P-selectin), and PS externalization (an-
nexin-V binding). Inhibition of either PAR1 or PAR4
alone did not significantly affect oyp,P3 activation
(Fig. 4A) or P-selectin expression (Fig. 4B) in response to
thrombin (0.1 U mL™"), but concomitant inhibition of
both receptors produced a non-significant decrease in
both oy,P3 activation and P-selectin expression. In con-
trast, PS exposure in response to thrombin (1 U mL™")
was significantly reduced in platelets pretreated with the
anti-PAR4 antibody alone (P > 0.05; Fig. 4C). Pretreat-
ment with the PARI inhibitor ES5555 (0.1 um) also
decreased the number of PS-expressing platelets, although
combined inhibition of PARI and PAR4 caused no fur-
ther reduction over PAR4 inhibition alone (Fig. 4C). Fur-
ther evidence of a role for PAR4 in mediating platelet PS
exposure was provided by the observation that stimula-
tion of human platelets with PAR4-AP (300 puMm; mini-
mum concentration required to elicit maximal platelet
activation; Fig. S1) significantly increased the number of
annexin-V-positive platelets (P < 0.05) but that stimula-
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tion with PARI-AP (30 um; 10-fold the concentration
required to elicit maximal platelet activation; Fig. S1) did
not (Fig. 4D).

As observed for aggregation (Fig. 2), the anti-PAR4
antibody had no effect on any of oy, activation, o-
granule release or PS externalization induced by higher
concentrations of thrombin (1 U mL™"), PAR4-AP,
CRP, or, in the case of PS externalization, calcium iono-
phore (Fig. 4D-F). In addition, only platelets treated
with a PARI inhibitor (E5555, 0.1 um) were unresponsive
to platelet activation with PAR1-AP (Fig. 4E-QG), further
confirming the specificity of PAR1 and PAR4 inhibition
in these studies. Together, these findings suggest that
selective inhibition of PAR4 is sufficient to impair throm-
bin-induced PS externalization in human platelets.

Selective inhibition of PAR4 impairs platelet procoagulant
activity during thrombus formation

A human whole blood thrombosis assay was performed
under conditions of coagulation and with a FRET-based
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Fig. 3. Selective inhibition of protease-activated receptor (PAR)4 abolishes the sustained thrombin-induced calcium signals in human platelets.
(A) Representative trace of cytosolic calcium flux in human platelets pretreated with vehicle (black; dimethylsulfoxide [DMSO], 0.1% v/v), a
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Fig. 4. Selective inhibition of protease-activated receptor (PAR)4 is sufficient to impair thrombin-induced phosphatidylserine (PS) exposure,
but not oy,P3 activation or P-selectin expression, on human platelets. Thrombin-induced platelet activation events in human platelets were
examined by measuring (A, E) oypP3 activation (PAC-1), (B, F) a-granule release (P-selectin via AK4) or (C, D, G) PS exposure (annexin-V)
via flow cytometry. Human washed platelets were pretreated with a vehicle control (dimethylsulfoxide [DMSO], 0.1% v/v), a PAR1 inhibitor
(E5555, 0.1 pm), a PAR4 inhibitor (anti-PAR4 antibody, 0.1 mg mL™"), or the combination of PAR inhibitors, before (A—C) thrombin stimu-
lation (0.1 U mL ™' for 10 min for o5 activation and o-granule release; | U mL ™" for 30 min for PS exposure). Note that only PS exposure
is inhibited by the anti-PAR4 antibody alone. Note also (D) that PS exposure is increased in response to PAR4-activating peptide (PAR4-AP)
(300 pum) but not PAR1-activating peptide (PARI-AP) (30 um). (E, F) oyppP5 activation and a-granule release were also examined in response
to high thrombin (1 U mL™"), PARI-AP (10 um), PAR4-AP (300 pum), and collagen-related peptide (CRP) (10 pg mL™"). (G) PS exposure in
response to thrombin plus CRP (1 U mL™" and 10 ug mL™!, respectively), PARI-AP (30 pum), PAR4-AP (300 pm) or calcium ionophore

(10 um) was also examined. Data are mean + standard error of the mean of either mean cell fluorescence (MCF, geometric mean) or percent-
age of positive population, as indicated. *P < 0.05 versus control (one-way ANovA with post hoc Fisher’s LSD test); N = 6-8. Ab, antibody.

sensor of thrombin activity (ThSP-Ab) [46]. We observed
significant thrombin generation on platelet thrombi that
was abolished in the presence of the direct thrombin
inhibitor hirudin, despite platelet deposition that continued
unabated (Fig. 5A). Selective inhibition of PAR4, but not
of PARI, significantly reduced the thrombin activity
detected on platelet thrombi (Fig. 5B,C). Curiously, we
observed that the PARI1 antagonist E5555 caused an
increase in thrombin activity in these experiments
(Fig. 5C). The cause of this effect remains unknown, but
may relate to the recently reported effects of PAR1 antago-
nists in promoting platelet activation [48,54]. In similar
experiments, selective inhibition of PAR4, but not of
PARI, also reduced the amount of fibrin generation as

compared with the control (Fig. 5B,D). These findings
indicate that selective inhibition of PAR4, but not of
PARI, is sufficient to decrease thrombin activity and
consequent fibrin formation in the setting of human throm-
bus formation.

Discussion

The current study provides the first evidence that PAR4
is required for platelet procoagulant function during
thrombus formation in human blood. Here, we used a
strategy similar to that previously employed by others
[42,55] to develop a function-blocking anti-PAR4 anti-
body that was an effective and highly specific inhibitor of

Fig. 5. Selective inhibition of protease-activated receptor (PAR)4 impairs platelet procoagulant activity during thrombus formation in whole

blood. (A) Representative images and quantification of thrombin activity (green; ThSP-Ab) and platelet deposition (red; CD9-phycoerythrin)
in a human whole blood thrombosis assay analyzed with confocal microscopy. Note that the direct thrombin inhibitor hirudin (800 U mL ")
abolished thrombin activity despite continued platelet deposition. (B-D) Representative images (B) and quantification of (C) thrombin activity
(N = 7) and (D) fibrin deposition (N = 4) at the 10-min time point of a human whole blood thrombosis assay performed in the presence of a
vehicle control (dimethylsulfoxide, 0.1% v/v), a PAR1 inhibitor (E5555, 1 um), a PAR4 inhibitor (anti-PAR4 antibody, 0.2 mg mL™"), the
combination of PAR inhibitors, or hirudin (800 U mL™"). Data are mean + standard error of the mean of four to seven individual donors,
and are expressed as average fluorescence intensity of thrombi (RFU pm ) as a percentage of the vehicle control for each donor (C) or total
fibrin as a percentage of the vehicle control for each donor (D). *P < 0.05 and £P = 0.05 versus vehicle control (one-way ANovA with post hoc
Fisher’s LSD test). Scale bar: 10 pm. Ab, antibody; DIC, differential interference contrast microscopy.
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selective PAR4 inhibition attenuated the sustained cal-
cium signal and consequent PS exposure induced by
thrombin in human isolated platelets, but not other
commonly assessed platelet activation events. These effects
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in vitro translated to a marked impact on platelet procoag-
ulant activity, thrombin generation and subsequent fibrin
formation in a human whole blood thrombosis assay,
suggesting an important role for PAR4 during platelet-
dependent thrombosis.

Whether PAR1 or PAR4 predominantly drives throm-
bin-induced platelet procoagulant activity has been the
source of some controversy [22,24,56,57]. Here, we used
selective antagonists in a series of in vitro and ex vivo
assays to consistently identify PAR4 as the primary medi-
ator of platelet-driven PS exposure. There are several
explanations for the discrepancies in the conclusions
drawn from our current work and earlier studies implicat-
ing PARI in this process. First, the initial studies in
which selective PAR4 activation failed to induce platelet
PS exposure were performed with a weak activator of
PAR4 (GYPGKEF [56]). We observed here that selective
activation of PAR4 with a significantly more potent
PAR4 agonist (AYPGFK [58]) was indeed capable of
inducing PS exposure. Second, previous studies using
inhibitors to implicate PARI1 in platelet procoagulant
function have relied on pepducins to selectively inhibit
PAR1 versus PAR4 [57]. We and others [39] have
observed a lack of specificity of these reagents that was
overcome in the current studies with the use of atopaxar
and our anti-PAR4 antibody to selectively inhibit PAR1
and PARA4, respectively. Third, technical differences that
have been shown to significantly impact on the annexin-V
binding assay in isolated platelets [59] may underlie some
of the discrepancies. Regardless of these differences, it is
important to note that previous studies addressing this
issue have been limited to in vitro experiments on isolated
platelets and measuring surrogate markers of platelet pro-
coagulant activity. On this point, we too observed that
selective PARI inhibition impairs thrombin-induced PS
exposure in human washed platelets. However, when we
extended these in vitro observations to examine the physi-
ologic consequences of platelet procoagulant activity, the
impact of selective PAR4 inhibition was strongly retained,
whereas PARI inhibition was clearly without effect.

Indeed, the current study is the first to examine the
contribution of PAR4 to thrombin generation in a human
whole blood thrombosis assay under physiologic flow
conditions. Our findings show that PAR4 inhibition was
sufficient to significantly impair thrombin generation on
platelet thrombi and subsequent fibrin formation, inde-
pendently of PARI inhibition. The extent of impairment
in thrombin activity and fibrin production provided by
PAR4 antagonism was notably similar, with an approxi-
mately 50% reduction in each case. Until very recently,
thrombin generation in whole blood has been difficult to
examine, with most techniques using closed system
approaches in plasma, thus making platelet—thrombin
interactions difficult to elucidate [60,61]. The effect of
PAR-mediated platelet activation in human plasma has
been examined previously, and it was shown that PAR4-
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induced activation resulted in more rapid thrombin gener-
ation than observed following PARI-induced activation
[22]. Conversely, thrombin generation has been shown to
be delayed by PAR4 inhibition, although total amount of
thrombin generated was unaffected [24]. Here, we directly
measured thrombin generation on platelet thrombi in
whole blood under flow conditions known to be optimal
for enhanced coagulation [46,62]. Our findings obtained
with this approach indicate that PAR4 mediates platelet-
dependent thrombin generation and consequent fibrin for-
mation, suggesting that PAR4 inhibition significantly
impairs platelet procoagulant activity during thrombosis.

Together, we have used four measures of platelet pro-
coagulant activity to show that inhibition of PAR4 alone
is sufficient to impair this important function. It is well
known that PAR4 activation generates a more prolonged
intracellular calcium signal than PARI1 activation [21,26],
and our current study supports previous work [27,63]
showing that PAR4 inhibition supresses this sustained
calcium signal. Given that the most notable platelet acti-
vation event dependent on a sustained rise in intracellular
calcium levels is PS exposure [31,32], our findings build
on recently published work suggesting that PAR4 is pre-
dominantly responsible for additional procoagulant
effects of activated platelets [22,27], and extend this to the
setting of human thrombus formation.

Our findings suggest that PAR4 inhibitors might pro-
vide a useful strategy for the prevention of arterial throm-
bosis that is distinct from existing approaches. Whether
targeting platelet procoagulant activity for antithrombotic
benefit is a viable option remains unknown, but it is
worth noting that patients with Scott syndrome — a con-
genital disorder in which defective platelet PS exposure
drastically diminishes the thrombin generation capacity —
have a clinically significant bleeding phenotype [64]. There
is also emerging evidence that targeting PAR4 might be a
useful antithrombotic approach [65-67]. Indeed, recent
reports have demonstrated increased expression and func-
tion of PAR4 in black Americans that might explain the
increased resistance to current antiplatelet drugs and
overall poorer cardiovascular outcomes in this population
[67,68]. As patients treated with PARI antagonists have
intact PAR4-mediated platelet responses [69,70], such
clinical scenarios provide further impetus for the develop-
ment of PAR4 antagonists as a distinct antithrombotic
therapy.

Conclusion

The results from the present study demonstrate that
PAR4 performs at least one important platelet activation
function that is distinct from that of PARI, providing a
further rationale for PAR4 antagonism as a novel target
for the prevention of pathologic thrombosis. Given the
ongoing clinical demand for improved and varied antipla-
telet agents for the safe and effective prevention of
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arterial thrombosis, the importance of thrombin-induced
platelet activation in this setting, and the clinical setbacks
with PARI1 antagonists, further investigation of PAR4 as
a suitable target appears to be warranted.
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2.3 Supplementary Figures to French et al. “Inhibition of protease-activated receptor
4 impairs platelet procoagulant activity during thrombus formation in human blood”

(J Thromb Haemost, 2016)
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Supplementary Figure 1.
Supplementary Figure 1. Establishment of an assay to examine PAR4-dependent platelet
activation by thrombin. Isolated human platelet aggregation concentration response curves to
(A) PARL1 activating peptide (PAR1-AP; TFLLR; 0.3-30 uM), (B) PAR4 activating peptide
(PAR4-AP; AYPGKF; 3-300 uM) and (C) thrombin (0.003-1 U/mL) were conducted in a plate

reader. (D) A PARI1 antagonist (E5555, 0.1 uM (minimum concentration required to inhibit
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PAR1-AP-induced platelet activation)) delays thrombin (0.1 U/mL) induced platelet
aggregation but does not significantly affect maximal aggregation. (E) Platelet aggregation in
response to thrombin (0.1 U/mL) and in the presence of the PAR1 antagonist, E5555 (0.1 uM),
is inhibited in a concentration-dependent manner by the anti-PAR4 antibody. (F) The effect of
PAR inhibition on thrombin-induced platelet activation is overcome at high thrombin
concentrations (1 and 0.3 U/mL), whereas at low thrombin concentrations (0.03 U/mL) PAR1
inhibition alone is sufficient to inhibit platelet aggregation. Data are expressed as mean = SEM,;

n>3.
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Chapter 3 - Perinatal lethality of PARA4-deficient mice delivered by
primiparous dams reveals spontaneous bleeding in mice without platelet

thrombin receptor function

3.1 Introduction

The studies of Chapter 2 generated a selective and effective experimental PAR4 antagonist and
utilised it in a series of in vitro experiments to uncover a distinct role for PAR4 on human
platelets during thrombosis. These findings suggest PAR4 blockade may be a useful anti-
thrombotic strategy. Therefore, this thesis next extended on these in vitro studies by
investigating the effects of targeting PAR4 in vivo by examining the impact of PAR4-

deficiency in a mouse model.

Mouse platelets express PAR3 in place of the PAR1 on human platelets, but PAR3 in the mouse
does not signal, meaning transduction of thrombin signalling in mouse platelets is entirely
reliant on PAR4. Platelets from PAR4-/- mice fail to respond to thrombin and PAR4-/- mice
allow examination of the overall importance of platelet activation by thrombin in
(patho)physiology. PAR4-/- mice are protected against arterial thrombosis yet exhibit no
evidence of spontaneous bleeding. This separation between haemostasis and thrombosis is
perhaps surprising. Indeed, the lack of spontaneous bleeding in PAR4-/- mice contrasts with
that experienced by mice with marked thrombocytopaenia, in which high rates of perinatal
death due to haemorrhage are observed. Given the rationalisation of PAR4 as an anti-
thrombotic drug target in Chapter 2, the studies of Chapter 3 examined in detail the potential

for bleeding (perinatal haemorrhage) in PAR4-/- mice.

These studies indicate a subtle but significant effect of PAR4-deficiency on spontaneous

bleeding in mice, suggesting careful consideration should be given to the safety of any PAR4
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antagonists investigated. However, given the discrepancy in platelet PAR expression between
mice and humans, these studies also suggest the suitability of any mouse model should be taken

into consideration in assessing any in vivo studies relating to platelet PAR function.

This chapter has been published as:

French SL and Hamilton JR. Perinatal lethality of Par4” mice delivered by primiparous dams
reveals spontaneous bleeding in mice without platelet thrombin receptor function. Platelets.

2017. doi: 10.1080/09537104.2017.1349310.
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Abstract

Protease-activated receptor 4 (PAR4) is a cell surface G protein-coupled receptor for serine
proteases, such as thrombin. Par4”~ mice have platelets that are unresponsive to thrombin
and thereby allow examination of the importance of thrombin-induced platelet activation in
(patho)physiology. Par4”~ mice are protected against arterial thrombosis but show no evidence
of spontaneous bleeding. This contrasts with the bleeding experienced by mice with marked
thrombocytopenia, such as those with genetic deficiency of the transcription factor, nuclear
factor erythroid 2 (Nfe2™"), that have high rates of perinatal death due to hemorrhage. Given this
discrepancy in spontaneous perinatal bleeding between mice without platelets and those with-
out thrombin-induced platelet activation mechanisms, we examined in detail the immediate
postnatal survival of Par4”~ pups. We observed significant postpartum loss of Par4™~ pups
derived from Par4™~ intercrosses that was restricted to a dam’s first litter; only 9% of surviving
pups genotyped as Par4™'" in first litters and this normalized from the second litter onward (26%).
A similar perinatal lethality in pups delivered by primiparous dams occurred in mice lacking
platelets (Nfe2~; 10%) but not in those lacking fibrinogen (Fga™"; 26%). These data,, provide the
first evidence of spontaneous bleeding in Par4”~ mice, suggest that a dam'’s first litter provides a
greater hemostatic challenge than subsequent litters, and uncovers an important role for
platelets—and more specifically thrombin-induced platelet activation—in hemostasis during
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these more traumatic births.

Introduction

Protease-activated receptors (PARs) are the target of the most
recently-developed antiplatelet drugs [1]. PARs are attractive targets
for antiplatelet agents because they mediate platelet activation by
thrombin, the most potent endogenous activator. Human platelets
have two PARs, PAR1, and PAR4. The first PARI antagonist was
recently approved for the prevention of myocardial infarction and
peripheral arterial disease [1] and PAR4 antagonists are in clinical
trial for similar purposes [2]. Mouse platelets express non-signaling
PAR3 in place of the PAR1 on human platelets, meaning transduction
of thrombin signaling in mouse platelets is entirely reliant on PAR4.
Platelets from Par4”" mice fail to respond to thrombin [3,4] and
Par4™" mice allow examination of the overall importance of platelet
activation by thrombin in (patho)physiology. Predictably, Pard™"
mice are protected against arterial thrombosis [3,5]. Yet despite this,
Par4™" mice exhibit no evidence of spontaneous bleeding; they are
born at the expected frequency, have no obvious internal or external
hemorrhage, and have a normal lifespan [4,6]. This lack of bleeding in
Par4™" mice contrasts with that observed in mice that have a marked
thrombocytopenia, such as those with genetic deficiency of the
transcription factor, nuclear factor erythroid 2 (Nfe2”"). Nfe2”~ mice

Correspondence: Justin Hamilton, Australian Centre for Blood Diseases,
Monash University, L2, AMREP Building, The Alfred, Commercial Rd,
Melbourne, Victoria 3004, Australia. E-mail: Justin.Hamilton @monash.edu

have arrested megakaryocyte development that results in no (or very
few) circulating platelets [7]. These mice with (near) absolute throm-
bocytopenia experience spontaneous bleeding, including significant
levels of perinatal hemorrhage and subsequent death due to the
hemostatic trauma of birth [7].

Given this discrepancy in the level of perinatal bleeding
between mice without platelets and mice without thrombin-
induced platelet activation mechanisms, we tracked in detail the
genotypes of pups resulting from Par4™" intercrosses. We
observed significant loss of Par4”~ pups in the immediate post-
partum period, but only in primiparous dams (i.e., the first litter
from any given female). A similar perinatal lethality in pups
delivered by primiparous dams occurred in mice lacking platelets
(Nfe2™") but not in those lacking fibrinogen (Fga™"), suggesting
the effect was most likely primarily due to impaired thrombin-
mediated platelet signaling. These data provide the first evidence
of a spontaneous bleeding phenotype in Par4”" mice.

Methods

Generation of mice deficient in PAR4 (F2Ir3 [4];), fibrinogen (Fga
[8];), or platelets (Nfe2 [7];) has been described previously. Pard™"
mice were either inbred > 6 generations into C57BL/6 or were 50:50
C57BL/6:129/Sv as indicated. Nfe2™ and Fga™~ were all 50:50
C57BL/6:129/Sv. All mice examined were derived from heterozygous
intercrosses and all genotypes were confirmed by Southern blot ana-
lysis on biopsies taken from 10-14-day old pups. Genotypes of live
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offspring were stratified by an individual female’s litter number.
Statistical significance was tested by %> analysis (GraphPad Prism 7).

Results

In accord with previous observations [4,6], genotyping of all live
births across a large number of Par4*~ intercrosses in an inbred
C57BL/6 background revealed approximately the expected rate of
production of Pard™™ mice (21%; 39 of 184; Table I). However,
when births were stratified by the order of an individual female’s
litter, Par4~'~ mice surviving to P10 were markedly reduced in the first
litter (9%; 5 of 57; Table I, P = 0.01). This significant reduction in the
number of Par4™~ mice surviving their first 10 days was completely
corrected from the second litter onward (Table I). Analysis of the
number of pups born at P1-3 revealed almost no loss of mice (4 of
184) between P3 and P10. Further, the average size of the surviving
first litter from Par4*~ intercrosses (6.3 pups per litter) was less than
in subsequent litters (7.5) (Table I), closely accounting for the absent
Par4”~ pups. Our data, when combined with the observation that
Par4™~ embryos are present at the expected rate throughout the
entirety of embryonic development [6], strongly suggest that a sig-
nificant fraction of Par4”'~ mice are selectively lost from a mother’s
first litter in the immediate postnatal period.

Since such an observation has not been previously reported, we
next directly compared this loss of Par4™~ pups from primiparous
dams to that experienced by mice deficient in platelets (Nfe2 ") or
fibrinogen (F, gaf/’). Since neither Ner’/f nor F. gaf/f mice survive at
high rates in an inbred C57BL/6 background [7,8], we performed this
head-to-head comparison in the outbred (50:50) C57BL/6:129Sv

Table I. Live offspring produced from Par4*"~ intercrosses (C57BL/6).

Mother’s litter Total pups
no. Genotype: observed (expected) (litters)
+/+ +/~- -/~
1 20 (14.25) 32 (38.5) 5(14.25) * 57 (9)
2 12 (13.5) 29 (27) 13 (13.5) 54 (7)
3 12 (12.75) 23 (25.5) 16 (12.75) 51 (6)
4 5(5.5) 12 (11) 5(5.5) 22 (4)
>2 combined 29 (31.75) 64 (63.5) 34 (31.75) 127 (17)
Total 49 (46) 96 (92) 39 (46) 184 (26)

*QOverall distribution is significantly different from expected by chi-
square analysis (P < 0.05).
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strain, where markedly improved survival has been observed [7,8].
Par4™~ intercrosses in this mixed strain produced a similar loss of
Par4™~ pups from primiparous dams (14%; 14 from 98; P < 0.03;
Table II) that again immediately corrected from the same mothers’
second litter (Table II). Again, the average surviving litter size in the
first litter of Par4™" intercrosses was less than in subsequent litters
(6.1 vs 7.3; Table II). A similar trend was observed in pups produced
from Nfe2*~ intercrosses; Nfe2”~ pups represented only 10% of a
mother’s first litter (5 of 51; P < 0.05; Table II) but 20% in subsequent
litters (23 of 113; Table II). In contrast, the rate of F| gaﬁ/* pups from
F, ga+/ "~ intercrosses was not different across the mother’s litter number,
with 26% in first litters (14 of 53; Table II) and 21% in subsequent
litters (23 of 107; Table II).

Discussion

This study provides the first evidence of a spontaneous bleeding
phenotype in Par4”~ mice. Here, Par4”~ pups were selectively lost
from litters delivered by primiparous dams. This effect was mirrored
in mice deficient in functional platelets (Nfe2™") but not fibrinogen
(Fga™). The specificity of this loss of knockout mice to the first
litter of Par4 and Nfe2 mice supports the hypothesis that the first
litter delivered by a given female endures a more significant hemo-
static challenge during birth, and that the postnatal lethality observed
here is due to impaired platelet function.

Par4™" mice have platelets that do not respond to thrombin.
Numerous studies have reported protection against thrombosis
in Par4”" mice accompanied by prolonged bleeding upon
hemostatic challenge (e.g., tail transection [3]). Yet, perhaps
surprisingly, there is no report of spontaneous bleeding in
Par4”~ mice. When combined with a number of previous
observations, our data indicate postnatal loss of Pard”~ pups
rapidly after birth—a time of major hemostatic challenge. First,
Pard™ embryos are present at the expected rate throughout the
entirety of embryonic development [6]. Second, newborn
Nfe2™" pups, as well as those with a combined deficiency of
fibrinogen and PAR4, that do not survive the immediate post-
natal period, exhibit marked intraperitoneal hemorrhage [6].
Therefore, while we did not directly measure hemostasis in
the present study, it appears most likely that the loss of
Par4™~ pups observed here in the immediate postnatal period
is the result of internal hemorrhage. That this death of neonatal

Table II. Live offspring produced from Par4*", Nfe2*”, or Fga™" intercrosses (C57BL/6 x 129/Sv).

Mother’s litter no.

Genotype: observed (expected)

Total pups (litters)

Pard +/+ +/- -/~
1 29 (24.5) 55 (49) 14 (24.5) * 98 (16)
>2 45 (48.25) 102 (96.5) 44 (48.25) 191 (26)
Total 74 (72.25) 157 (144.5) 58 (72.25) 289 (42)
Nfe2 +/+ +/~ —/~
1 13 (12.75) 33 (25.5) 5 (12.75) * 51 9)
>2 29 (28.25) 61 (56.5) 23 (28.25) 113 (17)
Total 41 (41) 94 (82) 29 (41) 164 (26)
Fga +/+ +/~ —/~
1 15 (13.25) 24 (26.5) 14 (13.25) 53 (9)
>2 33 (26.75) 51 (53.5) 23 (26.75) 107 (16)
Total 48 (40) 75 (80) 37 (40) 160 (25)

*Qverall distribution is significantly different from expected by chi-square analysis (P < 0.05).
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Par4™" pups is restricted to those in a mother’s first litter
suggests the impact of PAR4-deficiency is heavily dependent
on the strength of the hemostatic challenge, with the hemo-
static trauma of birth presumably greater during a primiparous
delivery than in subsequent deliveries.

The observed perinatal loss of Par4”~ pups appears most likely
platelet-dependent given that a similar observation was noted with
Nfe2™" pups. However, as PAR4 is expressed on a number of other
cell types, including some that may contribute to hemostasis such
as vascular endothelial cells, we cannot formally rule out a con-
tribution from cells other than platelets to the bleeding observed
here. On this point, it is worth noting that a previous study used
bone marrow transplantation to show that the impaired hemostasis
in Par4”" mice after injury (prolonged bleeding after tail clip) is
fully attributable to PAR4 deficiency in platelets [3]. Therefore, the
present study is highly suggestive of an important role for platelets
—and more specifically thrombin-induced platelet activation—in
hemostasis during traumatic births. Such a phenotype has not been
previously described, and whether or not this observation extends
to other commonly-used mouse lines with major platelet defects
remains unknown. For example, PAR3 is a thrombin co-factor
receptor on mouse platelets. Platelets from Par3™~ mice exhibit
reduced sensitivity to thrombin that is sufficient to impair hemos-
tasis—but this impairment is notably less than that experienced by
Par4™™ mice [9]. It will therefore be of interest to determine if the
more subtle impairment in platelet function found in, for example,
Par3™"" mice is sufficient to cause a similar perinatal hemorrhage
and death in pups from primiparous dams to that observed here in
Par4d™ mice.

Finally, mice without thrombin (prothrombin-deficient mice;
F27") exhibit 100% embryonic lethality—approximately half of
which occurs during mid-gestation due to a PAR1-dependent
defect in vascular patterning [10] and the remainder due to
hemorrhage at birth [11]. This latter effect is presumably due
to the combined input of thrombin to platelet activation and
fibrin formation, since both Fga™”~ and Par4”" mice are unaf-
fected to term but combined genetic deficiency recapitulates
the hemostatic effect of prothrombin-deficiency with almost all
Pard™":F, ga’/ ~ pups experiencing fatal postnatal internal
hemorrhage [6]. The more detailed analysis of hemostasis at
birth performed here indicates thrombin-induced platelet acti-
vation may be more relevant to birth trauma hemostasis than
thrombin-induced fibrin formation. With this in mind, our
study suggests that any impact of PAR inhibition on sponta-
neous bleeding may be heavily dependent on the strength of the
hemostatic challenge.
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Chapter 4 - Humanising the protease-activated receptor (PAR) expression
profile in mouse platelets by knocking PARL1 into the Par3 locus reveals

PARZ1 expression is not tolerated in mouse platelets

4.1 Introduction

The studies of Chapter 2 provide rationale for the preclinical evaluation of PAR4 antagonism
as an antithrombotic approach. However the studies in Chapter 3 highlight the need for an
animal model mimicking human platelet PAR expression, so that appropriate safety and
efficacy studies can be performed in vivo. Since only primate platelets express the PAR1/PAR4
profile, there are significant limits on preclinical in vivo research models allowing the requisite
investigation into the utility of PAR4 antagonists. The studies of Chapter 4 attempted to address
this. Specifically, these studies sought to overcome the limitation of current mouse models by
‘humanising’ the platelet PAR expression profile of the mouse, essentially by replacing PAR3
with PAR1. Here, it was theorised that ‘knock-in’ of PARL into the endogenous mouse Par3
locus in a manner allowing platelet-specific expression would create a mouse with PAR1 and
PAR4 on platelets but without ectopic PAR1 expression. However, for reasons that are not yet
clear, this approach failed. Taken together with earlier studies using distinct approaches, this
study indicates forced expression of PARL in mouse platelets is difficult to achieve and

suggests other options are required for reliable preclinical screening of PAR antagonists.

This chapter has been published as:

French SL, Paramitha AC, Moon MJ, Dickins RA, Hamilton JR. Humanizing the Protease-
Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PARL1 into the
Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets. PloS One, 2016.

11 (10): e016556.
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Abstract

Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke preven-
tion, yet improvements are continually sought. Thrombin is the most potent activator of plate-
lets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an
emerging anti-thrombotic approach. Humans express two PARs on their platelets—-PAR1 and
PARA4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antago-
nists are in early clinical development. However, pre-clinical studies examining platelet PAR
function are challenging because the platelets of non-primates do not accurately reflect the
PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To
address this limitation, we aimed to develop a genetically modified mouse that would express
the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-
lox was knocked into the mouse Par3locus, and then expressed in a platelet-specific manner
(hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and
function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Spe-
cifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in
whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet
activation assessed by either aggregation or surface P-selectin expression. Platelets from
hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in
both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI
mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T
cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse plate-
lets and indicate a different approach is required to develop a small animal model for the pur-
pose of any future preclinical testing of PAR antagonists as anti-platelet drugs.
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Introduction

Anti-platelet drugs are the primary therapy for heart attack and stroke prevention, yet
improvements are continually sought. Thrombin is by far the most potent endogenous platelet
activator, which it achieves via cell surface protease-activated receptors (PARs). Due to the
importance of thrombin-induced platelet activation during thrombosis, targeting platelet
thrombin receptors has received significant clinical attention, and PAR antagonists are one of
the most promising of the emerging anti-thrombotic approaches [1-3]. Humans express two
PARs on their platelets, PARI and PAR4, both of which are cleaved and activated by thrombin,
and both of which are capable of inducing robust platelet activation [4, 5]. PAR1 has a higher
affinity for thrombin and was therefore the target of initial drug development. The first PAR1
antagonist, vorapaxar, was recently approved by the FDA for clinical use in the USA [2]. So far,
however, vorapaxar has limited clinical utility due to an increase in major bleeding events asso-
ciated with its use [6, 7]. These limitations on the first PAR1 inhibitor have ignited interest in
evaluating the clinical potential of PAR4 antagonists, and these agents are now in early clinical
development (NCT02208882) [8].

However, a major limitation in examining platelet PAR function in detail is the absence of a
small animal model that accurately reflects the PAR expression profile in human platelets: only
primate platelets express the PAR1/PAR4 profile [9]. This places significant limits on preclini-
cal research into the utility of PAR antagonists in vivo. Of the commonly-used small animals,
for example, platelets from mice, rats and rabbits express PAR3 and PAR4 [10-13], while
guinea-pig platelets express PAR1, PAR3 and PAR4 [14]. Par4-/- mice have been crucial for
early proof-of-concept studies into the overall role of PARs in thrombosis [15-17], but are
unsuitable for elucidating, for example, the relative anti-thrombotic effects of PAR1 vs PAR4
inhibition.

One way to overcome this limitation is to ‘humanize’ the platelet PAR expression profile of
the mouse, essentially replacing mouse PAR3 (Par3) with human PAR1 (PARI). Initial
attempts used platelet-specific expression of a PAR1 transgene in Par3-/- mice, but were unsuc-
cessful [18]. Possible explanations for the failure of this transgene-based approach include
insufficient expression levels or unpredicted gene silencing consequences as a result of nonspe-
cific transgene insertion [18]. We theorized that ‘knock-in’ of PAR1 into the endogenous
mouse Par3 locus in a manner that would allow platelet-specific expression may overcome
these earlier issues and would create a mouse that expresses PAR1 and Par4 on platelets, but
without further ectopic PAR1 expression. Here, we generate and characterise such a mouse.
Despite correct targeting, this genetic approach failed to yield detectable expression or function
of PARI on mouse platelets. When taken together with earlier studies using distinct
approaches, this study indicates that forced expression of PAR1 in mouse platelets will be diffi-
cult to achieve and suggests that other options will be required for reliable preclinical screening
of any future PAR antagonists.

Methods and Materials
Materials

Human o-thrombin and adenosine 5’-diphosphate sodium salt (ADP) were purchased from
Sigma-Aldrich (St Louis, MO, USA). PARI-activating peptide (PAR1-AP; TFLLR-NH,) and
PAR4-activating peptide (PAR4-AP; AYPGKF-NH,) were synthesised at Monash Institute of
Pharmaceutical Sciences (Melbourne, Australia) by Assoc Professor Philip Thompson. The
mouse anti-P-selectin (FITC anti-mouse CD62P) and human anti-P-selectin (PE anti-human
CD62P) antibodies were purchased from BD Biosciences (San Jose, CA, USA). PE anti-CD45.2,
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PE anti-CD41a (human) antibody and PE anti-CD41 antibody (mouse) were purchased from
Abcam (Melbourne, Australia). The PE-anti-GPIb-tail and non-immune rabbit IgG isotype
were a generous gift from Assoc Professor Robert Andrews (Monash University, Melbourne,
Australia). The anti-PAR1 antibody (ATAP2), anti-PAR3 antibody (8E8), HRP-anti-actin
(I-19) and HRP- anti-mouse IgG were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA).

Generation of hPAR1-KI (Pf4-Cre; Par3--AR") mice

All mouse studies were approved by the Alfred Medical Research and Education Precinct Animal
Ethics Committee (approval number E/1465/2014/M). Pf4-Cre; Par3"*"*R! mice (hereafter
referred to as hPAR1-KI mice) were generated by Ozgene (Perth, Australia). The targeting vector
involved exon 2 of Par3 (F2rl2) flanked with a lox-stop-lox and followed by exon 2 of PARI (F2r)
(Fig 1A). Since exon 1 encodes the signal peptide and exon 2 encodes the entire mature receptor
for both PAR1 and Par3 [19], Cre-mediated deletion is predicted to result in the replacement of
Par3 with PAR1 and leaves the endogenous Par3 promoter intact (Fig 1A). The BAC vector com-
prised unaltered exon 1 of Par3, then exon 2 of Par3 followed by a stop codon and flanked by
loxP sites, and followed by PAR1. The vector was injected into C57BL/6] blastocysts, chimeras
were bred for germline transmission, and the targeted allele bred to homozygosity (Par3-S-PAR"),
These mice were then bred with Pf4-Cre mice to induce deletion of Par3 and permit the expres-
sion of PARI specifically in platelets (Pf4-Cre; Par3"5""AR! hereafter referred to as hPAR1-KI
mice). PCR genotyping of the targeted allele was performed using the following primers: common
reverse (AGCTGAAAAATGGAGCGCTTG) with WT forward (TGGGTTCCTCATCCCGTTTG, pre-
dicted size 588bp) or mutant forward (TCCTTCACTTGTCTGGCCATG, predicted size 914bp) (Fig
1A). Deletion of Par3 was confirmed by PCR using the following primers: forward (CAGTGTGTG
GITTTGTTTCACCT) and reverse (GCCAATCACTGCCGGAAAAG, predicted size 963bp) (Fig 1A).

Isolation of mouse and human platelets

All human studies were approved by the Monash University Human Research Ethics Commit-
tee (CF07/0141-2007/0025). Blood was collected after written informed consent was obtained
from healthy adults (21-50 years old, of both sexes) who had not taken anti-platelet medica-
tions in the past 10 d. Mouse and human blood was drawn into syringes containing acid citrate
dextrose (ACD; 1.7 v/v). Platelets were isolated by centrifugation as previously described [20].

Megakaryocyte DNA extraction

Bone marrow cells were aseptically flushed from the femora and tibiae of mice using a syringe
and a 23-gauge needle containing Dulbecco’s Modified Eagle Medium (DMEM, Life Technolo-
gies) supplemented with 10% foetal bovine serum (FBS), penicillin, streptomycin and gluta-
mine. Post-harvest, thrombopoietin (0.1 pug/mL) was added to the cells, which were allowed to
culture for 4 d at 37°C, 5% CO,. Cells were then collected and centrifuged at 50 g for 5 min and
the pellet was re-suspended in 4 mL of PBS. The cells were layered over a two-step BSA density
gradient and allowed to sediment for 45 min at room temperature. The megakaryocyte-rich
population was collected and centrifuged at 50 g for 5 min, and the pellet was treated with
DNA extraction buffer (Bioline) and digested at 75°C for 10 min.

Platelet aggregation

Platelet aggregation was measured by light transmission aggregometry in a 96-well plate format.
Human and mouse washed platelets (2x10° platelets/mL) were added to wells of a clear, flat
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Fig 1. Generation of mice expressing PAR1 in place of Par3 in a platelet-specific manner. (A) Schematic of the
strategy for platelet-specific expression of human PAR1 in place of mouse Par3. Top: wild-type Par3 (wt) has two
exons: exon 1 encodes the signal peptide and exon 2 encodes the complete mature receptor. Middle: In the targeted
allele (Par3-S-PAR: {|) an insert of exon 2 of human PAR1 is placed downstream of exon 2 of Par3. Par3exon 2 is
flanked by loxP sites, allowing Cre-mediated excision. Bottom: Cre-mediated deletion of Par3 exon 2 allows
expression of PAR1 exon 2, resulting in a predicted chimeric protein consisting of the Par3 signal peptide fused to the
mature PAR1 receptor (NPAR1-Kl). Heterozygous targeted mice, Par3-S-PART* (1l/4+); homozygous targeted mice,
Pard-S-PARTLSL-PART (1/4)). platelet-specific replacement of mMPAR3 with hPAR1, Pf4-Cre; Par3-S“PART (Pf4-Cre;fl/fl).
(B) PCR genotyping of tail DNA using the primers indicated (black flags): wild type forward (1F), mutant forward (2F),
common reverse (3R). (C) Cre-mediated deletion of Par3was confirmed by PCR genotyping of individual mice using
DNA from both tail (not deleted) and megakaryocytes (MK; deleted), using a forward primer spanning the loxP site
(3F) and PART reverse (4R). A PCR product of predicted size (988bp) was only generated using MK DNA from
Pf4-Cre;fl/fl mice. Sequencing of this PCR product confirmed excision of floxed sequences (S3 Fig).

doi:10.1371/journal.pone.0165565.9001
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bottom, 96-well tissue culture plate (Falcon). Platelets were stimulated with either thrombin
(0.01-1 U/mL), PARI-AP (10-100 uM), PAR4-AP (10-100 uM), or ADP (1-10 uM). The plate
was analysed at 37°C in a FLUOstar OPTIMA plate reader (BMG Labtech) using a 595 nm exci-
tation filter, for a period of 50 min (10 read cycles with 5 min double orbital shake period between
OD(No Agonist) — OD(Agonist)
OD(No Agonist) — OD(blank)
time point where aggregation was at a maximum. Optical density was normalised against the

each read). Ability to aggregate was calculated as x 100 at the

blank (maximum) and unstimulated platelets (minimum) and expressed as % maximum.

P-selectin expression

Flow cytometry was used to detect the expression of P-selectin by activated platelets. Human
and mouse platelets, prepared as outlined above, were incubated with an anti-P-selectin anti-
body and stimulated with thrombin (0.01-1 U/mL), PARI-AP (10-100 uM), or PAR4-AP
(30-300 uM) for 15 min at 37°C. Samples were then analysed using a FACSCalibur (Becton
Dickinson) flow cytometer and FlowJo software.

Analysis of platelet PAR1 expression

Platelets isolated from either humans or mice (5x10” platelets/mL in Tyrode’s buffer) were
incubated with a PE-conjugated antibody against one of PAR1 (2.5 pug/10° cells; ATAP2),
CD45 (platelet negative control antibody of matching isotype, 2.5 pg/10° cells), or CD41a
(platelet positive control antibody of matching isotype, 2.5 ug/10° cells). In some experiments,
isolated platelets were permeabilized with saponin (0.1% v/v) prior to incubation with antibod-
ies. In these experiments, a PE-conjugated antibody against the cytoplasmic tail of GPIb was
included to confirm effective platelet permeabilization [21]. In all cases, samples were analysed
using a FACSCalibur flow cytometer and FlowJo Software. Positive expression was measured
as a rightward shift in relative fluorescent intensity compared to the isotype control.

Western blot

Platelet proteins were analyzed in lysates of human or mouse isolated platelets (1x10” platelets/
mL), prepared in Laemmli’s buffer, denatured (95°C for 10 min), and run on 12% SDS-poly-
acrylamide gels at 170 V for 40 min. Proteins were transferred to PVDF membranes (Millipore,
Lake Placid, NY, USA) at 250 mA for 2 h. Membranes were blocked with TBST (0.01 mM Tris,
50 mM NaCl, 0.01% v/v Tween-20) containing 5% skim milk powder for 30 min at room tem-
perature, incubated with either an HRP-conjugated anti-actin antibody (1 ug/mL), anti-PAR1
antibody (1 pg/mL) or anti-PAR3 antibody (1 ug/mL) at 4°C overnight, followed by a HRP-
conjugated anti-mouse IgG at room temperature for 2 h. Enhanced chemiluminescence (ECL)
substrate (ThermoFisher Scientific, Waltham, MA, USA) was placed onto the membrane for 1
min before exposure (ChemiDoc Touch Imaging System, Bio-Rad, Hercules, CA, USA).

Results
Generation of hPAR1-KI (Pf4-Cre; Par3-5-""AR") mice

We generated mice in which PARI (F2R) was knocked into the Par3 (F2Ir2) locus and condi-
tionally expressed in platelets upon Pf4-Cre-mediated excision. To this end, exon 2 of PARI
(encoding the entire mature receptor) was inserted downstream of exon 2 of Par3 flanked by
a lox-stop-lox (Fig 1A). This approach leaves the promoter and exon 1 of Par3 (encoding the
signal peptide) intact and results in replacement of Par3 with PARI after Cre-mediated exci-
sion (Fig 1A). This is predicted to yield the Par3 signal peptide linked to the complete mature
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receptor of PAR1 (Fig 1A). The stability and surface expression of the predicted fusion pro-
tein was confirmed in HEK293T cells transiently transfected with vectors expressing the same
sequence as that remaining after Cre-mediated excision of the targeted allele, with the pre-
dicted Par3/PARI fusion protein expressed at similar levels to native PAR1 (S1 Fig). We
therefore went on to generate Par3"""*!* mice and confirmed targeting by Southern blot
(S2 Fig) and PCR genotyping (Fig 1B). Heterozygous mice were bred to homozygosity
(Par3LSL-PARILSL-PARLY 41 crossed with Pf4-Cre mice [22], with experimental mice resulting
from crosses of Pf4-Cre;Par3-SEPARIVISLPARL y gy 3LSL-PARILSL-PARL (o 1 B) Cre positive
offspring (Pf4-Cre;Par3"5 PARVISL-PARIy 4 e hereafter referred to as hPAR1-KI mice and
their Cre negative littermates (Par3"St-PARVESEPARTY ¢ wild-type. Appropriate Pf4-Cre-
mediated deletion in the platelet/megakaryocyte lineage was confirmed by PCR of DNA iso-
lated from megakaryocytes versus tail biopsy (Fig 1C). We used a forward primer placed
upstream of the loxP site and a reverse primer in each of Par3 and PARI as indicated (Fig
1A). As predicted, a band of expected size was only generated in megakaryocyte DNA from

hPAR1-KI mice. Sequencing of this PCR product confirmed the predicted targeting and Cre-
mediated deletion (S3 Fig).

Platelets from hPAR1-KI mice do not respond to PAR1-selective
activation

Mice from these crosses were born at the expected rates, were normal in weight and appear-
ance, and had normal whole blood counts (S1 Table). We assessed PARI function in platelets
isolated from hPAR1-KI mice using two distinct markers of platelet activation: platelet aggre-
gation and P-selectin expression. PAR1-selective activation by a PAR1-AP failed to aggregate
platelets from hPAR1 mice at concentrations up to 100 uM (100 times the concentration
required to cause platelet activation in human platelets [23]) (Fig 2A). This lack of response
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Fig 2. Platelets from hPAR1-KI mice do not respond to PAR1-selective activation. Platelets isolated from
hPAR1-KI mice, wild type mice, or humans were stimulated with a PAR1-activating peptide (PAR1-AP; TFLLR) and
examined for (A-C) platelet aggregation by light transmission aggregometry or (D-F) P-selectin expression by flow
cytometry. Note that platelets from either hPAR1-KI or wild type mice failed to respond to PAR1-AP, even at
concentrations that were supra-maximal in human platelets. Data are mean + SEM of n = 3 experiments.

doi:10.1371/journal.pone.0165565.9002
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was identical in platelets from wild type mice (Fig 2B). As expected, PAR1-AP induced a robust
aggregation response in human platelets (Fig 2C). A similar pattern of responses was observed
when P-selectin expression was used as the marker of platelet activation, with PAR1-AP unable
to elicit any response in platelets isolated from either hPAR1-KI (Fig 2D) or wild type (Fig 2E)
mice, but a robust response in human isolated platelets (Fig 2F). Together, these data indicate
lack of functional PAR1 in platelets from hPAR1-KI mice.

Lack of PAR1 expression on platelets from hPAR1-KI mice

We next examined PAR1 expression in platelets from hPAR1-KI mice. We were unable to
detect PAR1 on the surface of platelets from hPAR1-KI mice by flow cytometry (Fig 3A). As
with the functional experiments, platelets from wild type mice and humans served as effective
negative and positive controls for PAR1 surface expression by this method, respectively (Fig 3B
and 3C). In all experiments, the platelet specific marker, CD41, and normal forward/side scat-
ter properties were used to confirm the integrity of the platelets being assessed (Fig 3).

We also tested for PAR1 expression in permeabilized platelets. In these experiments, an
antibody against the cytoplasmic tail of GPIba: [21] was used as a positive control for successful
permeabilization. As predicted, this antibody only recognised an epitope on the internal sur-
face of the platelet membrane, with no staining of intact platelets and strong staining in per-
meabilized platelets from both mice and humans (S4 Fig). However, we were unable to detect
any PARI1 in permeabilized platelets from hPAR1-KI mice (Fig 4A). Again, platelet integrity
was confirmed by CD41 expression in all cases, while permeabilization was confirmed by
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Fig 3. PAR1 is undetectable on the surface of platelets from hPAR1-KI mice. Platelets isolated from
hPAR1-KI mice, wild type mice, or humans were either left unstained (black) or were incubated with a PE-
conjugated antibody against one of PAR1 (blue) or CD41a (grey; positive platelet control), or an isotype control
(red). (A) Platelets were gated by forward and side scatter as shown. (B-D) PAR1 was detected on human
platelets but not platelets from either hPAR1-KI or wild type mice. Data shown are representative traces of n =3
individual experiments.

doi:10.1371/journal.pone.0165565.9003
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Fig 4. PAR1 is undetectable within platelets from hPAR1-KI mice. Platelets isolated from (A) hPAR1-KI
mice, (B) wild type mice, or (C) humans were fixed and permeabilized prior to incubation with a PE-
conjugated antibody against one of PAR1 (blue), CD41a (grey; positive control for platelets), isotype (red), or
the cytoplasmic tail of GPIba (grey dash; positive control for permeabilization). PAR1 was detected in human
platelets but not in platelets from either hPAR1-KI or wild type mice. Data shown are representative traces of
n = 3 individual experiments.

doi:10.1371/journal.pone.0165565.9004

detection with the anti-GPIbo-tail antibody (Fig 4). Platelets from wild type mice and humans
again served as controls (Fig 4B and 4C), indicating the anti-PAR1 antibody still binds its epi-
tope in permeabilized cells.

Finally, we also examined PAR1 expression by Western blot. Here, a band at the predicted
size of approximately 75 kD was detected in lysates of human platelets, but not of wild-type or
hPARI1-KI mouse platelets (Fig 5), mirroring the flow cytometry data. Together, these findings
indicate PAR1 is not expressed at detectable levels in platelets from hPAR1-KI mice.

PARS expression and function is disrupted in platelets from hPAR1-KI
mice

Our genetic strategy is predicted to disrupt Par3 expression in platelets. This was confirmed
genetically by PCR genotyping and sequencing (Fig 1). Regardless, given the lack of PAR1
expression or function in platelets from hPAR1-KI mice, we therefore also probed for Par3
protein in these platelets. We never detected Par3 expression by Western blot in human plate-
lets, but routinely observed a band of the previously reported size (approximately 50kDa) in
wild type mouse platelets (Fig 5). This band was absent in platelet lysates from all hPAR1-KI
mice examined (Fig 5), further confirming disruption of Par3 in hPAR1-KI mice. To further
examine this, we tested for the predicted functional effects of Par3-deficiency.

Platelets from Par3-/- mice exhibit diminished responsiveness to thrombin [24]. Here, we
observed a similar effect in platelets from hPAR1-KI mice. We examined platelet aggregation
and P-selectin expression in response to thrombin. Platelets from hPAR1-KI mice exhibited an
approximately 3-fold decrease in sensitivity to thrombin in both assays when compared to
platelets from wild type mice (Fig 6). Specifically, aggregation of hPARI-KI platelets was only
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Fig 5. Protein for both PAR1 and Par3 is undetectable in platelets from hPAR1-KI mice. Whole cell lysates of
platelets isolated from hPAR1-KI mice, wild type mice, or humans were probed for either PAR1 or Par3 protein by
Western blot. PAR1 was readily detected in human platelets but not in platelets from wild type or hPAR1-KI mice. In the
same samples, Par3 was detected in platelets from wild type mice but not in platelets from either hPAR1-KI mice or
humans. Actin was used as a protein loading control for all lysates. Blots shown are representative of n = 3 experiments.

doi:10.1371/journal.pone.0165565.9005

achieved at thrombin concentrations of 0.3 U/mL and above (Fig 6A) compared with 0.1 U/
mL and above for wild type platelets (Fig 6B). A similar pattern emerged when examining P-
selection expression in response to thrombin: aggregation of hPAR1-KI platelets was only
achieved at thrombin concentrations of 1 U/mL (Fig 6D) compared with 0.3 U/mL and above
for wild type platelets (Fig 6E).

Importantly, hPARI-KI platelets responded normally to other agonists, PAR4-AP and ADP
(Fig 7). When comparing platelets from hPARI-KI and wild type mice, near-identical concen-
tration-responses were observed for ADP-induced aggregation (Fig 7A and 7B), PAR4-AP-
induced aggregation (Fig 7D and 7E), and PAR4-AP-induced P-selectin expression (Fig 7G
and 7H). These functional data are consistent with the phenotype observed in platelets from
Par3-/- mice and, when combined with the failure to detect Par3 expression in hPAR1-KI
platelets, suggest correct targeting and Par3 deletion in hPAR1-KI mice.

Discussion

PARs are leading targets for new anti-platelet drugs, exemplified by the recent approval of the
PAR1 antagonist, vorapaxar, and the early clinical development of the PAR4 antagonist, BMS-
986120. Given the increased focus of examining PAR antagonists as anti-platelet agents, there
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Fig 6. Platelets from hPAR1-KI mice exhibit diminished responses to thrombin. Platelets isolated from (A,D) hPAR1-KI
mice, (B,E) wild type mice, or (C,F) humans were with thrombin and examined for (A-C) platelet aggregation by light
transmission aggregometry or (D-F) P-selectin expression by flow cytometry. Note the approximate 3-fold decrease in

sensitivity to thrombin-induced responses in platelets from hPAR1-KI mice versus wild-type mice in both assays. Data are
mean = SEM of n = 4-7 experiments.

doi:10.1371/journal.pone.0165565.9g006

is much interest in developing an appropriate small animal model for in vivo testing of such
drugs. This has proved to be a major limitation in the field, as the PAR1/PAR4 expression pro-
file of human platelets is only shared amongst primates. Here, we attempted to create a geneti-
cally-modified mouse that mimics the PAR1/PAR4 expression profile of human platelets. To
do this, we knocked the human PARI gene in to the mouse Par3 locus in a manner that pro-
vided for platelet-specific replacement of Par3 with PAR1. Correct targeting was confirmed
genetically and was apparent functionally. Yet despite this, we were unable to detect expression
or function of PARI in platelets from these mice, indicating the approach used here is insuffi-
cient to humanize’ platelet PAR expression in mice by inducing PAR1 expression in place of
Par3.
Forced PAR1 expression has been previously achieved using transgene-based approaches in

other cell types. For example, mouse PAR1 (Parl) was specifically expressed in endothelial
cells via the Tie2 promoter/enhancer [25] and in cardiomyocytes via the «MHC promoter
[26]. In addition, PAR1 has been expressed in mouse mammary gland epithelium [27]. In con-
trast to these successes, a previous attempt failed to express either Par1 or PARI transgenes in
mouse platelets via multiple platelet-specific promoters [18]. The reasons for the inability to
express PAR1 in mouse platelets remain unknown. However, given the limitations and lack of
control associated with transgene-based approaches, we used a knock-in approach in which
PARI was targeted to the Par3 locus, essentially resulting in replacement of Par3 with PARI,
and with expression governed by the endogenous mouse Par3 promoter.

Correct genetic targeting was confirmed by multiple methods, including Southern blot anal-
ysis of founders, PCR genotyping across the insert, and PCR analysis of correct Pf4-Cre-medi-
ated excision in the DNA in isolated megakaryocytes. Correct targeting was also apparent by
the absence of Par3 expression in platelets from hPAR1-KI mice. The disruption of Par3
expression was further supported by functional analyses of these platelets that revealed a
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Fig 7. Platelets from hPAR1-KI mice respond normally to PAR1-independent platelet agonists. Platelets isolated

from (A,D,G) hPAR1-KI mice, (B,E,H) wild type mice, or (C,F,l) humans were stimulated with either (A-C) ADP or (D-l) a
PAR4-activating peptide (PAR4-AP) and assessed by (A-F) platelet aggregation or (G-1) P-selectin expression. Note the
near-identical concentration-dependent responses in platelets from hPAR1-Kl and wild type mice in all cases examined.
Data are mean + SEM of n = 3 experiments.

doi:10.1371/journal.pone.0165565.9007

phenotype remarkably similar to that observed in platelets from Par3”" mice [24], with an
approximately 3-fold decrease in sensitivity to thrombin-induced platelet activation. Together,
this detailed analysis indicates correct targeting occurred in these mice and resulted in disrup-
tion of Par3 expression. However, no replacement PAR1 expression or function was detected.

The reason behind this lack of expression of PAR1 in mouse platelets is unknown. Our ini-
tial functional studies showed that hPAR1-KI platelets did not respond to a PAR1-specific ago-
nist but responded normally to other agonists, suggesting that the receptor was either absent or
unable to signal. We probed extensively for protein expression but were unable to detect PAR1
in platelets from hPAR1-KI mice via flow cytometry or Western blot. The lack of detection of
PAR1 even in permeabilizsed platelets (by flow cytometry) or in whole cell platelet lysates (by
Western blot) strongly suggest that the PAR1 protein is either not translated or is very rapidly
degraded. The inability of mouse platelets to ectopically express PAR1 so far appears unique,
but remains unexplained and could arise from a number of critical stages in the development
of mature PARI protein. While possible that the Par3 signal peptide is insufficient to guide
PARI to the cell surface [28], the highly conserved nature of signal peptides coupled with our
observation of robust surface expression of the fusion protein in HEK293T cells suggest other-
wise. Other potential explanations include as yet unidentified mechanisms that appear unique
to the mouse platelet, such as poor or defective N-linked glycosylation of the receptor leading
to receptor instability and signaling dysfunction [29, 30]. Since the primary aim of this study

PLOS ONE | DOI:10.1371/journal.pone.0165565 October 27,2016 11/14

58



®PLOS | one

Mouse Platelets Do Not Tolerate PAR1 Expression

was to generate a research tool for in vivo thrombosis studies, we did not explore the precise
mechanism behind the lack of tolerance for PAR1 expression in mouse platelets. Whether or
not replacement of the entire human PARI gene in the mouse Par3 locus will be sufficient to
drive expression in mouse platelets remains unknown. Regardless, it appears that other
approaches will need to be examined if a non-primate model is to be used for pharmacological
screening of drugs targeting platelet PARs.

Supporting Information

S1 Fig. The receptor generated in hPAR1-KI mice can be expressed in HEK293T cells. The
fusion protein predicted to be expressed by hPARI-KI mice, consisting of the mPAR3 signal
peptide attached to the mature hPARI receptor, can be expressed on the surface of transfected
HEK293T cells. HEK293T cells were transfected with native hPAR1 (purple), the mPAR3/
hPARTI fusion (pink), or empty vector (yellow). Note the similar level of detectable expression
of native hPAR1 and the mPAR3/hPARI1 fusion. Also shown is a positive control for surface
expression (Thy-1) in cells transfected with the empty vector.

(TIFF)

S2 Fig. Southern blot analyses of targeted ES cells and founder mice. (A) ES cell clones were
screened for targeting by Southern blot. Targeted clones are indicated by the expected addi-
tional band at 8.3kb (e.g. clones D1 and D4). (B) Founder mice screened by the same Southern
blot approach as in (A), showing results for 13 mice from two litters. Seven of the 13 mice gen-
otyped as heterozygous targeted, exhibiting both the wt (11.6 kb) and mutant band (8.3kb).
(TIFF)

$3 Fig. Sequence annotation for the hPAR1-KI allele. (A) Predicted genomic DNA sequence
for the hPAR1-KI allele, showing Par3 exon 1 highlighted in grey, the position of primers 3F
and 4R in red, the loxP site in yellow, and PARI exon 2 in blue. Red text indicates the sequence
output of the PCR product from primers 3F and 4R, which was identical to the predicted geno-
mic DNA sequence. (B) Annotated sequence of the predicted coding sequence and protein chi-
mera, comprising the Par3 signal peptide (grey text) and PAR1 mature receptor (blue text).
Red text indicates sequenced PCR product amplified from genomic DNA of hPAR1-KI mice,
aligning to the predicted region of PARI coding sequence.

(TIFF)

$4 Fig. Confirmation of platelet permeabilization. Platelets isolated from a mouse (left) or
human (right) were either left intact (top) or were permeabilized with saponin (0.1%; bottom)
prior to incubation with an antibody against the intracellular C-terminal of GPIba (grey) or
isotype control (red). The GPIba tail antibody produced a rightward shift over isotype only in
permeabilized platelets of both species, confirming successful permeabilization. Data shown
are representative traces of n = 3 individual experiments.

(TIFF)

S1 Table. Whole blood cell counts from wild type and hPAR1-KI mice.
(DOCX)
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S1 Fig. The receptor generated in hPAR1-KI mice can be expressed in HEK293T cells.
The fusion protein predicted to be expressed by hPAR1-KI mice, consisting of the mPAR3
signal peptide attached to the mature hPARL receptor, can be expressed on the surface of
transfected HEK293T cells. HEK293T cells were transfected with native hPAR1 (purple), the
mPAR3/hPARL fusion (pink), or empty vector (yellow). Note the similar level of detectable
expression of native hPAR1 and the mPAR3/hPARL1 fusion. Also shown is a positive control

for surface expression (Thy-1) in cells transfected with the empty vector.
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S2 Fig. Southern blot analyses of targeted ES cells and founder mice. (A) ES cell clones
were screened for targeting by Southern blot. Targeted clones are indicated by the expected
additional band at 8.3kb (e.g. clones D1 and D4). (B) Founder mice screened by the same
Southern blot approach as in (A), showing results for 13 mice from two litters. Seven of the 13
mice genotyped as heterozygous targeted, exhibiting both the wt (11.6 kb) and mutant band

(8.3kb).
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hPAR1-Kl allele: predicted genomic DNA sequence

'GGT TGCAGCTGGG CTGCTGT PGCCAGTCAC TGTTTGCCAR AGTGGIARGT
CCCCTTCTTG TGGTCTAGCA TGGGGGTGAG AGAGTGGIGA GIGGATGGIT TCIGCIGTCA
GAGTCARATG CCCTAATTTT CTTGITRARCT CCTAGARACT GIGRACCCRA AGACACARTT M K I L I L V A A 6 L L F L PV T V ¢
TGATCTGGTT TTAGCCTGGG GTARTATAGC GTGGRAATAT TCARGCTTGT TCCCARAGTCA
AACCTTGICR AAGACCARGC GTTCTTCICT ACTAGTAGTG TCTCTACATT TGTGACAGAG atg aaa atc CTT atc ttg gtt gca get ggg ctg ctg tLt ctg cca gtc act grt tgc
TCARGACTTT ATGATTARGT CARRRACCAC TTTTTTTTTG GOGTGAGRAG TGTTTSTATG
TGTACAATGT TCAGATGTAG AMARGATTGC ACTTTTTCAA GGCATTARRA ARATCTTTIC g s E s K A TN ATLD PR S F L L R -
AMATTTCTAR ATATTATAAT TTCTGTTGAG GCACCGGTGG GAARRAAMAT ACTGCCAGGA >
ANFFT M TE caa agt gaa tca aaa gca aca aat gcc acc tta gat ccc cgg tca ttt ctt ctc agg 2
GARRTACCGT CTTTICTTAA TGTTTCRGAA C CTCACATATA N P N D K Y B P F W E D E E K N BE S G |=
TATGTATATA TGTCIGIGIG TATATATGIC TATACGGATA TGTCTGTATA CGATGITTAG =
GCATAATTTG GTTATGTATA ATTTTAGRAA TAAGCTTICC CAAATATAAT TATTTCACTT aac ccc aat gat aaa tat gaa cca ttt tgg gag gat gag gag aaa aat gaa agt ggg | &
TGAACATGTC TTCTATTGIG GTAGCTTATA TAACTTCCIC ATTGTICTGA AATGAACTAC " £
TTTGAGACAG GATTGTATGC RGGACTCTGT CAGGCCACAG GGCARTCRAT TAGGAGGAGE L TEYRLYVSIDNEKSSPLOEKOQOQL a
AARCCARCTT AARCRARRGG CAGCCGTCTG CAARRGGRAC GATCCITARA tta act gaa tac aga tta gtc tcc atc aat aaa agc agt cct ctt caa aaa caa ctt | @
TTGAGTTCCC TGCTTAAGGG A T @
TTATGGTTIC TCTGAGAGGA GAAGCCRCAR AGCTGAGCCA TGGTTGCRAG GAAATGAGTT P A F I S E D A S G ¥ L T S S W L T L |3
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TCAGARACAC TGCACCARAT GGARRCCRAR RAARRAARTC CTAGTCAGTT GOGTGICGTT
TTATARRTAR CATTGARCAR GGAGCACGAT TCTGAAGGAA AGACRGTTIC TAACGAATAG ttt gtc cca tct gtg tac acc gga gtg ttt gta gtc agc ctc cca cta aac atc atg
AAGATCTAGG GGGTGCCCGA TCTGAARTAT TC TGTGTGITT
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hPAR1-KI allele: predicted coding sequence and protein

Par3 Signal Peptide

S3 Fig. Sequence annotation for the hPAR1-KI allele. (A) Predicted genomic DNA
sequence for the hPAR1-KI allele, showing Par3 exon 1 highlighted in grey, the position of
primers 3F and 4R in red, the loxP site in yellow, and PAR1 exon 2 in blue. Red text indicates
the sequence output of the PCR product from primers 3F and 4R, which was identical to the
predicted genomic DNA sequence. (B) Annotated sequence of the predicted coding sequence
and protein chimera, comprising the Par3 signal peptide (grey text) and PAR1 mature receptor
(blue text). Red text indicates sequenced PCR product amplified from genomic DNA of

hPAR1-KI mice, aligning to the predicted region of PAR1 coding sequence.
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S4 Fig. Confirmation of platelet permeabilization. Platelets isolated from a mouse (left) or

human (right) were either left intact (top) or were permeabilized with saponin (0.1%; bottom)

prior to incubation with an antibody against the intracellular C-terminal of GPIb (grey) or

isotype control (red). The GPIb tail antibody produced a rightward shift over isotype only in

permeabilized platelets of both species, confirming successful permeabilization. Data shown

are representative traces of n=3 individual experiments.
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S1 Table. Whole blood cell counts from wild type and hPAR1-KI mice.

Wild type hPAR1-KI
WBC (103/pL) 7.3+3.2 7.1+29
RBC (10°/pL) 9.4+12 9.6+0.7
PLT (10°/pL) 887 + 50 888 + 98

WBC = white blood cells, RBC = red blood cells, PLT = platelets.
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Chapter 5 - Inhibition of protease-activated receptor 4 (PAR4) with
function-blocking antibodies provides equivalent antithrombotic activity in

the face of the hyper-reactive Thr120 PAR4 variant

5.1 Introduction

Despite the lack of an appropriate small animal model to test any novel PAR4 inhibitors in
vivo, the studies of Chapter 2 coupled with other preclinical and clinical advances with PAR4
antagonists pointed to the overall feasibility of this approach. Specifically, Chapter 2 showed
that selective inhibition of PAR4, but not of PAR1, impairs platelet procoagulant function,
leading to marked reductions in thrombin generation and fibrin formation during human
thrombus formation. This distinct antithrombotic mechanism of action suggests PAR4
inhibition is a viable alternative approach for novel therapy. Toward this goal, a series of small
molecule PAR4 inhibitors have been developed, with one of these (BMS-986120) undergoing
extensive preclinical testing in non-human primate models and another (BMS-986141)
undergoing a phase 2 trial for prevention of transient ischemic attack (NCT02671461). When
taken together, there is now substantial rationale for PAR4 antagonism as an antithrombotic

approach.

However, as discussed in Chapter 1, a number of PAR4 polymorphisms have recently been
described — at least one of which appears to be clinically relevant and may impact on the
efficacy of PAR4 antagonists. The recently reported PAR4 variant (at rs773902, encoding a
threonine or alanine at amino acid position 120; Thr'?° or Ala!?), is expressed in 20 — 80% of
individuals depending on the population. The Thr!? variant was shown to render the receptor
more sensitive to agonists and less sensitive to antagonists — specifically, near-resistance to the
small molecule orthosteric PAR4 antagonist, YD-3. These surprising findings suggest the

effectiveness of current strategies to inhibit PAR4 may vary significantly between individuals
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and indicate that a different approach to receptor inhibition may be required for indiscriminate

PAR4 antagonism across the population.

To address this, the studies of Chapter 5 generated the first human monoclonal inhibitory
antibodies against the PAR4 thrombin-cleavage site and examined their activity against the
Ala? and Thr!?® PAR4 variants. This approach yielded a potent, specific, and highly effective
inhibitory antibody that inhibits PAR4 and provides marked antithrombotic effects
independently of PAR4 genotype. These findings reveal antibody-mediated inhibition of PAR4
cleavage and activation provides robust antithrombotic activity independently of PAR4 variant

expression, and provide rationale for such an approach for improved antithrombotic therapy.

This chapter has been submitted for publication as:

French SL, Thalmann C, Sleeman MA, Hamilton JR. Inhibition of protease-activated receptor
4 (PAR4) with function-blocking antibodies provides equivalent antithrombotic activity in the

face of the hyper-reactive Thr120 PAR4 variant.
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Abstract

Thrombin activates human platelets via two protease-activated receptors (PARs), PAR1 and
PAR4, and both are antithrombotic drug targets —a PARL1 inhibitor is approved for clinical use
and a PAR4 inhibitor is in trial. However, a sequence variant in human PAR4 (rs773902,
encoding Thr120 in place of Alal20), expressed in 20 — 80% of individuals depending on the
population, renders the receptor more sensitive to agonists and less sensitive to antagonists.
Here, we develop the first human monoclonal function-blocking antibody to human PAR4
(hPAR4) and show it provides equivalent efficacy against the Alal20 and Thr120 PAR4
variants. This candidate was generated from a panel of anti-hPAR4 antibodies and was
screened for specific inhibitory activity against the Alal20 and Thrl20 PAR4 variants in
cultured cells, isolated platelets, and an ex vivo whole blood thrombosis assay. The antibody
binds hPAR4 with high selectivity (16-fold over PAR1, PAR2 and PAR3) and affinity (Kp =
0.4 nM) and is capable of near-complete inhibition of thrombin cleavage of either the Alal120
or Thr120 PARA4 variant transfected into HEK293T cells. Platelets from individuals expressing
the Thrl20 PAR4 variant exhibit increased thrombin-induced aggregation and
phosphatidylserine exposure versus those with the Alal20 PAR4 variant, yet the hPAR4
antibody inhibited these responses equivalently (ICso ~ 5 pug/ml). In support of these in vitro
findings, the antibody significantly impairs platelet procoagulant activity in an ex vivo
thrombosis assay, with equivalent inhibition of fibrin formation and overall thrombus size in
blood from individuals expressing the Alal20 or Thr120 PAR4 variant. These findings reveal
antibody-mediated inhibition of PAR4 cleavage and activation provides robust antithrombotic
activity independently of PAR4 variant and provide rationale such an approach for

antithrombotic therapy.
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Introduction

Protease-activated receptors (PARs) are G protein-coupled receptors that are present on the
surface of a range of cells and respond to a variety of proteases (for review, see (1)). Human
platelets express two PARs, PAR1 and PAR4, and these receptors are primarily responsible for
mediating the platelet-activating effects of the key coagulation protease, thrombin (2). Due to
this central function in platelet biology, both platelet PARs have been the focus of
antithrombotic drug development. The initial strategy was to inhibit PAR1 as it has an
approximate 30-fold greater affinity for thrombin than PARA4. This approach led to the recent
approval of the first PAR1 inhibitor, vorapaxar, for the prevention of myocardial infarction and
peripheral arterial disease (3,4). However, the clinical utility of vorapaxar is limited by
increased rates of major bleeding in patients on the drug (5). As a result, there is now emerging

interest in targeting PAR4 as a safer antithrombotic approach.

There is substantial rationale for developing PAR4 inhibitors as antithrombotics (for review,
see (6,7)). One key point of distinction between PAR1 and PAR4 is the different signaling
kinetics of the two receptors and the impact this has on the regulation of platelet function.
Specifically, PAR4 contains an anionic sequence downstream of the thrombin cleavage site
which serves to prolong the thrombin-receptor interaction (8). One effect of the lower affinity
but more prolonged interaction between thrombin and PAR4 versus PAR1 is that activation of
PAR4 induces a more sustained, albeit weaker, intracellular signal than the robust and acute
signal elicited downstream of PAR1 (9). This has been most obviously observed with the
kinetics of PAR-induced calcium signaling. In the setting of platelet function, prolonged
calcium signaling drives the procoagulant response. Indeed, selective inhibition of PAR4, but
not of PARL, specifically impairs platelet procoagulant function, leading to marked reductions
in thrombin generation and fibrin formation during human thrombus formation (10). This

distinct antithrombotic mechanism of action suggests PAR4 inhibition is a viable alternative
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approach for novel therapy. Toward this goal, a series of small molecule PAR4 inhibitors have
been developed, with one of these (BMS-986141) undergoing a phase 2 trial for prevention of
transient ischemic attack (NCT02671461). Proof-of-concept studies were performed using the
related compound, BMS-986120, which afforded impressive antithrombotic activity in
cynomolgous monkeys with a safety profile that exceeded that of the P2Y1, antagonist,
clopidogrel (11). Together, these studies provide strong rationale for pursuing PAR4

antagonists as novel antithrombotics.

However, a number of PAR4 polymorphisms have recently been described — at least one of
which appears to be clinically relevant and may impact on the efficacy of PAR4 antagonists.
The recently reported sequence variant in human PAR4 (rs773902, encoding either a threonine
or alanine at amino acid position 120; Thr120 or Alal20), is expressed in 20 — 80% of
individuals depending on the population, and renders the receptor more sensitive to agonists
and less sensitive to antagonists (12,13). Specifically, platelets from individuals expressing the
Thr120 variant of PAR4 exhibit increased responsiveness to a PAR4-selective activating
peptide and resistance to the small molecule orthosteric PAR4 antagonist, YD-3, when
compared with individuals expressing the Alal20 variant (13). In both cases, individuals
heterozygous for the SNP displayed an intermediate phenotype. These surprising findings
suggest the effectiveness of current strategies to inhibit PAR4 may vary significantly between
individuals and indicate that a different approach to receptor inhibition may be required for

indiscriminate PAR4 antagonism across the population.

To address this, we utilized Veloclmmune® HumAb mice to generate the first human
monoclonal inhibitory antibodies against PAR4. We targeted the thrombin cleavage site of the
receptor and examined the activity of antibodies against the Alal20 and Thr120 PAR4 variants
in cultured cells, isolated platelets, and an ex vivo whole blood thrombosis assay. Although

there have been a number of previous reports of function-blocking PAR4 antibodies (14-16),

72



including our own (10), effective inhibition of thrombin-induced receptor activation has been
limited. However, our approach yielded a potent, specific, and highly effective inhibitory
antibody that inhibits PAR4 and provides marked antithrombotic effects independently of
hPAR4 genotype. These findings reveal antibody-mediated inhibition of hPAR4 cleavage and
activation provides robust antithrombotic activity independently of hPAR4 variant expression,

and provide rationale for such an approach for improved antithrombotic therapy.
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Materials and Methods
Materials

The following reagents were stored according to manufacturer’s instructions: Alexa Fluor 488-
conjugated goat anti-mouse IgG (BD Biosciences, San Jose, CA, USA), mouse IgG; isotype
(Santa Cruz Biotechnology, Dallas, TX, USA), anti-CD4la (BD Biosciences), FITC-
conjugated anti-FLAG antibody (clone M2, Sigma-Aldrich, St Louis, MO, USA), Dylight650-
conjugated anti-fibrin antibody (clone 59D8 (17) generous gift from Dr Vivien Chen,
University of New South Wales, Australia), anti-CD9-PE (BD Biosciences), Alexa Fluor 488-
conjugated annexin-V (Sigma-Aldrich), hPAR4 immunising peptide
(GGDDSTPSILPAPRGYPGQVC-KLH), hPAR4 naked peptide (GGDDSTPSILPAPRGYPG
QVC), hPAR4 biotinylated peptide (GDDSTPSILPAPRGYPGQVC-GGGGSKB), hPAR3
biotinylated peptide (AKPTLPIKTFRGAPPNSF-GGGGSKB), hPAR2 biotinylated peptide
(SCSGTIQGTNRSSKGRSL-GGGGSKB), hPARL1 biotinylated peptide (SKATNATLDPRS
FLLRNP-GGGGSKB) (all from Auspep, Melbourne, Australia), PAR4-activating peptide
(PAR4-AP; AYPGKF) and PAR1-activating peptide (PAR1-AP; TFLLR) were synthesized by
Prof Philip Thompson (Monash University, Australia), vorapaxar (Axon Medchem, Reston
VA, USA), human a-thrombin (Sigma-Aldrich), calcium ionophore A23187 (Sigma-Aldrich),
bovine type 1 collagen (Sigma-Aldrich), and hirudin (lepirudin, Celgene, Summit, NJ, USA).
For thrombin measurements in whole blood, a fluorescence resonance energy transfer (FRET)-
based thrombin activity sensor (Thr-SP, CPC Scientific, Sunnyvale, CA, USA), was linked to

the anti-CD41a antibody via CLICK chemistry as previously described (18).
Antibody production and purification

Immunizations were undertaken in Velocimmune® HumAb mice (generously provided by

Regeneron Pharmaceuticals), which have been genetically modified by replacing the variable
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regions of the mouse heavy and light chain Ig loci with the corresponding human sequence to
produce antibodies that have human variable regions with the mouse constant regions (19,20).
All mouse studies were approved by the Monash University Animal Ethics Committee. 14
week old HumAb mice were injected subcutaneously with a KLH-coupled peptide
corresponding to a region spanning the thrombin cleavage site of PAR4
(GDDSTPSILPAPR/GYPGQVC-KLH, where / indicates the thrombin cleavage site; 25 pg in
Freund’s complete adjuvant) with 3 boosts given every 2 weeks for 6 weeks. After the final
boost, primary splenocytes were isolated and fused with myeloma Sp2/0 cells, and plated onto
96 well plates to generate antibody-producing hybridomas. Supernatants from the resulting
hybridomas were screened for high affinity specific hPAR4 antigen-positive lines using
microarray (Arraviet Super Marathon, ArrayJet, UK) and standard ELISA. Cross reactivity to
hPAR1, hPAR2 and hPAR3 was also measured. Specific hPAR4 clones were subcloned to
monoclonality by limiting dilution. Specific hybridoma lines were expanded, adapted to serum
free and suspension culture, and purified anti-hPAR4 antibody was isolated by standard affinity

chromatography procedures using Protein A/G sepharose.

Surface plasmon resonance binding studies

The binding kinetics of purified antibody were determined via surface plasmon resonance
(SPR; Bio-Rad ProteOn XPR36). Biotinylated hPAR1, hPAR2, hPAR3 or hPAR4 peptides (25
png/mL) were captured on the ProteOn NLC biosensor chip consisting of NeutrAvidin surface
bound to the alginate polymer. Varying antibody concentrations (6.25 — 100 nM) were flowed
across the channels. The data were analyzed using Proteon Manager software with a Langmuir

interaction model that assumes a 1:1 binding interaction between the peptide and antibody.
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Human blood samples

All human studies were approved by the Monash University Human Research Ethics
Committee. Blood was collected after informed consent from healthy adults (21 — 50 years old,
of both sexes) who had not taken anti-platelet medications in the past 10 d. Blood was drawn
from the antecubital vein using a 19 gauge butterfly needle into syringes containing either one-
seventh acid citrate dextrose (ACD; 7:1 v/v, final concentration) for platelet isolation or one-
tenth volume trisodium citrate (0.32% wl/v, final concentration) for whole blood flow

experiments and DNA extraction.
PAR4 genotyping

Genomic DNA was extracted from the buffy coat of blood samples collected in citrate, using
the DNEasy Blood and Tissue Kit (Qiagen, Hilden, Germany) as per manufacturer’s
instructions. Samples were genotyped at rs773902 using the TagMan SNP Genotyping Assay
(Assay C-7493801-10, ThermoFisher Scientific).

Flow cytometry

Antibody binding to native PAR4 on the platelet surface was determined using flow cytometry.
Platelets were isolated from human whole blood collected in ACD as previously described
(10). Isolated platelets (1 x 10° cells) were then incubated with anti-PAR4 antibody (10
pg/mL), anti-human CD41a (10 pg/mL), or isotype control (mouse IgG1, 10 pg/mL) for 30
min at 37°C. Cells were then fixed with paraformaldehyde (2% final concentration) for 30 min
at room temperature. The suspension was centrifuged at 1000 x g for 2 min to obtain the platelet
pellet, which was then resuspended in modified Tyrode’s buffer (12 mM NaHCOs3, 10 mM
HEPES pH 7.4, 137 mM NacCl, 2.7 mM KCI, 5.5 mM D-glucose, 1.8 mM CaCl, 5% bovine
serum albumin) containing 10 pg/mL Alexa488-conjugated anti-mouse 1gG. After 30 min at

37°C the samples were centrifuged again and the platelet pellet resuspended in modified
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Tyrode’s buffer and analyzed using a flow cytometer (FACSCalibur; BD Biosciences) and

FlowJo software (v10).
PAR4 cleavage assay

FLAG-tagged Alal20-PAR4 or Thr120-PAR4 expression vectors (pBJ-FLAG-PAR4-120A-
296F and pBJ-FLAG-PAR4-120T-296F, a generous gift from Prof. Paul Bray (University of
Utah, Salt Lake City, Utah)) were transiently transfected into HEK293T cells using
Lipofectamine 2000 (ThermoFisher Scientific), as per the manufacturer’s instructions. Cells
were harvested 48 h after transfection, washed twice with PBS, and resuspended to 1 x 10°
cells/mL. Cells were then pre-treated with either anti-PAR4 antibody (1 — 100 pg/mL), or
matched isotype control (mouse 1gG1; 100 pg/mL) for 15 min at 37°C, before being stimulated
with thrombin (2 U/mL) for 10 min. The reaction was stopped with hirudin (8 U/mL). Samples
were then incubated with FITC-conjugated anti-FLAG antibody (10 pg/mL) for 1 h at room

temperature and analyzed by flow cytometry (FACSCalibur) and FlowJo software (v10).
Platelet aggregation

Platelet aggregation was measured by light transmission aggregometry in a 96-well plate
format as previously described (21). Human isolated platelets (2 x 108/mL) were stimulated
with varying concentrations of thrombin (0.0178 — 1 U/mL), PAR4-AP (10 — 100 uM), or
PAR1-AP (3 — 30 uM). The plate was analysed at 37°C in a FLUOstar OPTIMA plate reader
(BMG Labtech, Ortenberg, Germany) using a 595 nm excitation filter, for a period of 50 min

(10 read cycles with 5 min double orbital shake period between each read). Aggregation was

OD(No Agonist)—0OD(Agonist)

calculated as .
OD(No Agonist)—0D(blank)

%X 100 at the time point where aggregation was at a

maximum. Optical density was normalised against the blank (maximum) and unstimulated

platelets (minimum) and expressed as % maximum. For antagonist studies, platelets were pre-
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treated for 15 min at 37°C with anti-PAR4 antibody (1 — 100 pg/mL), vorapaxar (90 nM), a

combination of both, or their vehicle controls (mouse IgG: and 1% DMSO, respectively).
Phosphatidylserine exposure

Phosphatidylserine (PS) exposure on the platelet surface was used as a measure of platelet
procoagulant activity. Here, isolated platelets (1 x 10° cells) were stimulated with increasing
concentrations of either PAR4-AP (0.1 — 3 mM), thrombin (0.1 — 3 U/mL), or calcium
ionophore (20 uM) for 30 min at 37°C. Alexa Fluor 488-conjugated annexin V (1:100 dilution)
was added after agonist stimulation for PS detection. After the 30 min stimulation, samples
were fixed with paraformaldehyde (2% final concentration) and resuspended in a modified

Tyrode’s buffer for flow cytometry analysis, as above (FACSCalibur).

Whole blood thrombosis assay

Human whole blood collected in citrate (3.2%) was pre-incubated for 15 min at 37°C with PE-
conjuated anti-CD9 antibody (4 pg/mL), Thr-SP (5 uM), and a Dylight650-conjugated anti-
fibrin antibody (5 pg/mL), plus either the anti-PAR4 antibody (0.1 mg/mL) or hirudin (800
U/mL). Whole blood was re-calcified with 10 mM CaCl, (final concentration) to initiate
coagulation, and drawn over glass microslides (1 x 0.1 mm internal diameter; Vitrotubes,
Vitrocom, NJ, USA) coated with bovine type 1 collagen (250 pg/ml) using a Harvard pump
(Instech Laboratories, PA, USA) at a fixed flow rate of 0.06 mL/min, resulting in a wall shear
rate of 600 s™*. Tri-colour confocal fluorescence images were recorded at 488, 561 and 647 nm
excitation, collected through a 25x water immersion objective. Thrombi were formed over 3
min of blood flow after which calcium-free Tyrode’s buffer was flowed over the thrombi.
Confocal z-stacks encompassing the entire height of the thrombus field were continuously
recorded (Z step 2 um; Nikon A 1r, with NIS software) over a period of 10 min. Offline analysis

of thrombi parameters was performed using NIS software. Image series were initially
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thresholded empirically, and then the same threshold applied to all subsequent experiments,
since identical experimental and confocal settings were used throughout. Platelet thrombi were
defined using anti-CD9-PE, and thrombin activity and fibrin volume were quantified using
average fluorescence of the thrombus field. Data were normalised against the hirudin baseline,

and expressed as a percentage of the control.

Statistical analyses

Statistical analyses were performed using GraphPad Prism software (v6.0). Significance was
defined at p < 0.05 as determined by either unpaired, two-tailed, Student’s t-test or one-way
ANOVA with Dunnet’s post-hoc test for multiple comparisons, as indicated in the relevant

figure legends.
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Results
Development of a human monoclonal function-blocking antibody against PAR4

VeloclImmune® HumAb mice were immunized with a KLH-linked peptide corresponding to a
region of hPAR4 spanning the thrombin cleavage and activation site
(GDDSTPSILPAPRGYPGQVC-KLH) (Figure 1A). Serum titres from routine bleeds were
monitored and spleens from the highest producing mice were harvested. Splenocytes were then
fused with Sp2/0 cells and resulting hybridomas (~ 5000) were screened for binding to the
naked version of the immunizing peptide by microarray and confirmed secondarily by ELISA.
ELISA-based antigen screening showed that clone mAb-5RC3 (mAb-RC3) bound naked
hPAR4 peptide with a 16-fold selectivity over any of hPAR1, hPAR2, or hPAR3 peptides, and
did not bind to mouse PAR4 (Figure 1B). SPR confirmed binding of clone mAb-RC3 to the
target antigen and estimated it bound the immunizing peptide with a Kp of ~ 0.4 nM (Figure
1C). We also confirmed mAb-RC3 bound native PAR4 on human platelets. Here, mAb-RC3
(10 pg/mL) bound to a purified human platelet preparation, with a rightward shift in

fluorescence intensity over that produced by a mouse 1gG; isotype (Figure 1D).

mADb-RC3 inhibits thrombin cleavage of both Ala120 and Thr120 PAR4 variants

We next examined the function-blocking activity of the clone mAb-RC3 in a bioassay of
thrombin-induced cleavage of PAR4. In HEK293Ts transfected with plasmids containing
either Alal20-PAR4 or Thr120-PAR4 with an N-terminal FLAG-tag, thrombin caused a
similar concentration-dependent loss of FLAG epitope, with a maximum cleavage of receptor
of approximately 60% in both cases (Figure 2A). Under conditions of maximum PAR4
cleavage, mAb-RC3 inhibited receptor cleavage in a concentration-dependent manner (Figure
2B). This effect was not different between the Alal120 and Thr120 PAR4 variants (Figure 2B).

Pre-treatment with the highest concentration of mAb-RC3 examined (100 pg/mL) almost
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prevented thrombin cleavage of either PAR4 variant, with only ~ 5% residual loss of the FLAG

epitope detected (Figure 2B).

mADb-RC3 inhibits the enhanced platelet aggregation elicited by the Thr120-PAR4 variant

To date, the heightened PAR4 response in platelets from individuals expressing the Thr120
PAR4 variant has only been demonstrated in response to the PAR4-specific agonist peptide,
PAR4-AP, and only in a North American population (13). Therefore, we first confirmed this
phenotype in our local (Australian) cohort. In line with previous observations (13), we observed
a significant increase in platelet aggregation induced by PAR4-AP in individuals expressing
the Thrl20 variant versus those expressing the Alal20 variant (Figure 3A). Platelets from
heterozygous individuals displayed a similar increase in responsiveness to PAR4-AP (Figure
3A). We next determined whether this hyper-reactivity in platelets from individuals with the
Thr120 allele also occurred in response to the physiological PAR4 agonist, thrombin, since this
has not been previously reported. Although thrombin—induced aggregation was increased in
platelets from Thr120 individuals (homozygous or heterozygous) versus those from Alal20
individuals, this effect was less obvious than that observed in response to PAR4-AP (Figure
3B). To isolate the PAR4-dependant effects of thrombin in this assay, platelets were treated
with the PAR1 antagonist, vorapaxar, at a concentration (90 nM) we have previously shown
sufficiently blocks PARL1 activation under these conditions (21). Here, we observed a further
dampening of the PAR4 genotype-dependent difference in platelet aggregation (Figure 3C).
Regardless, mAb-RC3 caused a concentration-dependent inhibition of this thrombin-induced,
PAR4-dependent, platelet aggregation. mAb-RC3 almost abolished aggregation at the highest
concentrations examined (30 or 100 pg/mL), with indistinguishable effects across donors
expressing the various PAR4 variants (Figure 3D) and with an estimated 1Csg of 5.8 pg/mL

(Figure 3E).
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mADb-RC3 inhibits the enhanced platelet procoagulant response elicited by the Thr120-PAR4

variant

The generation of procoagulant platelets is important for thrombus growth and stability (22,23),
and thrombin-induced procoagulant platelet production is mediated predominantly by PAR4
(10). Therefore, we next examined the sensitivity of thrombin-induced procoagulant platelet
production (assessed by annexin V binding to surface-exposed PS) in donors expressing the
Alal20 versus Thr120 PAR4 variant, and the ability of mAb-RC3 to inhibit this response. We
observed a strikingly similar trend to the aggregation studies in Figure 3. First, PAR4-AP
induced a greater increase in PS on platelets expressing the Thrl20 PAR4 variant
(heterozygous or homozygous) than on those expressing the Alal20 PARA4 variant (Figure 4A).
Second, the same, less obvious, trend was observed in response to thrombin (Figure 4B). Third,
mADb-RC3 concentration-dependently inhibited thrombin-induced PS exposure independently
of PAR4 genotype, again nearly abolishing the response at the highest concentrations examined

(100 pg/mL) in platelets expressing either of the PAR4 variants (Figure 4C).

mADb-RC3 inhibits human thrombus formation independently of PAR4 variant expression

Finally, the antithrombotic activity of mAb-RC3 was assessed in a human whole blood
thrombosis assay in which coagulation remains intact (10). Specifically, we measured platelet
deposition, thrombin generation, and fibrin deposition in real time in blood from individuals
expressing the Alal20 or Thr120 PAR4 variant (Figure 5A). Perhaps surprisingly, there was
no significant difference in the extent of any of platelet deposition, thrombin generation, or
fibrin deposition between donors expressing the various PAR4 variants (Figure 5B,C).
Importantly, and in support of the procoagulant platelet response experiments of Figure 4,
pretreatment of blood with mAb-RC3 alone was sufficient to significantly reduce thrombin

generation (~ 40%) and fibrin formation (~ 60%) in formed thrombi (Figure 5D,E). As in the
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in vitro experiments, this reduction in thrombin and fibrin occurred independently of PAR4
genotype as it was evident in blood taken from individuals expressing the Alal20 or Thr120
PAR4 variant and in individuals who genotyped as heterozygous at the allele (Figure 5B,C).
As predicted from the in vitro experiments in Figure 4, the effect of mAb-RC3 on fibrin
formation (~ 60% reduction; Figure 6C) was more pronounced than that on platelet deposition
(~ 30% reduction; Figure 6B). Together, the overall impact of mAb-RC3 pretreatment was a
marked reduction in total thrombus volume (> 50%; Figure 6D). Again, the antithrombotic
effect of mAb-RC3 was independent of PAR4 genotype, occurring in 12 of 14 individuals
examined (Figure 6E). Indeed, mAb-RC3 only failed to provide an antithrombotic effect in the
two individuals with the lowest baseline thrombotic response (Figure 6E). These studies
indicate that PAR4 inhibition with the function-blocking monoclonal antibody developed here
affords equally effective anti-platelet and antithrombotic effects in individuals regardless of

their expression of the sequence variant of PAR4 at rs773902.
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Discussion

We have generated the first human monoclonal function-blocking antibody against the platelet
thrombin receptor, PAR4. We utilized Velocimmune® HumAb mice to generate human
monoclonal antibodies directed against the thrombin cleavage site of PAR4 — a strategy similar
to one we have used previously to generate a specific antagonist of thrombin-induced PAR4
activation (10). One clone (mMAb-RC3) demonstrated specific and high-affinity binding to
PAR4, and effective inhibition of thrombin-induced PAR4 cleavage and activation that
markedly improves on previous antibody-based approaches (14-16). Importantly, mAb-RC3
inhibits the Alal120 PAR4 variant and the hyper-reactive Thr120 PAR4 variant equally well in
isolated platelets and provides equivalent antithrombotic effects in blood from individuals
regardless of their PAR4 genotype. These studies thereby provide a new agent for PAR4

inhibition that may have broad clinical utility.

There are now a number of PAR4 inhibitors (11,24,25), with one small molecule (BMS-
986141) being evaluated in clinical trials (NCT02341638, NCT02671461). However,
specificity and efficacy have proven especially challenging. Binding analyses performed here
indicate mAb-RC3 binds PAR4 with high affinity (Kp ~ 0.5 nM) and with almost no cross
reactivity to other PARs. Furthermore, mAb-RC3 appears significantly more effective than
previous antibodies (10,14-16). In addition to the usual challenges of specificity and efficacy,
the recent discovery of a clinically significant PAR4 variant (rs773902) has raised additional
issues for PAR4 antagonism, with the Thr120-PAR4 variant exhibiting increased sensitivity to
agonists and an insensitivity to at least one small molecule antagonist (13). The mAb-RC3
antibody developed here appears to completely overcome this, suggesting antibody-based
inhibition of PAR4 may be required for effective and well-controlled antithrombotic activity

across the population.
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The Thr120-PAR4 variant has previously been associated with up-regulated platelet responses
to a PAR4 activating peptide (13). Our findings extend on this to indicate the heightened
response also occurs in response to PAR4’s physiological agonist, thrombin, with platelets
from individuals expressing the Thr120 PAR4 variant exhibiting increased thrombin-induced
aggregation. The mechanism by which the amino acid change at position 120 (located in the
second transmembrane domain) impacts PAR4 function remains unknown. Our data suggest it
IS not due to changes in receptor cleavage since the cleavage-site spanning mAb-RC3 was
equally effective at inhibiting PAR4 cleavage and activation in Thr120 and Alal20 PAR4
variants. Whether or not interactions at the ligand binding domain within the second
extracellular loop are involved remain untested, but are consistent with the findings from us
and others (13) showing differences in responses to PAR4 activating peptides and small

molecule antagonists that act at this site.

We have previously shown that PAR4 activation via thrombin drives procoagulant platelet
activity (10). Here, we extended on these studies to provide the first evidence for a heightened
production of procoagulant platelets in individuals expressing the Thr120-PAR4 variant. That
this response was also inhibited by mAb-RC3 provides further rationale for its use as an
antithrombotic approach. Although a similar trend of increased platelet procoagulant activity
in response to PAR4-AP was observed with thrombin, consistent with our experiments
examining platelet aggregation, the extent of any increase with thrombin was far less apparent
than with PAR4-AP. This observation may explain the lack of correlation between PAR4
genotype and ex vivo thrombus formation observed here. We observed no differences in any of
platelet deposition, thrombin generation, fibrin formation, or total thrombus volume between
donors of different PAR4 genotypes. Whether the increased platelet sensitivity to thrombin is
truly insufficient to cause effects in the more involved whole blood system will require more

thorough examination — for example in a greater number of individuals and across a range of
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thrombogenic conditions. However, regardless of the impact of the sequence variant of PAR4
at rs773902 on thrombus formation, mAb-RC3 alone was sufficient to provide a marked
antithrombotic effect in almost all donors examined. As predicted by our in vitro studies, this
effect was largely driven by a reduction in platelet procoagulant activity and subsequent fibrin
formation, although some contribution by impaired platelet deposition was also apparent. The
marked antithrombotic effect provided by mAb-RC3 in blood from donors of all PAR4
genotypes suggests directly targeting the thrombin cleavage site may be required for effective
and consistent PAR4 inhibition across the population. Given the efficacy and relative safety of
PAR4 inhibition in animal models (11), determining the antithrombotic effects of mAb-RC3
in human blood in combination with other anti-platelet agents that target distinct aspects of

thrombus formation (e.g. aspirin, P2Y 1> receptor antagonists) will be of interest.

Conclusion

We have developed a human monoclonal PAR4 antibody that is a highly selective and effective
inhibitor of PAR4 cleavage and activation. This function-blocking PAR4 antibody impairs
thrombin-induced PAR4 cleavage, platelet activation, and pro-thrombotic activity equivalently
in the face of expression of either the Alal20 or Thr120 PAR4 variant. These findings reveal a
novel approach to PAR4 inhibition that overcomes the impaired sensitivity of existing
approaches against the commonly expressed Thr120-PAR4 variant, and provide rationale for

such an approach for improved antithrombotic therapy.
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Figure 1. Development of a human monoclonal function-blocking antibody against human PAR4 (mAb-
RC3). (A) HumAb mice were immunized with a KLH-coupled peptide corresponding to a region in the N-

terminus of hPAR4 spanning the thrombin cleavage site (GDDSTPSILPAPRGYPGQVC-KLH, bold font
indicated thrombin cleavage site). (B) Initial ELISA-based antigen screening showed mAb-5RC3 (mAb-RC3)
bound native human PAR4 peptide (hPAR4) with a 16-fold selectivity over human PAR1, 2, or 3 peptides, while
mAb-5RB4 bound all four peptides similarly. (C) Binding was confirmed by SPR analysis which showed that
mADb-RC3 bound native PAR4 peptide with a Kp ~ 0.4 nM. (D) mAb-RC3 (10pg/mL) binding to human PAR4
on the platelet surface was confirmed by flow cytometry. Note a rightward shift in fluorescence intensity compared
to the matched Isotype control (mouse 1gGs, dashed line). The platelet-specific anti-CD41a antibody (grey line)

was used as a positive control. (C-D) Data are representative images of n=3 independent experiments.
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Figure 2. mAb-RC3 inhibits thrombin cleavage of both Alal20 and Thr120 PAR4 variants. Thrombin
cleavage of PAR4 was assessed in HEK293T cells transiently transfected with either Alal20-PAR4 or Thr120-
PAR4 variants with an N-terminal FLAG tag. (A) Cells were stimulated with increasing concentrations of
thrombin (0.1 — 2 U/mL) and receptor cleavage measured as a loss of FLAG-epitope using a FITC-conjugated
anti-FLAG antibody by flow cytometry. (B) Pre-incubation of transfected cells with mAb-RC3 (1-100 pg/mL)
before thrombin stimulation (2 U/mL) provided equivalent and near-complete inhibition of thrombin cleavage of

either PAR4 variant. Data is mean £ SEM of n=3 experiments.
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Figure 3. mAb-RC3 inhibits the enhanced platelet aggregation elicited by the Thr120-PAR4 variant.
Aggregation of human isolated platelets from donors subsequently genotyped as homozygous at rs773902 for
Thr120, Alal20, or as heterozygous. Shown are concentration-response curves to (A) PAR4-AP, (B) thrombin,
and (C) thrombin in the presence of the PAR1 inhibitor vorapaxar (90 nM). Also shown are (D) concentration-
inhibition curves to mAb-RC3 on responses to thrombin (0.1 U/mL) in the presence of vorapaxar (90 nM),
indicating antibody-mediated PAR4 inhibition is equally effective across all genotypes, and (E) 1Cso of mAb-RC3
derived from pooled data from (D). All data are mean + SEM from n=3-6 experiments per genotype. *, P < 0.05

(one-way ANOVA with Dunnet’s test for multiple comparisons).

93



>
w
@]

= 301 = 30+ = 309 Thrombin
R X 2
p ° > rs773902:
2 = =
= 204 = 20+ = 20 £ -0~ Thr120
[o] * * (o] [o]
o o o -0 Het
> > > L
£ 101 £ 101 £ 10 -8~ Ala120
3 > =
(] Q ]
= c c
c c c
< ol < o < 4.

10 100 1000 0.1 1 10 0 10 100

[PAR4-AP] (M) [Thrombin] U/mL [RC3] ng/mL

Figure 4. mAb-RC3 inhibits the enhanced platelet procoagulant response elicited by the Thr120-PAR4
variant. Production of procoagulant (annexin V-binding) platelets in human isolated platelet preparations from
donors subsequently genotyped as homozygous at rs773902 for Thr120, Alal20, or as heterozygous. Shown are
concentration-response curves to (A) PAR4-AP and (B) thrombin. Also shown (C) are concentration-inhibition
curves to mAb-RC3 on responses to thrombin (1 U/mL), indicating antibody-mediated PAR4 inhibition is equally
effective across all genotypes. All data are mean + SEM from n=3-6 experiments per genotype. *, P < 0.05 (one-

way ANOVA with Dunnet’s test for multiple comparisons).
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Figure 5. mAb-RC3 inhibits platelet procoagulant activity during ex vivo human whole blood flow. (A)
Representative images and (B-E) quantitation of human thrombi formed after 3 minutes of a whole blood
thrombosis assay using donors subsequently genotyped as homozygous at rs773902 as Thr120, Alal20, or as
heterozygous. (A) Shown are thrombin (green, Thr-SP), fibrin (purple, anti-fibrin antibody) and brightfield image
of thrombi. Note that the direct thrombin inhibitor, hirudin (800 U/mL), abolished thrombin activity and fibrin
volume despite continued platelet deposition. Scale bar = 20um. No differences in (B) thrombin or (C) fibrin
volume were observed between thrombi formed in individuals expressing the indicated PAR4 genotypes. Pre-
treatment with mAb-RC3 (RC3, 100 pg/mL) inhibited both (D) thrombin activity and (E) fibrin volume compared

to untreated control. Data is mean £ SEM of N = 3-6 per genotype. *, P < 0.05 (unpaired Student’s t test).

95



50000- 30000
& E. °®
E 40000+ Oe = o rs773902:
= ]
230000{ o 2200001 og
E o @ -0~ Thr120
o | &
z 20000 . A 10000- -@ Het
= g k]
5 10000+ & © -@- Ala120
w 1]
0- o 0-
Control RC3 Control  RC3
& * & *
£ 60000- 5 £ 60000-
(] °® :; O\D
E °0, © E
'S 40000+ o, 'S 40000
> >
E 20000 o9 E 20000
£ 5 N
s 0- o] s 04
° Control RC3 2 Control  RC3

Figure 6. mAb-RC3 inhibits human thrombus formation independently of PAR4 variant expression. (A)
Representative 3D reconstructions (each cubic edge = 20 um) and (B-E) quantitation of human thrombi formed
after 3 minutes of a whole blood thrombosis assay, showing platelets (red, anti-CD9), thrombin (green, Thr-SP),
and fibrin (purple, anti-fibrin antibody). Note pre-treatment of blood with mAb-RC3 (RC3, 100ug/mL)
significantly inhibited (B) fibrin volume but not (C) platelet deposition. This translated to (D) a significant
reduction in total thrombus volume. Data is mean £ SEM of N = 14 (3-6 per genotype). A pairwise analysis is

shown in (E).*, P < 0.05 (unpaired Student’s t-test). Ns = not significant.
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Chapter 6 - General Discussion

6.1 Key findings of this thesis

The studies described in this thesis examined whether targeting the platelet thrombin receptor,
PAR4, is a valid antithrombotic approach. Thrombin-induced platelet activation has been a
long coveted antiplatelet strategy. However, the increases in bleeding associated with the
clinical PAR1 antagonist, vorapaxar, suggested that safe and effective antithrombotic therapy
would require a different approach to manipulating platelet-thrombin signalling. PAR4 is a
lower affinity thrombin receptor, and has therefore drawn significant recent attention as a
potential antithrombotic drug target that may have less impact on haemostasis. At the beginning
of these studies, the function of PAR4 during platelet activation and thrombus formation in
humans remained relatively unknown, in large part due to limitations in key reagents. In
developing and utilising novel reagents to examine PAR4 function, the studies presented here
have brought to light new roles of this receptor and the implications of its inhibition. The major

findings of this thesis are:

1) PAR4 predominantly mediates thrombin-dependent platelet procoagulant activity —and
subsequent thrombin and fibrin formation — largely independently of PAR1 (Chapter
2). This distinct antithrombotic mechanism suggests that PAR4 inhibition is a viable
therapeutic strategy.

2) To assess PAR4 inhibition in vivo, two genetic mouse models were characterised: i)
PARA4-/- mice, which have platelets that don’t respond to thrombin (Chapter 3); and ii)
a mouse genetically modified to mimic the human platelet-PAR expression profile
(hPAR1-KI mice) (Chapter 4). Due to significant limitations that were revealed with
both of these models, these studies suggest that alternative animal models will be

required for meaningful preclinical evaluation of PAR4 antagonists.
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3) A novel human monoclonal anti-PAR4 antibody was developed and characterised. This
antibody provided marked antithrombotic effects, including equivalent effects against
a common sequence variant in PAR4 that has been shown to be resistant to another
PAR4 antagonist (Chapter 5). These studies indicate that blocking the thrombin-
cleavage site of the receptor may be required for equivalent PAR4 inhibition across the

population.
6.2 What is the role of PAR4 during thrombosis?

This thesis began by endeavouring to determine the specific functions of PAR4 on human
platelets during thrombosis, in order to rationalise whether PAR4 inhibition was a valid
antiplatelet strategy. At the time of these studies, suitably specific and effective inhibitors of
PAR4 were not freely available. Therefore a function-blocking anti-PAR4 antibody was
developed and used to probe for platelet activation events reliant on PAR4. The studies of
Chapter 2 demonstrate that PAR4 alone, and not PAR1, appears to be more important in the
regulation of platelet procoagulant activity — namely, thrombin-induced phosphatidylserine

(PS) exposure, consequent platelet-mediated thrombin generation, and fibrin formation.

This role for PAR4 during thrombosis is consistent with what is known regarding receptor
structure, activation kinetics, and downstream signalling profiles. It is well known that PAR4
activation generates a more prolonged intracellular Ca* signal than PAR1 activation®®, due to
a longer interaction with thrombin® and slower desensitisation of the receptor®. It is also well
known that a high and sustained rise in intracellular Ca®* is required for PS externalisation, and
that this surface binds tenase and prothrombinase complexes, leading to the local generation of
thrombin and fibrin'%. The studies in Chapter 2 build on this work by suggesting that PAR4 is
predominantly responsible for mediating procoagulant effects of activated platelets, and

demonstrating that PAR4 inhibition also directly impacts local thrombin and fibrin generation
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under physiological flow conditions. Studies in Chapter 5 illustrate that PAR4 inhibition
markedly reduces total thrombus volume, and that this reduction is predominantly due to
impaired fibrin formation, rather than platelet deposition on collagen. Given that fibrin
formation is an essential component of the stable clot, it follows that PAR4 inhibition could
potentially impact overall thrombus stability, however further studies will be required to fully
elucidate this. Regardless, these findings demonstrate that PAR4 acts at the interface of platelet
aggregation and coagulation, and provides an antithrombotic effect in human blood via a

distinct mechanism to other antiplatelet drug targets.

Whether PAR1 or PAR4 drives procoagulant responses has been controversial, with evidence
of both receptors playing a role™ 19195 However, this potentially relates to the lack of
appropriate inhibitors available at the time of these earlier studies. The studies described in
Chapter 2 and Chapter 5 of this thesis developed and characterised two effective and highly
specific PAR4 inhibitors. Both function-blocking anti-PAR4 antibodies consistently inhibited
thrombin-induced PS exposure, as well as whole blood thrombin and fibrin generation. Indeed,
preclinical studies using the newest PAR4 antagonist, BMS-986120, support this notion®,
BMS-986120 also demonstrated markedly more specificity for PAR4 over PARL, as well as
efficacy against thrombin-induced platelet activation®. When used in vitro it demonstrated
Ca?* signalling profiles similar to the ones generated here using an anti-PAR4 antibody®®. The
reagents generated throughout the course of this thesis are therefore of considerable research
interest, as they may be used to uncover additional functions of PAR4 in a variety of conditions,

including functions in cell types other than platelets.
6.3 What is the likely clinical utility of PAR4 antagonism?

PARA4 inhibition provides an antithrombotic effect via a mechanism distinct from all existing

antiplatelet strategies. There are currently no antiplatelet drugs that directly target platelet
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procoagulant activity, although the notion of specifically targeting this sub-population of
activated platelets is gaining popularity'®. The rationale for this is that targeting the
procoagulant population preserves haemostatic functions of other platelets within the thrombus
— namely those displaying the aggregating and contractile phenotype. Studies in Chapters 2
and 5 of this thesis show that specifically inhibiting PAR4 has no major impact on platelet
deposition during human whole blood thrombosis, but does reduce fibrin deposition, which
translates to a reduction in total thrombus volume. It is well documented that antiplatelet agents
targeting platelet adhesion/aggregation pathways, and anticoagulant agents (global inhibition
of thrombin) used in combination with the less efficacious antiplatelet drugs
(aspirin/clopidogrel), significantly increase clinical bleeding events!®’. Therefore, as PAR4
antagonism acts at the interface of coagulation and platelet activation and leaves primary
haemostatic functions intact (i.e. platelet adhesion and aggregation), it may lead to less clinical
bleeding that is typically associated with other antiplatelet and anticoagulant drugs. Preclinical
studies using the PAR4 antagonist, BMS-986120, strongly support this hypothesis. In non-
human primate in vivo thrombosis models, PAR4 antagonism prevented thrombotic occlusion
at doses that did not impact bleeding times — a therapeutic window not observed with
clopidogrel®®. However, it is of note that thrombin-induced platelet activation is less critical
under conditions of high vascular shear®®, such as those known to occur in stenosed arteries.
Therefore, it is unknown whether PAR4 antagonism alone will be sufficiently effective in
reducing thrombotic events formed under these conditions, or whether additional antiplatelet
interventions will be required. In this regard, studies examining the combined effects of PAR4

antagonism with other agents appear pressing.

Although these preclinical studies show a promising profile with an increased therapeutic
window, the overall effect of PAR4 inhibition on haemostasis will require further elucidation.

The studies in Chapter 3 of this thesis were the first to reveal a spontaneous bleeding phenotype
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in mice genetically deficient in PAR4 — a phenotype which has been overlooked for nearly two
decades. Although PAR4-/- mice represent a model of complete inhibition of thrombin-platelet
signalling, whereas human platelets exposed to a PAR4 antagonist would presumably retain
PARL signalling, it is not known if the bleeding phenotype is due to the complete absence of
thrombin-platelet signalling, or the absence of the physiological function of PAR4 during
thrombosis (i.e. procoagulant platelet generation). Chapter 4 of this thesis aimed to generate a
mouse model with equivalent platelet-PAR expression to humans, in order to answer this
question. However, the failure to achieve PARL1 expression in mouse platelets, in the context
of previous failed attempts'% and other notable differences between murine and human platelet
biology, ultimately indicate that other animal models will be more appropriate to conduct
meaningful studies. There is, however, some human genetic evidence to guide the
appropriateness of PAR4 inhibition as an antithrombotic approach. Patients with Scott
syndrome — a rare congenital disorder in which defective platelet PS exposure drastically
diminishes their thrombin generation capacity — have a clinically significant bleeding
phenotype®. Therefore, further studies will be required to determine whether specifically
targeting platelet procoagulant activity via PAR4 antagonism is a viable option for safe and

effective antithrombotic treatment.

The issue of population genetics is another clinical consideration for PAR4 antagonism.
Recent studies have revealed a commonly expressed genetic variant of PAR4 (rs773902;
encoding either Ala!? or Thr'?%). The Thr'?° PAR4 variant, expressed in 20 — 80% of people
depending on the population, renders the receptor hyper-sensitive to agonists and hypo-
sensitive to antagonists'® 1, Expression of the Thr'?® variant is racially dimorphic, and
present in high proportions in American blacks, sub-Saharan Africa, as well as in Melanesian
and Papuan populations!®. In the American cohort, the demographic in which the Thr? PAR4

variant is dominant are known to have higher rates of cardiovascular disease, poorer outcomes,
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and therefore more likely to be on antiplatelet drugs. On this point, the hyper-reactivity to
PAR4 agonists observed in individuals with the Thr!?® PAR variant persists in the face of
current antiplatelet drugs, including vorapaxar'®t. Although the studies in Chapter 5 suggest
that the Thr!?® PAR4 variant alone is not sufficient to induce a heightened thrombotic
phenotype in at least one ex vivo model, further studies with a greater number of donors and
different thrombogenic conditions will be required to determine the extent to which PAR4
genotype has a direct impact on whole blood thrombosis. Regardless, the discovery of this
commonly expressed PAR4 variant has led to PAR4 antagonism becoming highly desirable

strategy for these at-risk populations.
6.4 What does the future hold for PAR4 antagonists?

The future of PAR4 antagonists is promising — there is a strong mechanistic rationale,
preclinical studies have shown a desirable profile and potential to increase the therapeutic
window, and the bio-pharmaceutical sector has an interest in continuing to develop improved
compounds. The recently developed PAR4 antagonists — BMS-986120 and BMS-986141 —
have undergone clinical trials. BMS-986120 was evaluated in a phase 1 dosing study, yet
despite efficacy and a lack of adverse events no phase 2 studies of this compound were
undertaken. Rather, BMS are investigating the related compound, BMS-986141, which
underwent a phase 1 study (NCT02341638) and a subsequent phase 2 trial for the prevention
of mini-stroke (NCT02671461). The trial (A Phase 2, Placebo Controlled, Randomized,
Double-Blind, Parallel-Arm Study to Evaluate Efficacy and Safety of BMS- 986141 For the
Prevention of Recurrent Brain Infarction in Subjects Receiving Acetylsalicylic Acid Following
Acute Ischemic Stroke or Transient Ischemic Attack) had a primary efficacy endpoint of a
composite of symptomatic ischemic stroke or unrecognized brain infarction, and a primary

safety endpoint of a composite of adjudicated major bleeding and adjudicated clinically
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relevant non-major bleeding during the treatment period. It was completed in April 2017 but

has not yet been reported.

It is far too early to predict the likely clinical success and/or usefulness of PAR4 antagonists,
and several key questions remain. Firstly, how well will PAR4 antagonism combine with
current standard-of-care agents? This is a central point, since any trial will be conducted in the
presence of standard-of-care, which frequently involves dual antiplatelet therapy. With the
PARL1 antagonist vorapaxar, for example, the increased bleeding observed is believed to be due
to poor compatibility with clopidogrel. Indeed, sub-study analyses show no additional bleeding
in patients receiving aspirin plus vorapaxar versus those receiving aspirin alone®® 0, Here, it
is interesting to note that BMS chose to investigate a patient group being treated with aspirin
alone in its first phase 2 trial of its lead PAR4 antagonist. Also unknown are the specific
indications most likely to be best served by a PAR4 antagonist. Again, sub-study analyses of
the vorapaxar trials may provide pointers. These trials showed the most efficacy in reducing
the rate of spontaneous myocardial infarction as well as in prevention of vascular complications
associated with peripheral artery disease. This is perhaps unsurprising given the well-known
role of thrombin generation in acute myocardial infarction, particularly in patients with a
background of unstable angina and/or coronary artery disease®. Whether PAR4 antagonism
will similarly demonstrate superior efficacy in these clinical situations where thrombin-induced

platelet activation are implicated is an obvious place to start for future clinical trials.

Finally, the significant changes in PAR4 pharmacology associated with the Thr'?° PAR4
variant — namely, the resistance to a small molecule PAR4 antagonist — have raised the question
as to whether these compounds will also be less effective in some patients. It is also currently
unknown how the change in amino acid from Ala to Thr at position 120 alters receptor
pharmacology. The crystal structure of PAR4 has not yet been solved, although extrapolations

from the crystal structure of PAR1 show critical hydrogen bonds at a similar region*®, which
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could potentially effect the small molecule binding pocket and/or tethered ligand binding site.
One major finding from Chapter 5 of this thesis is that antibody-based inhibition, via blocking
the thrombin cleavage site, provides equivalent antithrombotic effects regardless of donor
genotype. Further studies will be required to determine how the variant alters receptor biology,
what the impact and significance of it will be clinically, and, what method of PAR4 antagonism

will provide equivalent inhibition across the population.

6.5 Concluding Remarks

This thesis developed novel reagents to address key limitations in PAR4 research and used
these to uncover previously unknown roles of PAR4 during thrombosis. In this way, these
studies helped rationalise this receptor as a target for new antiplatelet drugs with a distinct
mechanism of action. Although further insights are still to be gained regarding the utility of
any PAR4 antagonism in clinical settings, the studies presented here have developed an
antibody with therapeutic potential for the safe and effective prevention of arterial thrombosis
that warrants investigation in further preclinical studies. These studies suggest targeting PAR4

represents a valid antithrombotic approach.
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1. Introduction platelets are the essential cellular component of arterial thrombi, anti-

1.1. There is a significant clinical need for improved
anti-thrombotic therapy

Cardiovascular disease, manifesting predominantly as ischaemic
heart disease and ischaemic stroke, is by far the most common cause
of death and disability in the world, accounting for approximately 30%
of all deaths [1]. Strikingly, despite increased awareness and improved
management, and in contrast to most other high-impact communicable
and non-communicable diseases, the rates of cardiovascular disease
rose over the past decade [1]. The increasing burden of conditions
such as diabetes, obesity, and depression, as well as an overall ageing
population, are likely to ensure that cardiovascular disease rates
continue to rise into the foreseeable future, with each of these condi-
tions having increased prevalence of cardiovascular-related morbidity
and mortality.

Arterial thrombosis precipitates the most prevalent cardiovascular
disease manifestations, most notably acute myocardial infarction (MI),
ischaemic stroke, and peripheral artery disease (PAD). Current thera-
pies for the prevention of arterial thrombosis are either anti-platelet
agents, which prevent platelet activation, or anticoagulants, which pri-
marily impair fibrin formation at therapeutic doses by inhibiting either
the production or activity of thrombin. The efficacy of these agents is
tempered by the attendant bleeding risk [2]. Given that activated
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platelet drugs are the mainstay of current pharmacotherapy for arterial
thrombosis, with the current recommendation for prevention of prima-
ry or secondary cardiovascular events in patients with acute coronary
syndrome (ACS) being anti-platelet therapy alone [3]. Yet current
standard-of-care treatments have limited efficacy and improved anti-
platelet approaches are sought.

1.2. Current anti-platelet agents as anti-thrombotics

The processes controlling platelet function in the setting of arterial
thrombosis have been extensively studied for the purpose of
rationalising the development of improved anti-platelet therapies.
Platelet behaviour during thrombus formation is generally agreed to in-
volve, in order, cell adhesion, activation, and aggregation [4] (see Fig. 1)
Understanding these processes has been highly informative in
predicting the success of anti-platelet approaches.

i) Adhesion: In response to vascular damage, such as atherosclerotic
plaque rupture in the case of ACS, platelets adhere to the dam-
aged vessel wall through a complex between sub-endothelial
proteins and cognate receptors on the platelet surface. Rapid ini-
tial adhesion is mediated by von Willebrand factor (VWF) bind-
ing to the glycoprotein (GP) Ib-IX-V receptor complex [5],
although this interaction does not support stable adhesion and
a second adhesive step between collagen and GPVI and/or the
integrin a1, as well as fibrinogen and the integrin o3, is re-
quired for firm platelet adhesion to the vessel wall [4].

ii) Activation: following adhesion, the captured platelets are activated
and undergo a series of morphological and functional changes
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Fig. 1. Activation and adhesion receptors on the platelet. In response to vascular damage, platelets rapidly adhere to the vessel wall via the interaction of subendothelial von Willebrand
factor (VWF, green spheres) with the platelet glycoprotein (GP) Ib-IX-V complex, and collagen (grey strands) with GPVI and integrin a,3;. Adherent platelets become activated, and this
activation is enhanced by signalling pathways initiated by: thromboxane receptors (TP) activated by thromboxane A2 (TxA;) generated from arachidonic acid (AA) by cyclooxygenase
(COX); P2Y; and P2Y;, receptors activated by ADP; and PAR1 and PAR4 activated by thrombin. Platelet activation culminates in the activation of integrin o33 which binds fibrinogen
(blue dumbbell), VWF and fibronectin (not shown) to mediate platelet aggregation. Current anti-platelet agents (in red) include the P2Y;, inhibitors clopidogrel, prasugrel and ticagrelor;
the COX inhibitor, aspirin; oy,33 inhibitors, abciximab, eptifibatide and tirofiban; and the most recent addition, vorapaxar, which inhibits PAR1.

including shape change, spreading, release of granular contents,
and the local generation of thrombin at the platelet surface as an
endpoint of coagulation [6]. This platelet activation is primarily
driven by the triumvirate of thrombin, ADP, and thromboxane A,
(TxAz).

iii) Aggregation: regardless of the adhesion and activation mechanism,
the final common result is the activation of the integrin oypPs3,
which engages fibrinogen (also VWF and fibronectin) to mediate
platelet aggregation and ultimately thrombus formation [6].

Based on the experiences with current and previously trialled anti-
platelet drugs, the most useful therapeutic strategy is to interfere with
the activation phase of the platelet response. Specifically, interfering
with platelet activation may largely preserve the primary haemostatic
functions of the platelet by sparing initial adhesion at sites of vascular
injury. By way of example, antagonists of the major platelet integrin,
aupPs, such as tirofiban, eptifibatide, and abciximab, are by far the
most potent platelet inhibitors as they inhibit platelet aggregation re-
gardless of the activating pathway. However, these drugs all cause sig-
nificant bleeding complications [7] due to their disruption of the
haemostatic function of platelets also dependent on this pathway. Al-
though o33 inhibitors are currently indicated for acute use during
percutaneous coronary intervention (PCI), the high bleeding risk and
restrictive intravenous (i.v.) route of administration have limited their
use in long-term preventative settings [8].

The current guidelines for treatment of ACS (comprising ST-
elevation myocardial infarction (STEMI), non-ST-elevation myocardial
infarction (NSTEMI), and unstable angina) and associated diseases are
dual therapy with aspirin (an inhibitor of thromboxane A, synthesis)
and a P2Y; receptor antagonist, such as the thienopyridines, clopidogrel

or prasugrel, or the cyclopentyl-triazolo-pyrimidine, ticagrelor [3]
(American guidelines tend to favour the use of clopidogrel, whereas
European guidelines favour either ticagrelor or prasugrel, with
clopiodgrel as an alternative.). However, aspirin and clopidogrel pre-
vent just 15 and 17% of lethal cardiovascular events respectively and
are only marginally more effective in combination [2]. In addition, an in-
creasing number of patients are being reported as resistant to these
agents [9-11], while clopidogrel - a prodrug - is metabolised with sig-
nificant variability within the population [12], providing yet another
source of variable efficacy. Large scale clinical trials assessing the effica-
cy of aspirin and clopidogrel (together and separately) in reducing
thrombotic risk in cardiovascular disease (CAPRIE [13] and CHARISMA
[14]) have ultimately determined greater efficacy when used in combi-
nation, with an associated minor increase in risk of bleeding complica-
tions. Therefore, existing anti-platelet therapies have limitations in
one or both of safety and efficacy, with no current agent (or combina-
tion of agents) affording sufficiently potent, safe, and orally active pre-
vention of arterial thrombosis. As a result, improved anti-platelet
approaches are required to meet the significant clinical need for the
safe and effective prevention of arterial thrombosis.

2. Targeting protease-activated receptors as an anti-platelet approach
2.1. Rationale

2.1.1. Thrombin and thrombin receptors are important for platelet
activation during thrombosis

The rationale for targeting thrombin-induced platelet activation as
an anti-thrombotic approach has long held appeal. First, thrombin
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functions at a time and place that is predicted to provide safe and effec-
tive anti-platelet activity. As outlined above, thrombin, in combination
with ADP and TxA;, mediates the platelet activation required for throm-
bus growth that follows initial cell adhesion. Second, thrombin is the
most potent endogenous activator of platelets. This suggests that
targeting thrombin-induced platelet activation may provide greater ef-
ficacy over existing mechanisms that block the platelet activating func-
tions of TxA, (aspirin) and ADP (clopidogrel and co.). Third, existing
drugs that block the production (e.g. rivaroxaban) or activity (e.g.
dabigatran) of thrombin are effective as anti-thrombotics. However
these agents provide global inhibition of thrombin's actions and, conse-
quently, incur a significant bleeding risk — particularly at the high doses
used for the prevention of platelet-rich arterial thrombi. Specifically
targeting thrombin-induced platelet activation while leaving the other
functions of thrombin intact may mitigate the bleeding risk and provide
a more selective effect for arterial thrombosis prevention. In combina-
tion, these factors provided the impetus to develop inhibitors of platelet
thrombin receptors.

Platelet responses to thrombin are mediated by G protein-coupled
protease-activated receptors (PARs) [15,16]. PARs are expressed on
the surface of numerous cell types. In the cardiovascular system this in-
cludes platelets [17-19], and also leukocytes [20], vascular endothelial
and smooth muscle cells [21-23], cardiomyocytes [24,25], and cardiac
fibroblasts [26]. Humans express four PARs, with PAR1, PAR3 and
PAR4 being activated by thrombin [17-19], and PAR2 by trypsin,
tryptase, coagulation factors VIla and Xa, and membrane-bound serine
proteases MTSP1 and TMPRSS2 [27-31]. Human platelets express two
thrombin-sensitive PARs, PAR1 and PAR4, and activation of either re-
ceptor is capable of inducing platelet activation [17,18,32]. Thrombin-
induced platelet activation initiates platelet shape change, promotes
platelet aggregation, and provides the procoagulant surface that facili-
tates secondary coagulation reactions [15,32,33]. PAR1 is the ‘high affin-
ity’ thrombin receptor on human platelets, responding more sensitively
and rapidly to thrombin than PAR4 [32]. However PAR4 can also trigger
full platelet activation with higher concentrations (10 to 30-fold) of
thrombin [32,34]. Based on this difference in affinity the clinical strategy
for PAR inhibition in humans has focussed on blocking PAR1 function.

The cleavage-based PAR activation mechanism is unique. PARs are
all activated the same way, whereby the protease agonist cleaves the
amino-terminus of the receptor to reveal a cryptic neo-amino terminal
sequence known as the “tethered ligand” [17,35]. The newly exposed
tethered ligand then activates the receptor by binding intramolecularly
to the second extracellular loop [17,35]. This self-activation prompts the
conformational change of the receptor that allows interactions with G
proteins of the Gq, G12/13 and G, families and consequent intracellular
signalling events [36-38] (see Fig. 2). The interactions with Gq3/13
drive Rho-dependent cytoskeletal responses involved in platelet shape
change [38], whereas Gg-mediated signalling facilitates the processes
important for platelet granule release, activation of cell surface
integrins, and platelet aggregation [39]. G;/, proteins are involved in in-
hibition of adenylyl cyclase, thereby removing a brake on platelet acti-
vation, while the G; protein family is the major source of 3+ subunits
involved in modifying activities of enzymes such as PI3 kinase [37].

Although often described as a dual platelet thrombin receptor sys-
tem, some distinctions between PAR1 and PAR4 have been shown, in-
cluding independent intracellular signalling events and distinct
activation kinetics. PAR1 is a “high affinity” thrombin receptor, as it con-
tains a hirudin-like sequence (K>'YEPF>®) which binds exosite I of the
protease and aligns the active site of thrombin with a specific cleavage
site in the receptor [40,41]. PAR1 is activated by trace amounts of
thrombin (sub-nM range) and is responsible for the initial and rapid
rise in intracellular calcium induced in platelets by the coagulation pro-
tease [42]. However, the PAR1-induced signal is transient and requires
additional support from other platelet agonists such as ADP [43]. In con-
trast to PART1, the interaction between PAR4 and thrombin occurs pri-
marily at the active site due to the absence of a hirudin-like thrombin

binding domain in the amino-terminal of PAR4. Despite the lack of in-
teraction between PAR4 and exosite I of thrombin, the receptor does
bind at the active site with high affinity due to two optimally-
positioned proline residues immediately amino-terminal to the throm-
bin cleavage site [44]. This interaction facilitates slowed dissociation of
thrombin from the receptor and results in a slower but more sustained
intracellular signalling profile [44]. As a result of these distinct receptor
activation and signalling kinetics, PAR4, in contrast to PAR1, is capable of
inducing irreversible platelet aggregation in the absence of additional
agonist activation [43]. It has therefore been suggested that PAR1 and
PAR4 complement each other during thrombin-induced platelet aggre-
gation. However, the major clinical focus has been on inhibiting PAR1
for anti-thrombotic activity due to the significantly greater sensitivity
of this receptor to thrombin. Initial pre-clinical studies toward this end
were performed in animal studies.

2.1.2. Pre-clinical studies

As is the case in many other systems, mouse genetic models and
other small animal in vivo thrombosis experiments provided pre-
clinical proof-of-concept studies. However the interpretation of these
studies has always been hampered by the differing platelet PAR profile
in these traditional model systems. Of the most commonly used animal
models, only non-human primates appear to have an identical platelet
PAR profile to humans (PAR1 and PAR4). In contrast, platelets from
mice [45], rats [46], and rabbits [47] express PAR3 and PAR4, while
platelets from guinea-pigs express PAR1, PAR3 and PAR4 [48]. Despite
these limitations, significant insights have been gained from mouse ge-
netic experiments. Mouse platelets do not express PAR1, but instead
have PAR3 and PARA4. In a further difference, although mouse PAR4 func-
tions in an analogous manner to human PAR4, mouse PAR3 is incapable
of mediating transmembrane signalling by itself, instead functioning as
a cofactor that facilitates cleavage and activation of PAR4 at low throm-
bin concentrations [49,50]. Indeed, PAR3 appears to act as a high affinity
receptor for thrombin as it also contains a hirudin-like sequence to facil-
itate thrombin binding, therefore acting to bind and localise thrombin to
the platelet surface and promoting PAR4 cleavage and subsequent sig-
nalling. As this model predicts, platelets from PAR4—/— mice are unre-
sponsive to thrombin [45,51] and provide a clean genetic model to
examine the overall contribution of thrombin-induced platelet activa-
tion in (patho)physiology. In this regard, PAR4—/— mice are healthy
and exhibit no evidence of spontaneous bleeding, but are protected
against thrombosis in several distinct in vivo models [45,51-53].
Haemostasis is impaired upon challenge as evidenced by an increase
in tail bleeding time [45,51]. Perhaps surprisingly, PAR3—/— mice are
also protected against thrombosis in a series of in vivo models, albeit to
a lesser extent than observed with PAR4-deficiency [49]. This is of inter-
est given that PAR3—/— mice may be viewed as a model of PAR1 inhi-
bition in humans, inasmuch as both sets of platelets rely on PAR4 for
thrombin-induced platelet activation. Of note, prolonged tail bleeding
times were also observed in PAR3—/— mice [49]. Despite the limitations
of using mice as a model of human platelet PAR function, these early
proof-of-concept studies provided insight into the relative importance
of thrombin-induced platelet activation in the setting of in vivo throm-
bosis, and in large part drove the development of PAR1 antagonists as
a novel anti-platelet approach.

The development of pharmacological PAR1 inhibitors proved a sig-
nificant challenge — perhaps largely due to the unique nature of the
PAR self-activation mechanism and the consequent issues regarding
efficacy for any potential antagonists that must compete with an en-
dogenous agonist with a substantial steric advantage. In addition, recep-
tor cleavage is irreversible and stoichiometrically efficient: multiple
receptors can be activated by a single protease molecule. Numerous
strategies have been employed to overcome these issues, including
peptidomimetics derived from the tethered ligand sequence [54,55], in-
tracellular signalling-inhibiting ‘pepducins’ [56], as well as receptor
function-blocking antibodies [57], all of which have contributed to the
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Fig. 2. Inhibition of PAR1 by vorapaxar. Thrombin cleaves the extracellular N-terminus of PAR1, exposing a tethered ligand (red cap) that binds to the second extracellular loop of the re-
ceptor and induces a conformational change that facilitates G protein interaction with the receptor and consequent intracellular signalling. PAR1 couples to G proteins of the Gq, G12/13 and
Gi/, families to induce a multitude of intracellular signalling events in platelets. Vorapaxar prevents PAR1 activation by binding at or near the tethered ligand binding site, acting as a com-

petitive antagonist of the endogenous activation mechanism of the receptor.

understanding of PAR biology and led to the eventual development of
effective and specific small molecule antagonists.

The earliest PAR inhibitors were peptide-based agents and function-
blocking antibodies and provided important tools for experiments in-
vestigating platelet PAR function in human cells. The peptide-based in-
hibitors were synthesised to mimic the endogenous tethered ligand
sequence, but with modifications that prevented the receptor being ac-
tivated once the antagonist had bound. The structure-activity insight
gained from the earliest peptidomimetics and further optimisation of
this class led to the development of RWJ-58259, which inhibited
PAR1-mediated aggregation of human platelets and thrombus forma-
tion in vivo and in vitro in non-human primates [58]. The earliest
function-blocking anti-PAR1 antibodies were rabbit polyclonal antibod-
ies targeted against the thrombin cleavage site of the receptor. These
agents also inhibited PAR1-dependent aggregation of human platelets
[57]. In keeping with the anti-thrombotic activity observed with
peptidomimetic antagonists of PAR1, function blocking anti-PAR1 anti-
bodies were also effective anti-thrombotics in non-human primate
models [57,58]. Despite this effectiveness, the use of peptide-based
agents and therapeutic antibodies in these studies came with the
usual pharmacodynamic and pharmacokinetic limitations of such ap-
proaches and resulted in investigations into designing selective and po-
tent small molecule antagonists of PAR1. This effort ultimately yielded
two agents that were examined in clinical trials: atopaxar (E5555)
and vorapaxar (SCH530348).

2.2. Development

2.2.1. Atopaxar

Atopaxar is a small molecule PAR1 inhibitor. Developed by Eisai and
formerly known as E5555, atopaxar is a bicyclic amidine derivative with
a molecular weight of 609 Da that competitively binds at or near the

tethered ligand binding site within the second extracellular loop of
PAR1 [59]. In initial cell studies, atopaxar was shown to inhibit
thrombin-induced aggregation of human platelets [60] and thrombin-
induced intracellular calcium signalling in cultured smooth muscle cells
[61]. It has an ICsg of 64 nM [60]. In vivo, atopaxar has been shown as
an effective PAR1 antagonist in small animal models [60,61]. In rabbits,
atopaxar reduced thrombin-dependent cerebral vasospasm - one of
the major complications of subarachnoid haemorrhage - and was
shown to dose-dependently decrease the basilar artery contractile re-
sponse to thrombin as well as inhibit the upregulation of PAR1 expres-
sion in subarachnoid haemorrhage [61]. In a guinea pig model of
photochemically-induced thrombosis, orally-administered atopaxar
(30 mg/kg) prolonged the time to vessel occlusion by approximately 2-
fold [60]. Given the promising efficacy of atopaxar in these small animal
models, human trials were undertaken.

The safety of atopaxar was assessed in three phase 2 trials in patients
with ACS (LANCELOT-ACS) and with chronic coronary artery disease
(LANCELOT-CAD) [62-64]. These trials showed that overall clinically
relevant bleeding increased numerically but not significantly, and that
major bleeding rates increased in the ACS trial, but not in the CAD trial
[62,63]. In addition, higher doses (>200 mg) resulted in an increase in
liver enzymes and QT interval prolongation [62]. These effects were
dose-dependent with significant liver function abnormalities observed
in patients receiving the highest doses of atopaxar [62]. As a result,
there are no phase 3 trials for atopaxar currently registered. For this rea-
son, the remainder of this review will focus on the journey of vorapaxar
through to FDA approval.

2.2.2. Vorapaxar

Vorapaxar is also a small molecule PAR1 inhibitor. Developed by
Merck & Co (MSD; originally as Schering-Plough) and formerly known
as SCH530348, vorapaxar is a synthetic tricyclic 3-phenylpyridine
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analog of the naturally occurring alkaloid himbacine, and has a molecu-
lar weight of 591 Da. Similar to atopaxar, vorapaxar is a reversible, com-
petitive antagonist of PAR1 that binds at or near the tethered ligand
binding site within the second extracellular loop of PAR1, thus compet-
ing with the endogenous activation mechanism of the receptor [65].
Vorapaxar inhibits aggregation of human platelets induced by thrombin
and a PAR1 agonist peptide (PAR1-AP) with an ICsg of 47 and 25 nM, re-
spectively, and has a Ki of 8 nM [65]. Importantly, vorapaxar is adminis-
tered as a bisulfate salt and has a high oral bioavailability (>90%) and is
rapidly absorbed via the gastrointestinal tract, with a terminal plasma
half-life of 126-269 h [66]. The drug is metabolised primarily by the
liver via the CYP3A4 pathway and is eliminated almost exclusively as
an amine metabolite [67]. As a result, drug interactions that have the po-
tential to effect metabolism of vorapaxar include CYP3A4 inhibitors (e.g.
ketoconazole) or inducers (e.g. rifampicin), which may increase or de-
crease the plasma concentration of vorapaxar respectively. In healthy
subjects the drug was well tolerated and long-lasting: administration
of a single loading dose (5 to 40 mg) inhibited PAR1-AP-induced plate-
let aggregation by >90% for more than 72 h [66]. Furthermore, adminis-
tration of a daily dose of 1, 3, or 5 mg resulted in the same level of
inhibition of the platelet aggregation through to day 7 of treatment
[66]. To date, and in contrast to the phase 2 findings of atopaxar, no ab-
normalities in liver function or other adverse events have been associat-
ed with long term vorapaxar use.

Early human trials with PAR1 inhibitors showed trends toward clin-
ical benefit in cardiovascular outcomes without an increase in bleeding
risk. In a phase 2 trial, vorapaxar was assessed in 773 patients undergo-
ing PCl and with a history of ACS and/or NSTEMI, most of whom were on
dual antiplatelet therapy (aspirin plus clopidogrel) [66]. Patients re-
ceived a loading dose of 10, 20, or 40 mg (or matching placebo) followed
by a daily maintenance dose of 0.5, 1.0 or 2.5 mg. The primary endpoint
was clinically significant major or minor bleeding, assessed by the
Thrombolysis In Myocardial Infarction (TIMI) scale and was found to
be not significantly different between the placebo and test groups,
even at the highest dosing regimen [66]. Strikingly, although the study
was not powered to determine efficacy, a trend toward a reduction in
MI events was observed [66]. Given these promising findings, phase 3
trials of vorapaxar were developed using the highest dosing regimen
from the phase 2 trials.

2.2.3. The Thrombin Receptor Antagonist for Clinical Event Reduction
(TRACER) in acute coronary syndrome trial

Vorapaxar was assessed in two large scale phase 3 trials in patients
with ACS (TRACER) and stable atherosclerosis (TRA 2°P-TIMI 50). The
overall findings of these trials showed that vorapaxar, when combined
with standard of care therapy, reduced the risk of cardiovascular events
at the cost of increased bleeding [68,69].

TRACER was a randomised, double-blind, placebo-controlled
multicentre trial that enrolled 12,944 patients with acute symptoms of
coronary ischaemia plus either significant ST changes or elevations in
cardiac necrosis markers (troponin or creatine kinase) [69]. Of the
study group, 6473 patients received vorapaxar (40 mg single loading
and 2.5 mg once daily maintenance) with 6471 receiving placebo.
Ninety-six percent of all patients were receiving aspirin and 80% of
those were also receiving a thienopyridine [69]. Assessments were per-
formed during initial hospitalisation, with follow-up at 1, 4, 8, and
12 months post-hospitalisation, and every 6 months thereafter, with
the aim of a total follow-up of 3 years. The primary end point for
TRACER was a composite of cardiovascular death, MI, stroke, recurrent
ischaemia, or urgent coronary revascularisation, with the secondary
endpoint being a composite of death from cardiovascular causes, MI,
or stroke. The key safety end points were a composite of moderate
and severe bleeding according to the Global Use of Strategies to Open
Occluded Coronary Arteries (GUSTO) classification as well as clinically
significant bleeding according to the TIMI classification.

2.2.4. TRACER trial: efficacy

Ultimately, the primary endpoint of TRACER was not achieved: a
non-significant reduction in the primary end point occurred in patients
receiving vorapaxar (18.5%) versus placebo (19.9%) (hazard ratio (HR)
0.92; 95% confidence interval (CI) 0.85-1.01; P = 0.07) [69]. The key
secondary end point occurred in 14.7% versus 16.4% of patients. Given
that superior efficacy of vorapaxar in this setting was not observed, sub-
sequent subgroup analyses were performed but were purely explorato-
ry [69,70]. Analysis of individual end point components revealed that
the greatest reduction was observed in the rate of MI (11.1% versus
12.5%; HR 0.88; 95% CI 0.79-0.88; P = 0.02). Interestingly, stroke
rates between the two treatment groups were similar over 2 years:
the vorapaxar group had lower rates of ischaemic stroke (1.1% versus
1.4%; HR 0.79; 95% CI 0.59-1.08; P = 0.14) but a higher rate of
haemorrhagic stroke (0.3% versus 0.1%; HR 2.73; 95% CI 1.22-6.14;
P = 0.02). Other efficacy endpoints are summarised in Table 1.

2.2.5. TRACER trial: safety

Patients receiving vorapaxar were more likely to experience bleed-
ing events. Moderate or severe bleeding (assessed by GUSTO) occurred
in 7.2% of patients receiving vorapaxar compared with 5.2% of those re-
ceiving placebo (HR 1.35; 95% CI 1.16-1.58; P < 0.001). Clinically signif-
icant (TIMI) bleeding occurred in 20.2% of patients in the vorapaxar
group versus 14.6% in the placebo group (HR 1.43; 95% CI 1.31-1.57;
P < 0.001). Most critically, however, intracranial haemorrhage in-
creased more than 5-fold in the vorapaxar group (1.1% versus 0.2%;
HR 3.39; 95% CI 1.78-6.45; P < 0.001) [69]. This effect was especially
noted in patients with a prior history of stroke or transient ischaemic at-
tack (TIA) and increased incrementally over time. Consequently, the
planned 3-year follow-up of TRACER was terminated in January 2011
(five months early) in response to recommendations from the data
and safety monitoring board.

2.2.6. TRACER trial: subgroup analyses

Exploratory subgroup analyses of the TRACER trial have yielded sev-
eral interesting findings that may warrant further evaluation. Firstly,
analysis of MI reduction in TRACER showed that vorapaxar treatment
resulted in a 12% hazard reduction (HR 0.88; 95% CI 0.79-0.98; P =
0.021) of a first MI of any type [70]. Further, this reduction was largely
accounted for by a specific decrease in the rate of type 1 (spontaneous)
MI (5.9% vs 7.0%; HR 0.83; 95% C1 0.73-0.95; P = 0.007). This is note-
worthy, as spontaneous MIs are the most commonly observed: 65% of
Mls observed in TRACER were type 1 and were the most frequently
observed coronary endpoint. These observations from the original
trial data were supported by a recent meta-analysis of all placebo-
controlled trials of either atopaxar or vorapaxar in CAD patients [71].
In addition to MI, vorapaxar reduced the primary endpoint in coronary
artery bypass graft (CABG) patients with an estimated hazard reduction
of 45% (43 patients in the vorapaxar treatment group versus 70 in pla-
cebo; 8.2% and 12.9%, respectively, HR 0.55; 95% CI 0.36-0.83; P =
0.005) [72]. There was a non-significant increase in both surgical and
non-surgical bleeding in this cohort, and the overall results suggest
that vorapaxar treatment may be a viable option in this setting. Investi-
gations into the effect of standard-of-care therapy in addition to
vorapaxar treatment indicated improved safety and efficacy in the
vorapaxar groups who were not receiving high dose (>300 mg) aspirin
and/or a thienopyridine [69,70].

2.2.7. TRACER trial: overall outcomes

Overall, TRACER concluded that vorapaxar in addition to standard
anti-platelet therapy provided no significant net clinical benefit in pa-
tients with acute coronary syndromes. Furthermore, vorapaxar signifi-
cantly increased the risk of major bleeding, most notably intracranial
haemorrhage, in a subset of patients. These outcomes had a significant
impact on the TRA 2°P-TIMI 50 trial. Firstly, the primary endpoint was
revised to a composite of cardiovascular death, Ml or stroke, with urgent

110



184

Table 1
Efficacy and safety endpoints of the TRACER and TRA 2°P-TIMI 50 trials.

S.L French et al. / Blood Reviews 29 (2015) 179-189

TRACER? TRA 2°P-TIMI 50°
Vorapaxar Placebo Hazard ratio P value Vorapaxar Placebo Hazard ratio P value
Number of events Number of events  (95% CI) Number of events Number of events  (95% CI)
(percent) (percent) (percent) (percent)
n = 6473 n = 6471 n = 13,225 n = 13,224
Primary endpoint 1031 (18.5) 1102 (19.9) 0.92 (0.85-1.01) 0.07 1028 (9.3) 1176 (10.5) 0.87 (0.80-0.94) <0.001 (NNT = 83)
Secondary endpoint 822 (14.7) 910 (16.4) 0.89 (0.81-0.98) 0.02 1259 (11.2) 1417 (12.4) 0.88 (0.82-0.95) 0.001 (NNT = 83)
Cardiovascular death or 755 (13.5) 843 (14.9) 0.90 (0.81-0.99) 0.03 789 (7.3) 913 (8.2) 0.86 (0.78-0.94) 0.002 (NNT = 111)
myocardial infarction
Cardiovascular death 208 (3.8) 207 (3.8) 1.00 (0.83-1.22) 0.96 285 (2.7) 319 (3.0) 0.89 (0.76-1.04) 0.15
Myocardial infarction 621 (11.1) 698 (12.5) 0.88 (0.79-0.98) 0.02 564 (5.2) 673 (6.1) 0.83 (0.74-0.93) 0.001 (NNT = 122)
(NNT = 84)
Stroke
Any 96 (1.9) 103 (2.1) 0.93 (0.70-1.23) 0.61 315(2.8) 324 (2.8) 0.97 (0.83-1.14) 0.73
Ischemic 74 (1.1)¢ 93 (1.4) 0.79 (0.59-1.08) 0.14 250 (2.2) 294 (2.6) 0.85(0.72-1.01) 0.06
Haemorrhagic 22 (0.3)¢ 8 (0.1) 2.73 (1.22-6.14) 0.02 Data not reported
Urgent coronary 203 (3.8) 189 (3.5) 1.07 (0.88-1.31) 0.49 279 (2.5) 316 (2.6) 0.88 (0.75-1.03) 0.1
revascularisation
Recurrent ischemia 79 (1.6) 69 (1.5) 1.14 (0.83-1.58) 0.42 Data not reported
with hospitalisation
Stent thrombosis 61/3549 (1.7)¢ 54/3526 (1.5)¢ 1.12 (0.78-1.62) 0.54 Data not reported
definite or probable
Death vs any cause 334 (6.5) 318 (6.1) 1.05 (0.90-1.23) 0.52 540 (5.0) 565 (5.3) 0.95 (0.85-1.07) 0.41
Safety Endpoints n = 6446 n = 6441 n = 13,186 n = 13,166
GUSTO
Moderate or severe 391(7.2) 290 (5.2) 1.35(1.61-1.58) <0.001 438 (4.2) 267 (2.5) 1.66 (1.43-1.93) <0.001
bleeding
Severe bleeding 144 (2.9) 87(1.6) 1.66 (1.27-2.16) <0.001 Data not reported
TIMI
Clinically significant 1065 (20.2) 755 (14.6) 143 (1.31-1.57) <0.001 1759 (15.8) 1241 (11.1) 1.46 (1.36-1.57) <0.001
Major bleeding 208 (4.0) 136 (2.5) 1.53 (1.24-1.90) <0.001 Data not reported
Non-CABG major bleeding 131 (2.7) 71 (1.3) 1.85(1.39-2.47) <0.001 287 (2.8) 198 (1.8) 1.46 (1.22-1.75) <0.001
CABG major bleeding 62/639 (9.7) 49/671 (7.3) 134 (0.92-1.95) 0.13 11/175 (7.6) 10/210 (6.1) 1.13 (0.48-2.66) 0.79
Bleeding requiring 784 (15.2) 564 (11.2) 1.41 (1.26-1.57) <0.001 Data not reported
medical attention
Fatal bleeding 15(0.4) 8(0.2) 1.89 (0.80-4.45) 0.15 29 (0.3) 20(0.2) 1.46 (0.82-2.58) 0.19
Intracranial haemorrhage 40 (1.1) 12 (0.2) 3.39(1.78-6.45) <0.001 102 (1.0) 53 (0.5) 1.94 (1.39-2.70) <0.001

CI = confidence interval; NTT = number to treat; TIMI = Thrombolysis In Myocardial Infarction classification; GUSTO = Global Utilization of Streptokinase and Tissue Plasminogen Ac-
tivator for Occluded Coronary Arteries classification; CABG = coronary artery bypass graft.

2 Primary endpoint is a composite of cardiovascular death, myocardial infarction, stroke, or urgent coronary revascularisation. Secondary end point is a composite of cardiovascular death,
myocardial infarction or stroke. Percentages are cumulative Kaplan-Meier event rates at 2 years.

b Primary endpoint is a composite of death from cardiovascular causes, myocardial infarction or stroke. Secondary endpoint is a composite of death from cardiovascular causes, myocardial
infarction, stroke or urgent coronary revascularisation. Percentages are cumulative Kaplan-Meier event rates at 3 years.

¢ Percentages are calculated from raw data, Kaplan-Meier event rates not included in data set.

coronary revascularisation becoming part of the secondary endpoint.
Most importantly, patients enrolled in the TRA 2°P-TIMI 50 trial who
had a history of TIA and/or stroke were removed from the trial in Janu-
ary 2011 (2 years post enrolment) after the increases in risk of intracra-
nial bleeding were brought to light. These modifications permitted the
completion of this trial.

2.2.8. Thrombin-Receptor Antagonist for Secondary Prevention of
Atherothrombotic Ischaemic Events (TRA 2°P-TIMI 50) Trial

As with TRACER, TRAP 2°P-TIMI 50 was a randomised, double-blind,
placebo-controlled, multicentre trial. It was a larger trial in which
26,449 patients were enrolled, 13,224 of whom received vorapaxar
(2.5 mg daily, no loading dose) in addition to standard-of-care therapy
[68]. Initial recruitment involved patients with stable atherosclerosis
and a history of MI or ischaemic stroke (between 2 weeks and
12 months before enrolment) and/or PAD (either after revascularisa-
tion or with an ankle-brachial index of <0.85) [68]. As noted above,
study treatment in patients who had a prior stroke was discontinued
in January 2011, 2 years after the commencement of the trial. In the
MI cohort, 98% were receiving aspirin and 78% were also receiving a
thienopyridine; in the PAD patients, 88% were receiving aspirin and
only 37% a thienopyridine. The primary end point was a composite of
cardiovascular death, M, or stroke, with the key secondary endpoint a
composite of cardiovascular death, MI, stroke, or urgent coronary
revascularisation. As with TRACER, the key safety endpoints were mod-
erate or severe bleeding (GUSTO) and clinically significant bleeding

(TIMI). The trial covered 3 years, with follow-up visits at 1, 4, 8, and
12 months, and then every 6 months thereafter until trial completion.

2.2.9. TRA 2°P-TIMI 50 trial: efficacy

The TRAP 2°P-TIMI 50 trial achieved its primary endpoint. At 3 years,
the primary end point had occurred in 9.3% of patients receiving
vorapaxar compared with 10.5% in the placebo group (Kaplan-Meier
estimates at 3 years; HR 0.87; 95% CI 0.80-0.94; P < 0.001) [68]. The
major secondary end point was also reduced (11.2% versus 12.4%; HR
0.88; 95% C10.83-0.95; P = 0.001). Again, of the individual components
of these end points, MI was most significantly reduced (5.2% versus
6.1%; HR 0.83; 95% CI 0.74-0.93; P = 0.001). Despite these findings
there was no significant difference in the rates of death from any
cause (5.0% versus 5.3%; HR 0.95; 95% C1 0.85-1.07; P = 0.41) [68]. A
summary of these endpoints is provided in Table 1.

2.2.10. TRA 2°P-TIMI 50 trial: safety

As observed in TRACER, bleeding complications were increased in
patients receiving vorapaxar: moderate-severe bleeding (GUSTO) was
increased (4.2% versus 2.5%; HR 1.66; 95% CI 1.43-1.99; P < 0.001), as
was clinically significant bleeding and non-CABG-related major bleed-
ing scores (TIMI) (15.8% versus 11.1% (HR 1.46; 95% CI 1.36-1.57) and
2.8 versus 1.8% (HR 1.46; 95% CI 1.22-1.75), respectively, P < 0.001 for
both) [68]. In contrast, there was no significant difference in the rates
of CABG-related major bleeding — a lack of effect also observed in the
TRACER trial. Intracranial haemorrhage was increased two-fold in the
vorapaxar group (1.0% versus 0.5%, HR 1.94; 95% Cl 1.39-2.70;
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P < 0.001) but, most critically, fatal bleeding was rare and was not dif-
ferent between the treatment groups (0.3% versus 0.2%, HR 1.46; 95%
C10.82-2.58; P = 0.19) [68]. Bleeding was increased in women, those
with a body weight <60 kg, and patients in the North American trials;
however these groups did not test positive for significant interaction
[68]. In contrast to TRACER, additional P2Y;, therapy did not increase
the bleeding risk of vorapaxar, yet concomitant aspirin treatment did.
The aspirin-naive patient subgroup did not show any increase in clini-
cally relevant bleeding [68,73].

2.2.11. TRA 2°P-TIMI 50 trial: subgroup analyses

TRA 2°P-TIMI 50 was designed to allow analyses of the large, pre-
defined subgroups comprising the three distinct atherosclerotic patient
cohorts: those with prior MI, ischaemic stroke, or PAD. In support of the
TRACER findings, particular benefit was observed in the 17,779 patients
with prior MI (8.1% versus 9.7%; HR 0.80; 95% CI 0.72-0.89, P < 0.001)
[74]. Importantly, patients in this subgroup did not have increased
rates of intracranial haemorrhage (0.6% versus 0.4%; P = 0.076) [74]. In-
terestingly, of the 3787 PAD patients, vorapaxar treatment did not re-
duce the risk of primary or secondary endpoint [75], but did produce
some benefit in reducing the risk of peripheral vascular end points, no-
tably limb ischaemia (2.3% versus 3.9%; HR 0.58; 95% CI 0.39-0.86;
P = 0.006) and peripheral revascularisation (18.4% versus 22.2%; HR
0.84; 95% CI 0.73-0.97; P = 0.017) [75]. In concordance with the
TRACER trial results, the ischaemic stroke subgroup of TRA 2°P-TIMI re-
corded no significant efficacy with vorapaxar treatment but an increase
in bleeding was observed [76].

As a result of these trials, in May 2014 the FDA approved vorapaxar
for the prevention of thrombotic cardiovascular events in patients with
a history of MI or PAD. The drug will be sold under the trade name
Zontivity. Given the clinical findings from TRACER and TRA 2°P-TIMI,
Zontivity will come with a boxed warning contraindicating use in pa-
tients with a history of stroke or TIA.

2.3. Significance & considerations

2.3.1. When will PAR1 antagonists be of most benefit?

Understanding the relative contribution of thrombin-mediated
platelet activation to thrombus formation in particular pathologies
will likely be of significant use in predicting the clinical success of
PAR1 inhibitors. Overall, in patients with no history of stroke or TIA,
and with a body weight above 60 kg, the data from TRA 2°P-TIMI 50
translated into 6 fewer cardiovascular deaths at the cost of two intracra-
nial haemorrhages for every 1000 patients treated with vorapaxar [73]
(see Table 2). However, detailed analysis of the clinical data with
vorapaxar use showed increased benefit of PAR1 inhibition in distinct
clinical cohorts. PAR1 inhibition demonstrated a consistent reduction
in the rate of type 1 (spontaneous) MI in vorapaxar-treated patients
across the phase 2 and phase 3 studies [70]. This is perhaps unsurprising
given the well-known role of thrombin generation in acute MI, particu-
larly in patients with a background of unstable angina and/or coronary
artery disease [77-79]. That these patients have a noted increase in plas-
ma GPV levels (a marker of thrombin-induced platelet activation)
weeks after an acute MI event [78] presumably reflects long-term
thrombin-induced platelet activation in this setting. On this point, it is
intriguing to note that plasma GPV levels in STEMI patients correlate
with the likelihood of occlusion of infarcted arteries and of early
recanalisation of these vessels [79].

In addition to acute MI, vorapaxar was shown to reduce the compli-
cations associated with PAD, notably limb ischaemia and the require-
ment for peripheral vascularisation [75]. Such efficacy of PAR1
inhibition in peripheral arteries might also have been predicted from
the much previous work investigating the role of thrombin in distinct
pathologies. Numerous studies have shown thrombin inhibitors to be
more effective at the lower shear rates experienced in peripheral arter-
ies [80-82]. This phenomenon was previously thought due to decreased

Table 2
Suggested clinical place of vorapaxar in cardiovascular disease.

Indicated Contraindicated
Patients with History of:

1) Coronary artery disease 1) Stroke

2) Peripheral arterial disease 2) TIA

3) In combination with existing
antiplatelet drugs

3) Intracranial haemorrhage
Active pathological bleeding

Underlying bleeding risk:

1) Decreased renal and/or hepatic function
2) Currently taking anticoagulants

3) Under 60 kg and/or over 75 years

4) History of bleeding disorders

Pregnant or breastfeeding women

TIA = transient ischaemic attack;

fibrin production and a consequent impairment of thrombus stability
[82], however more recent work has shown that thrombin-dependent
platelet activation (via PARs) is also more prevalent at lower blood
shear rates [83], presumably due to limited assembly of blood borne co-
agulation factors on the surface of activated platelets at higher blood
flow/shear rates [84].

With the ever-present push toward personalised medicine, iden-
tifying the relative role of thrombin-induced platelet activation in
patients may be of interest. Clearly, the one-size-fits-all approach
to anti-platelet therapy provides a wide spectrum of responses to
standard-of-care therapy. On this point, one recent study used
thromboelastography and ADP-induced platelet aggregation to pre-
dict ischaemic events in aspirin- plus clopidogrel-treated patients
6 months after PCI. After stratification by platelet-fibrin clot strength
measured by thromboelastography, this study found that 58% of pa-
tients in the highest quartile for ADP-induced aggregation (high re-
sidual platelet reactivity) had an ischaemic event by 2 months
versus only 2% of patients in the lowest quartile [85,86]. In this re-
gard, patients identified as having high residual platelet reactivity
following standard-of-care treatment might receive the greatest
benefit from additional administration of the new PAR1 antagonist.

2.3.2. How safe is PAR1 antagonism?

In addition to the specific pathologies likely to benefit from PAR1 in-
hibition (or not), understanding the interaction of vorapaxar with other
current anti-platelet drugs is clearly of importance and requires further
investigation given the discrepancies in the existing trial data. The
TRACER trial showed that bleeding rates (GUSTO) increased in patients
receiving vorapaxar in combination with a thienopyridine compared to
those not (HR 1.45; 95% CI 1.23-1.71 (no thienopyridine) versus HR
0.95; 95% CI 0.65-1.40 (with thienopyridine); P = 0.04 for interaction)
[69]. In contrast, no increase in bleeding was observed in patients co-
administered vorapaxar and a thienopyridine in the TRA 2°P-TIMI 50
trial [68]. A further difference between the trial results concerned con-
comitant aspirin usage, with patients receiving high dose aspirin
(>300 mg daily at both baseline and time of discharge) recording a con-
sistent, albeit non-statistically significant, trend toward higher bleeding
and ischaemic outcomes in TRACER [87] but not in TRA 2°P-TIMI 50 [68].
The TRA 2°P-TIMI 50 trial did however report an increase in bleeding in
North American patients, and it is worth noting that this patient group
was considerably more likely to be receiving high dose aspirin than pa-
tients from other countries [68,87]. Regardless of these differences be-
tween the trials, bleeding in patients receiving multiple anti-platelet
agents is likely to be a major consideration. It remains unknown whether
the bleeding complications observed in these trials were due to PAR1 in-
hibition per se, the concurrent use of three anti-platelet drugs, or to a par-
ticular drug combination. On this point, it is worth noting that recent
animal studies suggest that strategies that block platelet PAR function
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are more likely to provide safe and effective anti-thrombotic activity
when used in combination with aspirin than with clopidogrel [52,88].
Whether or not vorapaxar is likely to be useful in patients classified as
“clopidogrel non-responders” remains to be determined but is likely to
be of value. Of note, such “clopidogrel non-responders” have been
shown to exhibit increased platelet aggregation in response to PAR1 acti-
vation [89], further emphasising the potential for vorapaxar in this patient
group.

In addition to the moderate increase in bleeding rates across the
entire patient cohort, the phase 3 trials of vorapaxar revealed impor-
tant and significant safety concerns for specific demographics (see
Table 2). The FDA approval of vorapaxar came with explicit contraindi-
cations for patients with a history of stroke, TIA, intracranial haemor-
rhage, or active pathological bleeding. Vorapaxar use in geriatric
patients or those with severe hepatic impairment was also not recom-
mended due to the inherent increase in bleeding risk in these demo-
graphics. Safety and efficacy of vorapaxar in paediatrics or in pregnant
or nursing women have not yet been established, but given the contro-
versies surrounding anti-thrombotic management of these populations
[90,91] further studies into the safety and efficacy of vorapaxar in these
patient groups may be warranted.

Finally, despite a lack of overt off-target effects of vorapaxar
throughout these clinical trials, the widespread expression pattern of
PAR1 in the cardiovascular system (and beyond) suggests that the
long-term effects of systemic PAR1 inhibition will require careful
consideration.

2.3.3. How does vorapaxar compare with other antithrombotic agents?

Several large-scale clinical trials have been conducted to determine
the optimal anti-thrombotic management of ACS patients, including
studies on the anti-platelet drugs aspirin, clopidogrel [13,14], prasugrel
[92], and ticagrelor [93], as well as anticoagulants such as the direct Xa
inhibitor, rivaroxaban [94]. A comparison of these trial results is shown
in Table 3. While clearly inappropriate to directly compare the safety
and efficacy of these agents across distinct trials with their disparate
clinical groups, it is of interest to observe that each drug shows benefit
over standard of care therapy in the reduction of at least one clinical
end point. With the recent addition of vorapaxar to the anti-
thrombotic phamaco-armoury, an updated review of the trial data
may be warranted.

2.3.4. What does the future hold for PAR inhibitors?

The use of vorapaxar beyond the well-defined settings and treat-
ment regimens indicated by TRA 2°P-TIMI 50 awaits further investiga-
tion, and approval outside of the United States lies ahead. Given that
vorapaxar is orally available, reversible, and sufficiently potent, there
are no “second generation” PAR1 antagonists on the horizon as yet.
For the time being, it is very much a case of “wait and see” for this
first PAR1 inhibitor to be approved. What does the longer term future
hold for platelet PAR inhibitors?

With the significant clinical effort behind the development of PAR1
inhibitors as anti-thrombotics, it is surprising that relatively little is
known regarding the contribution of PAR4 to human platelet function
during arterial thrombosis. Whether or not PAR4 represents a useful
anti-platelet target is unknown, although some evidence suggests that
PARA4 has distinct functions to PAR1 on human platelets. If true, PAR4 in-
hibitors may provide a useful adjunct and/or stand-alone therapy for
the prevention of arterial thrombosis. For example, previous studies
have shown that PAR1 and PAR4 differentially release distinct alpha-
granule populations [95] and mediate diverse contributions to the
procoagulant function of platelets [96]. Recent work has focussed on de-
veloping suitable tools to allow investigations of platelet PAR4 function,
in particular PAR4-specific antagonists and mouse models in which the
platelet PAR profile is ‘humanised’ to express PAR1 and PAR4 (rather
than PAR3 and PAR4). To this end, several PAR4 antagonists have been
developed, including pepducins [97], function-blocking antibodies [98]

and the small molecule antagonist, YD-3 [99]. Initial proof-of-concept
studies have shown that PAR4 inhibition provides anti-thrombotic ac-
tivity, albeit in caveated mouse models [53,98,100] and in vitro studies
[96,101]. Unfortunately, recent efforts to develop a ‘humanised’ platelet
PAR mouse have been less productive, with an unsuccessful attempt to
express PAR1 as a transgene in PAR3-deficient mice [102]. Further in-
sights into platelet PAR biology utilizing these new tools will improve
our understanding of the relative roles of platelet thrombin receptors
in (patho)physiology, potentially providing additional rationalisation
of these receptors as therapeutic targets.

3. Conclusion

The recent approval by the USA's Food and Drug Administration of
the first PAR1 antagonist as a novel anti-platelet agent represents a po-
tentially important breakthrough in the treatment of thrombotic cardio-
vascular events and marks the long path from receptor discovery to
clinical drug use. While the journey from the initial discovery of this
platelet thrombin receptor in the early 1990s to the approval for use
of the first receptor antagonist in 2014 represents a significant achieve-
ment and advance in our knowledge of this important platelet activa-
tion mechanism, it is not unreasonable to think that significant further
insights are yet to be gained.

Conflicts of interest
The authors declare no conflicts of interest.
Acknowledgements

J.R.H. is a Future Fellow of the Australian Research Council and is
supported by grants from the National Health and Medical Research
Council of Australia and the CASS Foundation. The authors thank D.K.
Lynch for important contributions.

References

[1] Alwan A. Global status report on noncommunicable diseases 2010. World Health
Organization; 2011.

[2] Trialists' Collaboration A. Collaborative meta-analysis of randomised trials of anti-

platelet therapy for prevention of death, myocardial infarction, and stroke in high

risk patients. BMJ 2002;324(7329):71-86.

Hamm CW, Bassand J-P, Agewall S, Bax |, Boersma E, Bueno H, et al. ESC Guidelines

for the management of acute coronary syndromes in patients presenting without

persistent ST-segment elevation. The Task Force for the Management of Acute Cor-
onary Syndromes (ACS) in Patients Presenting Without Persistent ST-segment Ele-

vation of the European Society of Cardiology (ESC). Eur Heart ] 2011;32(23):

2999-3054.

Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-re-

ceptor interactions in platelet thrombus formation under flow. Cell 1998;94(5):

657-66.

[5] Vicente V, Kostel P, Ruggeri Z. Isolation and functional characterization of the von
Willebrand factor-binding domain located between residues His1-Arg293 of the
alpha-chain of glycoprotein Ib. ] Biol Chem 1988;263(34):18473-9.

[6] White ]G. Platelet structure. In: Michelson AD, editor. Platelets. Third ed. London:
Academic Press; 2013. p. 117-45.

[7] Scarborough RM, Kleiman NS, Phillips DR. Platelet glycoprotein IIb/Illa antagonists:
what are the relevant issues concerning their pharmacology and clinical use? Cir-
culation 1999;100(4):437-44.

[8] Kastrati A, Mehilli ], Neumann F-J, Dotzer F, ten Berg ], Bollwein H, et al. Abciximab
in patients with acute coronary syndromes undergoing percutaneous coronary in-
tervention after clopidogrel pretreatment: the ISAR-REACT 2 randomized trial.
JAMA 2006;295(13):1531-8.

[9] Gurbel PA, Bliden KP, Hiatt BL, O'Connor CM. Clopidogrel for coronary stenting re-
sponse variability, drug resistance, and the effect of pretreatment platelet reactivi-
ty. Circulation 2003;107(23):2908-13.

[10] Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a compre-
hensive systematic review. Br ] Clin Pharmacol 2008;66(2):222-32.

[11] Gum PA, Kottke-Marchant K, Welsh PA, White ], Topol EJ. A prospective, blinded
determination of the natural history of aspirin resistance among stable patients
with cardiovascular disease. ] Am Coll Cardiol 2003;41(6):961-5.

[12] Jdremo P, Lindahl T, Fransson SG, Richter A. Individual variations of platelet inhibi-
tion after loading doses of clopidogrel. ] Intern Med 2002;252(3):233-8.

[13] Committee CS. A randomised, blinded, trial of clopidogrel versus aspirin in patients
at risk of ischaemic events (CAPRIE). Lancet 1996;348(9038):1329-39.

3

[4

114


http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0515
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0515
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0010
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0010
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0010
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0015
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0015
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0015
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0015
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0015
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0015
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0020
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0020
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0020
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0025
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0025
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0025
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0030
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0030
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0035
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0035
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0035
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0040
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0040
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0040
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0040
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0045
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0045
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0045
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0050
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0050
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0055
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0055
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0055
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0060
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0060
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0065
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0065

188 S.L. French et al. / Blood Reviews 29 (2015) 179-189

[14] Bhatt DL, Fox KA, Hacke W, Berger PB, Black HR, Boden WE, et al. Clopidogrel and
aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl |
Med 2006;354(16):1706-17.

[15] Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000;
407(6801):258-64.

[16] Kahn ML, Zheng Y-W, Huang W, Bigornia V, Zeng D, Moff S, et al. A dual thrombin
receptor system for platelet activation. Nature 1998;394(6694):690-4.

[17] Vu T-KH, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional
thrombin receptor reveals a novel proteolytic mechanism of receptor activation.
Cell 1991;64(6):1057-68.

[18] Xu W-f, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, et al. Cloning and
characterization of human protease-activated receptor 4. Proc Natl Acad Sci 1998;
95(12):6642-6.

[19] Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, et al. Protease-
activated receptor 3 is a second thrombin receptor in humans. Nature 1997;386:
502-6.

[20] Howells GL, Macey MG, Chinni C, Hou L, Fox MT, Harriott P, et al. Proteinase-
activated receptor-2: expression by human neutrophils. ] Cell Sci 1997;
110(7):881-7.

[21] Bono F, Lamarche I, Herbert J. Induction of vascular smooth muscle cell growth by
selective activation of the proteinase activated receptor-2 (PAR-2). Biochem
Biophys Res Commun 1997;241(3):762-4.

[22] Molino M, Woolkalis M], Reavey-Cantwell ], Praticé D, Andrade-Gordon P,
Barnathan ES, et al. Endothelial cell thrombin receptors and PAR-2 — two
protease-activated receptors located in a single cellular environment. J Biol Chem
1997;272(17):11133-41.

[23] Hamilton JR, Chow JM, Cocks TM. Protease-activated receptor-2 turnover stimulat-
ed independently of receptor activation in porcine coronary endothelial cells. Br ]
Pharmacol 1999;127(3):617-22.

[24] Glembotski CC, Irons C, Krown K, Murray S, Sprenkle A, Sei C. Myocardial alpha-
thrombin receptor activation induces hypertrophy and increases atrial natriuretic
factor gene expression. ] Biol Chem 1993;268(27):20646-52.

[25] Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P, et al. Signaling
properties and functions of two distinct cardiomyocyte protease-activated recep-
tors. Circ Res 2000;86(10):1054-61.

[26] Sabri A, Short ], Guo ], Steinberg SF. Protease-activated receptor-1 mediated DNA
synthesis in cardiac fibroblast is via epidermal growth factor receptor
transactivation distinct PAR-1 signaling pathways in cardiac fibroblasts and
cardiomyocytes. Circ Res 2002;91(6):532-9.

[27] Nystedt S, Emilsson K, Larsson AK, Strombeck B, Sundelin J. Molecular cloning and
functional expression of the gene encoding the human proteinase-activated recep-
tor 2. Eur ] Biochem 1995;232(1):84-9.

[28] Molino M, Barnathan ES, Numerof R, Clark ], Dreyer M, Cumashi A, et al. Interac-
tions of mast cell tryptase with thrombin receptors and PAR-2. ] Biol Chem 1997;
272(7):4043-9.

[29] Camerer E, Huang W, Coughlin SR. Tissue factor-and factor X-dependent activation
of protease-activated receptor 2 by factor VIla. Proc Natl Acad Sci 2000;97(10):
5255-60.

[30] Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization
of membrane-type serine protease 1 and identification of protease-activated
receptor-2 and single-chain urokinase-type plasminogen activator as substrates. ]
Biol Chem 2000;275(34):26333-42.

[31] Wilson S, Greer B, Hooper |, Zijlstra A, Walker B, Quigley ], et al. The membrane-
anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells.
Biochem ] 2005;388:967-72.

[32] Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-
activated receptors 1 and 4 mediate activation of human platelets by thrombin. |
Clin Invest 1999;103(6):879-87.

[33] Sims P, Wiedmer T, Esmon CT, Weiss H, Shattil S. Assembly of the platelet
prothrombinase complex is linked to vesiculation of the platelet plasma mem-
brane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activ-
ity. ] Biol Chem 1989;264(29):17049-57.

[34] Covic L, Gresser AL, Kuliopulos A. Biphasic kinetics of activation and signaling for
PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 2000;39(18):5458-67.

[35] Scarborough R, Naughton M, Teng W, Hung D, Rose ], Vu T, et al. Tethered ligand
agonist peptides. Structural requirements for thrombin receptor activation reveal
mechanism of proteolytic unmasking of agonist function. ] Biol Chem 1992;
267(19):13146-9.

[36] Hung D, Wong Y, Vu T-K, Coughlin S. The cloned platelet thrombin receptor cou-
ples to at least two distinct effectors to stimulate phosphoinositide hydrolysis
and inhibit adenylyl cyclase. ] Biol Chem 1992;267(29):20831-4.

[37] Offermanns S. Activation of platelet function through G protein-coupled receptors.
Circ Res 2006;99(12):1293-304.

[38] Klages B, Brandt U, Simon MI, Schultz G, Offermanns S. Activation of G12/G13 re-
sults in shape change and Rho/Rho-kinase-mediated myosin light chain phosphor-
ylation in mouse platelets. ] Cell Biol 1999;144(4):745-54.

[39] Offermanns S, Toombs CF, Hu Y-H, Simon MI. Defective platelet activation in Gag-
deficient mice. Nature 1997;389(6647):183-6.

[40] Liu L-W, Vu T, Esmon C, Coughlin S. The region of the thrombin receptor resem-
bling hirudin binds to thrombin and alters enzyme specificity. ] Biol Chem 1991;
266(26):16977-80.

[41] Nieman MT, Schmaier AH. Interaction of thrombin with PAR1 and PAR4 at the
thrombin cleavage site. Biochemistry 2007;46(29):8603-10.

[42] Jacques SL, LeMasurier M, Sheridan PJ, Seeley SK, Kuliopulos A. Substrate-assisted
catalysis of the PAR1 thrombin receptor — enhancement of macromolecular asso-
ciation and cleavage. ] Biol Chem 2000;275(52):40671-8.

[43] Covic L, Singh C, Smith H, Kuliopulos A. Role of the PAR4 thrombin receptor in sta-
bilizing platelet-platelet aggregates as revealed by a patient with Hermansky-
Pudlak syndrome. Thromb Haemost 2002;87(4):722-7.

[44] Jacques S, Kuliopulos A. Protease-activated receptor-4 uses dual prolines and an
anionic retention motif for thrombin recognition and cleavage. Biochem ] 2003;
376:733-40.

[45] Sambrano GR, Weiss EJ, Zheng Y-W, Huang W, Coughlin SR. Role of thrombin sig-
nalling in platelets in haemostasis and thrombosis. Nature 2001;413(6851):74-8.

[46] Hollenberg MD, Saifeddine M, Al-Ani B. Proteinase-activated receptor-2 in rat
aorta: structural requirements for agonist activity of receptor-activating peptides.
Mol Pharmacol 1996;49:229-33.

[47] Khan TA, Bianchi C, Voisine P, Sandmeyer ], Feng ], Sellke FW. Aprotinin inhibits
protease-dependent platelet aggregation and thrombosis. Ann Thorac Surg 2005;
79(5):1545-50.

[48] Andrade-Gordon P, Maryanoff BE, Derian CK, Zhang HC, Addo MF, Darrow AL, et al.
Design, synthesis, and biological characterization of a peptide-mimetic antagonist
for a tethered-ligand receptor. Proc Natl Acad Sci U S A 1999;96(22):12257-62.

[49] Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice
lacking PAR3. Blood 2002;100(9):3240-4.

[50] Nakanishi-Matsui M, Zheng YW, Sulciner D], Weiss EJ, Ludeman M]J, Coughlin SR.
PAR3 is a cofactor for PAR4 activation by thrombin. Nature 2000;404(6778):609-13.

[51] Hamilton J, Cornelissen I, Coughlin S. Impaired hemostasis and protection against
thrombosis in protease-activated receptor 4-deficient mice is due to lack of throm-
bin signaling in platelets. ] Thromb Haemost 2004;2(8):1429-35.

[52] Lee H, Sturgeon S, Mountford J, Jackson S, Hamilton J. Safety and efficacy of targeting
platelet proteinase-activated receptors in combination with existing anti-platelet
drugs as antithrombotics in mice. Br ] Pharmacol 2012;166(7):2188-97.

[53] Vandendries ER, Hamilton JR, Coughlin SR, Furie B, Furie BC. Par4 is required for
platelet thrombus propagation but not fibrin generation in a mouse model of
thrombosis. Proc Natl Acad Sci U S A 2007;104(1):288-92.

[54] Andrade-Gordon P, Derian CK, Maryanoff BE, Zhang HC, Addo MF, Cheung W, et al.
Administration of a potent antagonist of protease-activated receptor-1 (PAR-1) at-
tenuates vascular restenosis following balloon angioplasty in rats. ] Pharmacol Exp
Ther 2001;298(1):34-42.

[55] Hollenberg MD, Saifeddine M, Sandhu S, Houle S, Vergnolle N. Proteinase-
activated receptor-4: evaluation of tethered ligand-derived peptides as probes
for receptor function and as inflammatory agonists in vivo. Br ] Pharmacol 2004;

143(4):443-54.

[56] Kuliopulos A, Covic L. Blocking receptors on the inside: pepducin-based interven-
tion of PAR signaling and thrombosis. Life Sci 2003;74(2):255-62.

[57] Cook J], Sitko GR, Bednar B, Condra C, Mellott MJ, Feng D-M, et al. An antibody
against the exosite of the cloned thrombin receptor inhibits experimental arterial
thrombosis in the African green monkey. Circulation 1995;91(12):2961-71.

[58] Derian CK, Damiano BP, Addo MF, Darrow AL, D'Andrea MR, Nedelman M, et al.
Blockade of the thrombin receptor protease-activated receptor-1 with a small-
molecule antagonist prevents thrombus formation and vascular occlusion in non-
human primates. ] Pharmacol Exp Ther 2003;304(2):855-61.

[59] Matsuoka T, Kogushi M, Kawata T, Kimura A, Chiba K-i, Musha T, et al. 1102-48 In-
hibitory effect of E5555, an orally active thrombin receptor antagonist, on intimal
hyperplasia following balloon injury. ] Am Coll Cardiol 2004;43(5):A68.

[60] Kogushi M, Matsuoka T, Kawata T, Kuramochi H, Kawaguchi S, Murakami K, et al.
The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) in-
hibits arterial thrombosis without affecting bleeding time in guinea pigs. Eur ]
Pharmacol 2011;657(1):131-7.

[61] Kai'Y, Hirano K, Maeda Y, Nishimura J, Sasaki T, Kanaide H. Prevention of the hyper-
contractile response to thrombin by proteinase-activated receptor-1 antagonist in
subarachnoid hemorrhage. Stroke 2007;38(12):3259-65.

[62] Wiviott SD, Flather MD, O'Donoghue ML, Goto S, Fitzgerald DJ, Cura F, et al. Ran-
domized trial of atopaxar in the treatment of patients with coronary artery disease:
the Lessons From Antagonizing the Cellular Effect of Thrombin-Coronary Artery
Disease Trial. Circulation 2011;123(17):1854-63.

[63] O'Donoghue ML, Bhatt DL, Wiviott SD, Goodman SG, Fitzgerald DJ, Angiolillo D],
et al. Safety and tolerability of atopaxar in the treatment of patients with acute cor-
onary syndromes: the Lessons From Antagonizing the Cellular Effects of Thrombin-
Acute Coronary Syndromes Trial. Circulation 2011;123(17):1843-53.

[64] Goto S, Ogawa H, Takeuchi M, Flather MD, Bhatt DL. Double-blind, placebo-
controlled Phase II studies of the protease-activated receptor 1 antagonist E5555
(atopaxar) in Japanese patients with acute coronary syndrome or high-risk coro-
nary artery disease. Eur Heart J 2010;31(21):2601-13.

[65] Kosoglou T, Reyderman L, Tiessen RG, van Vliet AA, Fales RR, Keller R, et al. Pharma-
codynamics and pharmacokinetics of the novel PAR-1 antagonist vorapaxar (for-
merly SCH 530348) in healthy subjects. Eur ] Clin Pharmacol 2012;68(3):249-58.

[66] Becker RC, Moliterno DJ, Jennings LK, Pieper KS, Pei ], Niederman A, et al. Safety and
tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coro-
nary intervention: a randomised, double-blind, placebo-controlled phase II study.
Lancet 2009;373(9667):919-28.

[67] Ghosal A, Lu X, Penner N, Gao L, Ramanathan R, Chowdhury SK, et al. Identification
of human liver cytochrome P450 enzymes involved in the metabolism of SCH
530348 (Vorapaxar), a potent oral thrombin protease-activated receptor 1 antago-
nist. Drug Metab Dispos 2011;39(1):30-8.

[68] Morrow DA, Braunwald E, Bonaca MP, Ameriso SF, Dalby A], Fish MP, et al.
Vorapaxar in the secondary prevention of atherothrombotic events. N Engl ] Med
2012;366(15):1404-13.

[69] Tricoci P, Huang Z, Held C, Moliterno DJ, Armstrong PW, Van de Werf F, et al.
Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl ]
Med 2012;366(1):20-33.

115


http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0070
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0070
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0070
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0075
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0075
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0080
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0080
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0085
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0085
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0085
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0520
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0520
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0520
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0090
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0090
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0090
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0095
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0095
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0095
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0100
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0100
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0100
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0105
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0105
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0105
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0105
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0110
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0110
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0110
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0115
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0115
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0115
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0120
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0120
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0120
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0125
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0125
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0125
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0125
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0130
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0130
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0130
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0135
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0135
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0135
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0140
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0140
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0140
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0145
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0145
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0145
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0145
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0150
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0150
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0150
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0155
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0155
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0155
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0160
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0160
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0160
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0160
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0165
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0165
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0170
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0170
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0170
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0170
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0175
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0175
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0175
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0180
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0180
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0185
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0185
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0185
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0190
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0190
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0195
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0195
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0195
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0200
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0200
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0205
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0205
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0205
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0210
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0210
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0210
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0215
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0215
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0215
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0220
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0220
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0225
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0225
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0225
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0230
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0230
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0230
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0235
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0235
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0235
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0240
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0240
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0245
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0245
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0250
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0250
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0250
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0255
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0255
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0255
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0260
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0260
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0260
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0265
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0265
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0265
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0265
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0270
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0270
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0270
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0270
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0275
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0275
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0280
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0280
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0280
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0285
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0285
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0285
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0285
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0290
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0290
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0290
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0295
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0295
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0295
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0295
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0300
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0300
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0300
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0305
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0305
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0305
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0305
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0310
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0310
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0310
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0310
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0315
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0315
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0315
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0315
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0320
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0320
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0320
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0325
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0325
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0325
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0325
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0330
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0330
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0330
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0330
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0335
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0335
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0335
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0340
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0340
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0340

S.L. French et al. / Blood Reviews 29 (2015) 179-189 189

[70] Leonardi S, Tricoci P, White HD, Armstrong PW, Huang Z, Wallentin L, et al. Effect of
vorapaxar on myocardial infarction in the thrombin receptor antagonist for clinical
event reduction in acute coronary syndrome (TRA-CER) trial. Eur Heart ] 2013;34:
1723-31.

[71] Capodanno D, Bhatt D, Goto S, O'Donoghue M, Moliterno D, Tamburino C, et al.
Safety and efficacy of protease-activated receptor-1 antagonists in patients with
coronary artery disease: a meta-analysis of randomized clinical trials. ] Thromb
Haemost 2012;10(10):2006-15.

[72] Whellan DJ, Tricoci P, Chen E, Huang Z, Leibowitz D, Vranckx P, et al. Vorapaxar in
acute coronary syndrome patients undergoing coronary artery bypass graft sur-
gery: subgroup analysis from the TRACER trial (Thrombin Receptor Antagonist
for Clinical Event Reduction in Acute Coronary Syndrome). ] Am Coll Cardiol
2014;63(11):1048-57.

[73] Duerschmied D, Bode C. Vorapaxar expands antiplatelet options. Which patients may
benefit from thrombin receptor antagonism? Hamostaseologie 2011;32(3):221-7.

[74] Scirica BM, Bonaca MP, Braunwald E, De Ferrari GM, Isaza D, Lewis BS, et al.
Vorapaxar for secondary prevention of thrombotic events for patients with previ-
ous myocardial infarction: a prespecified subgroup analysis of the TRA 2 P-TIMI 50
trial. Lancet 2012;380(9850):1317-24.

[75] Bonaca MP, Scirica BM, Creager MA, Olin J, Bounameaux H, Dellborg M, et al.
Vorapaxar in patients with peripheral artery disease results from TRA2° P-TIMI
50. Circulation 2013;127(14):1522-9.

[76] Morrow DA, Alberts M]J, Mohr JP, Ameriso SF, Bonaca MP, Goto S, et al. Efficacy and
safety of vorapaxar in patients with prior ischemic stroke. Stroke 2013;44(3):691-8.

[77] Merlini PA, Bauer KA, Oltrona L, Ardissino D, Cattaneo M, Belli C, et al. Persistent ac-
tivation of coagulation mechanism in unstable angina and myocardial infarction.
Circulation 1994;90(1):61-8.

[78] Szczeklik A, Dropinski J, Radwan J, Krzanowski M. Persistent generation of throm-
bin after acute myocardial infarction. Arterioscler Thromb Vasc Biol 1992;12(5):
548-53.

[79] Huisse M-G, Lanoy E, Tcheche D, Feldman LJ, Bezeaud A, Anglés-Cano E, et al.
Prothrombotic markers and early spontaneous recanalization in ST-segment eleva-
tion myocardial infarction. Thromb Haemost 2007;98(2):420.

[80] Inauen W, Baumgartner HR, Bombeli T, Haeberli A, Straub PW. Dose- and shear
rate-dependent effects of heparin on thrombogenesis induced by rabbit aorta
subendothelium exposed to flowing human blood. Arteriosclerosis 1990;10(4):
607-15.

[81] Kirchhofer D, Sakariassen KS, Clozel M, Tschopp TB, Hadvary P, Nemerson Y, et al.
Relationship between tissue factor expression and deposition of fibrin, platelets,
and leukocytes on cultured endothelial cells under venous blood flow conditions.
Blood 1993;81(8):2050-8.

[82] Fressinaud E, Sakariassen KS, Rothschild C, Baumgartner HR, Meyer D. Shear rate-
dependent impairment of thrombus growth on collagen in nonanticoagulated
blood from patients with von Willebrand disease and hemophilia A. Blood 1992;
80(4):988-94.

[83] Lee H, Sturgeon SA, Jackson SP, Hamilton JR. The contribution of thrombin-induced
platelet activation to thrombus growth is diminished under pathological blood
shear conditions. Thromb Haemost 2012;107(2):328.

[84] Berny MA, Munnix IC, Auger JM, Schols SE, Cosemans JM, Panizzi P, et al. Spatial
distribution of factor Xa, thrombin, and fibrin(ogen) on thrombi at venous shear.
PLoS One 2011;5(4):e10415.

[85] Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD. Platelet function
monitoring in patients with coronary artery disease. ] Am Coll Cardiol 2007;
50(19):1822-34.

[86] Gurbel PA, Bliden KP, Guyer K, Cho PW, Zaman KA, Kreutz RP, et al. Platelet reactiv-
ity in patients and recurrent events post-stenting: results of the PREPARE POST-
STENTING study. ] Am Coll Cardiol 2005;46(10):1820-6.

[87] Mahaffey KW, Huang Z, Wallentin L, Storey RF, Jennings LK, Tricoci P, et al. Association
of aspirin dose and vorapaxar safety and efficacy in patients with non-ST-segment el-
evation acute coronary syndrome (from the TRACER Trial). Am ] Cardiol 2014;
113(6):936-44.

[88] Cornelissen I, Palmer D, David T, Wilsbacher L, Concengco C, Conley P, et al. Roles
and interactions among protease-activated receptors and P2ry12 in hemostasis
and thrombosis. Proc Natl Acad Sci 2010;107(43):18605-10.

[89] Kreutz RP, Breall JA, Kreutz Y, Owens ], Lu D, Bolad I, et al. Protease activated
receptor-1 (PAR-1) mediated platelet aggregation is dependant on clopidogrel re-
sponse. Thromb Res 2012;130(2):198-202.

[90] Askie LM, Duley L, Henderson-Smart DJ, Stewart LA. Antiplatelet agents for preven-
tion of pre-eclampsia: a meta-analysis of individual patient data. Lancet 2007;
369(9575):1791-8.

[91] Bates SM, Greer IA, Hirsh ], Ginsberg JS. Use of antithrombotic agents during preg-
nancy: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Thera-
py. Chest 2004;126(Suppl. 3):627S-44S.

[92] Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al.
Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl |
Med 2007;357(20):2001-15.

[93] Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al.
Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl |
Med 2009;361(11):1045-57.

[94] Mega JL, Braunwald E, Wiviott SD, Bassand J-P, Bhatt DL, Bode C, et al. Rivaroxaban
in patients with a recent acute coronary syndrome. N Engl ] Med 2012;366(1):9-19.

[95] Italiano Jr JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. An-
giogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins
are organized into separate platelet alpha granules and differentially released.
Blood 2008;111(3):1227-33.

[96] Duvernay M, Young S, Gailani D, Schoenecker J, Hamm HE. Protease-activated re-
ceptor (PAR) 1 and PAR4 differentially regulate factor V expression from human
platelets. Mol Pharmacol 2013;83(4):781-92.

[97] Covic L, Misra M, Badar J, Singh C, Kuliopulos A. Pepducin-based intervention of
thrombin-receptor signaling and systemic platelet activation. Nat Med 2002;8:
1161-5.

[98] Mumaw M, la Fuente M, Noble D, Nieman M. Targeting the anionic region of
human protease activated receptor 4 (PAR4) inhibits platelet aggregation and
thrombosis without interfering with hemostasis. ] Thromb Haemost 2014;12:
1-11.

[99] Wu CC, Huang SW, Hwang TL, Kuo SC, Lee FY, Teng CM. YD-3, a novel inhibitor of
protease-induced platelet activation. Br ] Pharmacol 2000;130(6):1289-96.

[100] Lee H, Hamilton JR. Physiology, pharmacology, and therapeutic potential of prote-
ase-activated receptors in vascular disease. Pharmacol Ther 2012;134(2):246-59.

[101] Judge HM, Jennings LK, Moliterno DJ, Hord E, Ecob R, Tricoci P, et al. PAR1 antago-
nists inhibit thrombin-induced platelet activation whilst leaving the PAR4-
mediated response intact. Platelets 2014;0:1-7.

[102] Arachiche A, de la Fuente M, Nieman MT. Platelet specific promoters are insuffi-
cient to express protease activated receptor 1 (PAR1) transgene in mouse platelets.
PLoS One 2014;9(5):e97724.

116


http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0345
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0345
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0345
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0345
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0350
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0350
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0350
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0350
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0355
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0355
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0355
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0355
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0355
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0360
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0360
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0365
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0365
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0365
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0365
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0370
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0370
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0370
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0375
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0375
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0380
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0380
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0380
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0385
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0385
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0385
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0390
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0390
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0390
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0395
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0395
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0395
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0395
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0400
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0400
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0400
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0400
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0405
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0405
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0405
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0405
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0410
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0410
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0410
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0415
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0415
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0415
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0420
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0420
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0420
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0425
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0425
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0425
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0430
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0430
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0430
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0430
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0435
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0435
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0435
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0440
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0440
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0440
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0445
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0445
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0445
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0450
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0450
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0450
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0455
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0455
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0455
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0460
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0460
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0460
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0465
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0465
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0470
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0470
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0470
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0470
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0475
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0475
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0475
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0480
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0480
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0480
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0485
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0485
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0485
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0485
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0490
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0490
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0495
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0495
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0500
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0500
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0500
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0505
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0505
http://refhub.elsevier.com/S0268-960X(14)00088-5/rf0505

Appendix 11

117



British Journal of Pharmacology (2016) 173 2952-2965 2952
BJP

Themed Section: Molecular Pharmacology of G Protein-Coupled Receptors

REVIEW ARTICLE

Protease-activated receptor 4: from structure
to function and back again

Correspondence Justin R. Hamilton, Australian Centre for Blood Diseases, Monash University, Level 2 AMREP Building, The Alfred,
Commercial Road, Melbourne, VIC 3004, Australia. E-mail: justin.hamilton@monash.edu

Received 2 August 2015; Revised 22 January 2016; Accepted 29 January 2016

Shauna L French and Justin R Hamilton

Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
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manipulating PAR function. While much work has been aimed at uncovering the function of PART and, to a lesser extent, PAR2,
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pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of
PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic
potential of PAR4.
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Introduction

Protease-activated receptors (PARs) have been studied in some
detail since the discovery of the prototype receptor, PAR1, in
1991. Humans express four PARs, designated PAR1 to PAR4
(please refer to the Concise Guide to Pharmacology;
Alexander et al., 2015a,b,c), that are broadly expressed and
have diverse functions across multiple physiological systems.
PARs form a small GPCR family characterized by their unique
self-activation mechanism following cleavage by specific ser-
ine proteases — typically key effector proteases of coagulation
and inflammatory pathways. As a result, extensive research
has been conducted into the roles of PARs in thrombosis
and other cardiovascular diseases, as well as a range of inflam-
matory conditions. To date, the research spotlight has been
firmly focussed on PAR1 and PAR2, with PAR3 and PAR4
largely waiting in the wings.

PAR1 was discovered while attempting to elucidate the
mechanism by which thrombin activates platelets and other
cells (Vuetal., 1991). PAR1 is a high-affinity thrombin recep-
tor (Vu et al., 1991). The other receptors of this family were
subsequently cloned: PAR3 and PAR4 are also activated by
thrombin (Ishihara et al., 1997; Xu et al., 1998; Kahn et al.,
1998b), with PAR2 thrombin-insensitive and primarily acti-
vated by trypsin and trypsin-like proteases (Nystedt et al.,
1995). The structure and function of PAR1 and PAR2 are well
characterized, and have aided the clinical development of
inhibitors of these receptors. The first PAR1 antagonist,
vorapaxar, (trade name Zontivity), was approved in late
2014 by the FDA for use in the USA as an anti-platelet agent
in patients with cardiovascular disease (Tricoci et al., 2012;
Morrow et al., 2012; French et al., 2015). In addition, PAR2
antagonists have undergone pre-clinical studies for the treat-
ment of inflammation in a variety of settings, including
arthritis (Kelso et al., 2006; Lohman et al., 2012). Despite
these significant advances, there has been comparatively
little progress in understanding the functions of PAR4 in
health and disease and in targeting this receptor for therapeu-
tic gain. Recent setbacks in the clinical development of PAR1
and PAR2 inhibitors, coupled with an emerging body of
evidence suggesting potential utility of targeting PAR4 in
disease settings, has re-ignited interest in the physiology
and pharmacology of PAR4. This review outlines our current
understanding of the physiology, pharmacology, clinical
significance and therapeutic potential of PAR4, provided by
the recent scientific advances in this area.

Receptor structure

PAR4 was first cloned in 1998 (Xu et al., 1998; Kahn et al., 1998b)
and is the most recently cloned member of the PAR family. Itis a
300 amino acid seven transmembrane-spanning domain GPCR
(Figure 1) that retains most of the core features of the other PARs
despite its genetic differences from the other members of the
family (Xu et al., 1998; Kahn et al., 1998b). The human PAR4
gene is remarkably smaller than those of the other PARs, and it
resides at a distinct location on chromosome 19p12, with the
genes for PARs 1-3 located in tandem on chromosome 5q13
(Xu et al., 1998; Kahn et al., 1998a). This genetic divergence of

PAR4 structure and function

PAR4 from the other PARs is thought to have arisen from a
remote gene duplication and subsequent translocation event
which gave rise to ancestral PAR4 and PAR1/PAR2/PAR3 genes
(Kahn et al., 1998a). More recently, two gene duplication events
have occurred to separate PAR1 and PAR2 from PAR3; and then
PAR1 from PAR2 (Kahn et al., 1998a). These genetic differences
may underlie some of the key differences in receptor structure
and function within the PAR family.

The N-terminus of PAR4 contains a hydrophobic signal
peptide sequence, with a signal peptidase cleavage site
present at Ser'’/Gly'®. The extracellular amino-terminus also
contains a serine protease cleavage site at Arg*’/Gly*® that is
essential for receptor activation. Mutation of the serine prote-
ase cleavage site (Arg*’ > Ala) renders the receptor completely
unresponsive to proteolytic activation. Site-specific receptor
cleavage unmasks a cryptic tethered ligand sequence
(GYPGQV) (Xu et al., 1998), which then binds intramolecu-
larly to a defined region in the second extracellular loop of
the receptor (Figure 1), resulting in conformational change
of the receptor and subsequent coupling to intracellular effec-
tors, in common with other GPCR family members. While
this proteolytic activation mechanism is common amongst
PARs, there are several notable differences in the structure of
PAR4 and the other receptors of the family. First, both the
extracellular amino-terminus and intracellular carboxy
terminus have little sequence similarity to the corresponding
regions of other PARs (Xu et al., 1998). Second, the tethered li-
gand binding site of PAR4 contains only three core amino acids
(CHD; Figure 1) of the consensus sequence conserved in PARs
1-3 (ITTCHDV) (Xu et al., 1998). PAR4 also lacks the high-
affinity thrombin binding domain that is present in the other
two thrombin receptors, PAR1 and PAR3 (Vu et al., 1991;
Mathews et al., 1994; Ishihara et al., 1997; Kahn et al., 1998b).

Receptor activation and membrane
trafficking

The serine proteases capable of cleaving PAR4 are generally
key regulators of coagulation (e.g. thrombin and coagulation
factor Xa) and/or inflammation (e.g. trypsin and cathepsin G
released from neutrophils, and bacterial proteases such as
gingipains) (Xu et al., 1998; Kahn et al., 1998b; Sambrano
et al., 2001; Cottrell et al., 2004). Additional serine proteases
that are specific for arginine/lysine cleavage include coagula-
tion factors VIla, 1Xa, Xa, Xla, urokinase and plasmin;
however, none of these have significant activity on PAR4,
with the exception of factor Xa, which showed small effects
at non-physiological concentrations (Xu et al., 1998). Initial
studies indicated that PAR4 is activated by thrombin and tryp-
sin at similar concentrations, with an ECsq of ~5 nM each (Xu
etal., 1998) —significantly higher than the ECs, for thrombin
at either PAR1 or PAR3 (~0.2 nM). The comparatively lower
affinity of PAR4 for thrombin is a reflection of differences in
the macromolecular association between the receptor and
enzyme. PAR1 is a high-affinity thrombin receptor due to
the presence of a hirudin-like thrombin binding domain
(TBD) in its N-terminal exodomain (Mathews et al., 1994).
The TBD sequence, K>'YEPF®®, interacts with exosite I of
thrombin and upon binding causes significant allosteric
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Protease-activated receptor 4: structure. The proposed structure of the 300 amino acid GPCR, human PAR4. Site-specific proteolytic cleavage of
the receptor amino-terminus (thrombin cleavage site, Arg47/Gly48; black arrow) reveals a neo-amino-terminus (tethered ligand sequence;
G*®YPGQV; orange) which binds intramolecularly to the second extracellular loop of the receptor (tethered ligand binding region; green).
PAR4 contains two regions for enhanced thrombin interaction — the anionic retention region (pink) which interacts with thrombin’s exosite;
and the PAPR sequence (grey) which binds at the active site of thrombin with high affinity.

effects essential for rapid association of thrombin (Jacques
et al., 2000). PAR4 does not contain this TBD (Xu et al.,
1998). In fact, the evidence indicates that PAR4 has only
limited interaction with exosite I of thrombin, as y-thrombin
(which lacks a functional exosite I) activates PAR4 as
effectively as a-thrombin (Xu et al., 1998), and mutations in
the exosite I of thrombin have significantly less effect on
cleavage of PAR4 than of PAR1 (Ayala ef al., 2001). Instead,
PAR4 primarily interacts with the active site of thrombin via
two optimally positioned proline residues (P** and P*®) in
the receptor (Jacques and Kuliopulos, 2003) just upstream of
the thrombin cleavage site at Arg*’/Gly*®. A possible role for
Leu*® in the thrombin-receptor interaction has also been
identified and believed to be in facilitating high-affinity bind-
ing of the PAR4 amino-terminal to thrombin’s active site
(Jacques and Kuliopulos, 2003). PAR4 also contains an
anionic cluster, Asp*”...Asp*?...Glu®?...Asp®®, just C-terminal
of the thrombin cleavage site that is thought to interact with
cationic residues that border exosite I of thrombin (Ayala
et al., 2001) and slow the dissociation rate of thrombin from
PAR4 (Jacques and Kuliopulos, 2003). This is reflected in more
sustained intracellular signals elicited by PAR4 activation

2954  British Journal of Pharmacology (2016) 173 2952-2965

compared with the more transient signals in response to PAR1
activation (Covic et al., 2002c). These differences in receptor
structure and activation mechanisms between PAR1 and PAR4
indicate that these two receptors have the potential to initiate
distinct intracellular signalling kinetics and/or events.
Receptor trafficking mechanisms are another key regula-
tor of receptor signalling. This is of particular importance
for PARs due to the irreversible, cleavage-based, endogenous
activation of these receptors, with continued responsiveness
to agonists requiring new receptors to be trafficked to the cell
surface. While much is known regarding the receptor traffick-
ing and response regulation of PAR1 and PAR2 (for a detailed
review, see Soh et al., 2010), little is known about such
mechanisms for PAR4. Defining these pathways is of clear
interest. On this point, one apparently important distinction
between PAR4 and PARs 1 and 2 relates to receptor desensitiza-
tion. After receptor cleavage and activation, PARs are rapidly
internalized on a phosphorylation signal in regions of the
C-terminus of the receptor (Shapiro et al., 1996). However,
PAR4 has a shorter C-terminus than either of PAR1 or PAR2
and does not have many of the phosphorylation sites shown
to be necessary for desensitization of these receptors (Shapiro
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et al., 2000). As a result, agonist-triggered phosphorylation
and consequent receptor internalization is significantly
slower for PAR4 than for PAR1 or PAR2 (Shapiro et al., 2000),
providing a further mechanism for the comparatively
prolonged intracellular signalling downstream of PAR4
activation.

Following internalization, PARs are sorted for either
degradation (lysosomes) or recycling (endosomes). While ac-
tivated receptors are predominately packaged into lysosomes
for complete signal termination, unactivated receptors can
cycle tonically between endosomes and the cell surface to
ensure ongoing sensitivity to agonists in the absence of de
novo receptor synthesis (Hoxie et al., 1993; Shapiro et al.,
1996). An additional membrane trafficking pathway for
PAR4 is provided by efficient transport from the endoplasmic
reticulum (ER), via the Golgi for post-translational modifica-
tions such as glycosylation. PAR4 was recently shown to con-
tain an arginine-based ER retention motif within the second
intracellular loop that may regulate cell surface expression
of the receptor (Cunningham et al., 2012). Intriguingly, co-
expression of PAR2 appeared to interfere with this ER reten-
tion signal and enhance PAR4 expression on the surface of a
human keratinocyte cell line (Cunningham et al., 2012),
providing a potential mechanism for cell type and/or
context-dependent discrepancies in the regulation of PAR4
surface expression.

1. PAR4 Activation
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2. G protein Signalling

7\

PAR4 structure and function m

Intracellular signalling

Cleavage and activation of PARs prompts a conformational
change in the receptor that allows G protein coupling and ini-
tiates multiple intracellular signalling events. G4, G; and G2,
13 have all been demonstrated to mediate signals in response
to activation of PARs, with PAR4 specifically being shown to
couple to both Gy and Gi/;3 family proteins (Coughlin,
2000; Faruqi et al., 2000), but not G;/G, (Voss et al., 2007)
(Figure 2).

PAR4 coupling to G213 initiates binding of RhoGEFs (gua-
nine-nucleotide exchange factors that activate Rho) to the a-
subunit. Consequent Rho activation induces a series of Rho-
dependent cytoskeletal responses and PLC activation (Figure 2).
For example, in platelets, activation of Rho-kinase-dependent
cytoskeletal responses via Giy/13-mediated PAR4 signalling
triggers platelet shape change (Offermanns ef al., 1994;
Coughlin, 2000; Dorsam et al., 2002) — one of the key initial
events in platelet aggregation during thrombosis. In endothelial
cells, Gy,/13-mediated PAR4 signalling via Rho is manifested in
cytoskeletal responses that drive increases in vascular and
colonic paracellular permeability (Dabek et al., 2009; Dabek
et al., 2011). Evidence also exists for PAR4 activation eliciting a
prolonged signal via Gj3/13, which is thought to involve the
regulation of MLC phosphorylation and RhoA (Dabek et al.,
2011; Duvernay et al., 2013).

@ o
}

\ RhoGEFs

\

h
\Ro‘

; [T

.Rho- Platelet
kinases shape change

3. Cellular Responses

Vascular and colonic
paracellular permeability

Protease-activated receptor 4: signalling. Following cleavage and activation of the receptor, PAR4 signals via coupling to Gq and/or G12/G13
family members. The best characterized signalling downstream of G is via PLCB-mediated phosphoinositide hydrolysis and resultant intracellular
calcium mobilization. This promotes the activity of several calcium-regulated kinases and phosphatases (MAPKs, PKCs, PLA, and calpain) which
underlie PAR4-induced cellular responses such as platelet activation and vascular remodelling. The best characterized signalling downstream of
PAR4- G;,,13 coupling is via RhoGEF and consequent Rho activation, which underlie PAR4-induced cellular responses such as cytoskeletal re-

sponses in platelets and vascular smooth muscle and endothelial cells.
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PAR4 coupling to G4 causes intracellular calcium mobiliza-
tion via activation of PLCB and consequent phosphoinositide
hydrolysis (Figure 2). PAR4-induced calcium mobilization
promotes the activity of several calcium-regulated kinases and
phosphatases (e.g. MAPKs, PKCs, PLA; and calpain) (Coughlin,
2000), with wide-ranging effects. For example, PAR4 activation
mediates several key platelet responses that are induced by Gq
-dependent calcium mobilization, including the secretion of
platelet storage granules and integrin activation — both of which
are critical for effective platelet aggregation (Coughlin, 2000;
Coughlin, 2005).

As indicated previously, one key difference with PAR4 is in
the kinetics of receptor activation and signalling. Regarding
Gg-mediated signalling, it is known that PAR1 activation
stimulates a rapid burst of intracellular calcium mobilization,
whereas PAR4 activation elicits a slower rise, which is much
more sustained over time (Covic et al., 2002c¢). This is likely
to be a result of the slower cleavage of PAR4 allowing
prolonged G protein signalling. Given that mice deficient in
Gq lack thrombin-dependent IP; and calcium responses
(Gabbeta et al., 1997; Offermanns et al., 1997) and that PAR4
activation stimulates ongoing IP; and DAG, differences in cal-
cium mobilization are likely to reflect a result of prolonged G4
signalling through PAR4 (Lau et al., 1994; Covic et al., 2002c).
The potential outcome of this difference in signalling kinetics

is discussed in more detail below, but may be important for
ongoing cell signalling under conditions of prolonged ago-
nist exposure. For example, in platelets, PAR1-mediated cal-
cium signalling undergoes rapid desensitization but can be
rescued by subsequent PAR4 activation (Falker et al., 2011).
In endothelial and smooth muscle cells, long-term G4-depen-
dent calcium signalling via PAR4 drives transcriptional and
metabolic responses that may be important in vascular
remodelling and proliferative processes in restenosis in
response to high glucose levels (Pavic et al., 2014).

Dimerization and crosstalk with other
receptors

PAR4 has been shown to form both heterodimers and
homodimers (Leger et al., 2006; Arachiche et al., 2013)
(Figure 3). Specifically, PAR4 forms stable heterodimers with
PAR1 and preventing this association impairs signalling
downstream of either receptor (Leger et al., 2006), suggesting
reciprocal assistance in the cleavage and activation of PAR1
and PAR4. For example, pharmacological disruption of the
PAR1-PAR4 heterodimer effectively prevents carotid artery oc-
clusion in an in vivo murine thrombosis model (Leger et al.,

Normal intracellular
signalling

: P2Y,,
X

generation, ADP release

PARL

Figure 3

—
? Bradykinin B,
Platelet activation,
thrombus formation \

Pro-inflammatory
phenotypes

Protease-activated receptor 4: dimerization partners. There is direct evidence in transfected cell systems for PAR4 homodimers, as well as hetero-
dimers with PART and the P2Y;, purinergic receptor. Each of these interactions has been shown to be important for normal intracellular signalling
and have been implicated in platelet aggregation and thrombus formation. In addition, crosstalk between PAR4 and the B, bradykinin receptor
may mediate pro-inflammatory effects, either directly or indirectly via transactivation.
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2006). In addition, although direct evidence for PAR3-PAR4
heterodimers has not been reported, PAR3, at least in mouse
systems, serves as a cofactor for efficient PAR4 activation
(Kahn et al., 1998b; Nakanishi-Matsui et al., 2000), suggesting
a significant level of interaction between these two PARs.
PAR4 has also recently been shown to form homodimers (De
La Fuente et al., 2012), with the interacting region mapped
to transmembrane helix 4 of the receptor PAR4 homodimers
also appear vital for normal signalling: mutation of a series of
hydrophobic residues in transmembrane domain 4 reduced
PAR4-mediated calcium mobilization in transfected HEK293
cells (De La Fuente et al., 2012).

Other GPCRs reported to form heterodimers with PAR4
include the P2Y,, purinergic receptor (Khan et al., 2014),
and functional co-operativity — potentially via receptor
dimerization — has been reported with the a,5-adrenoceptor
(Grenegard et al., 2008) and B, bradykinin receptor (Houle
etal., 2005; Mcdougall et al., 2009) (Figure 3). In human plate-
lets, PAR4 (along with PAR1) is known to work in synergy with
the P2Y,, receptor to contribute to platelet activation and
aggregation events, including thromboxane (TXA;) genera-
tion and ADP release (Holinstat et al., 2006). It has been re-
cently shown that this process is largely mediated by PAR4
and that PAR4 directly interacts with P2Y;, receptors (Wu
et al., 2010; Khan et al., 2014). PAR4 also interacts with the
azpa-adrenoceptor (Grenegard et al., 2008). This interaction
has been shown to cause aggregation of aspirin-treated
human platelets, via cooperative signalling which eventually
triggers the P2X1 ATP-gated calcium ion channel to overcome
the therapeutic effects of aspirin. It has also been suggested
that PAR4 communicates with the bradykinin B, receptor,
responsible for several pro-inflammatory effects. Although
the mechanisms and outcomes of this crosstalk are yet to be
fully elucidated, it has been shown in models of rat paw
oedema and knee joint inflammation that inflammation
induced by a PAR4 activating peptide (PAR4-AP) can be
inhibited by a B, receptor antagonist (Houle et al., 2005;
Mcdougall et al., 2009). These various examples of receptor
dimerization and/or crosstalk are indicative of the complex-
ity of PAR4 signalling and how these events are able to affect
multiple pathways to alter physiological responses.

Physiology

Tissue distribution and expression

PAR4 is broadly expressed, with gene expression by Northern
blot most readily detected in the lungs, pancreas, thyroid, tes-
tis and small intestine (Xu et al., 1998; Kahn et al., 1998b).
Moderate expression has also been detected in placenta, skel-
etal muscle, lymph nodes, adrenal gland, prostate, uterus and
colon (Xu et al., 1998; Kahn et al., 1998b). In the nervous
system, PAR4 protein and mRNA have been detected in rat
dorsal root ganglion (DRG) non-neuronal cells (conversely,
PARs 1-3 were detected in DRG neurons) (Zhu et al., 2005).
Despite this extensive expression profile of PAR4, most
research has focused on the physiological functions of this
receptor in cardiovascular and inflammatory settings. In
humans, the key vascular cell types expressing PAR4 include
platelets (Xu et al., 1998; Kahn et al., 1998b), leukocytes
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(Vergnolle et al., 2002), endothelial cells (Kataoka et al.,
2003) and smooth muscle cells (Hollenberg et al., 1999;
Hamilton et al., 2001; Vidwan et al., 2010). In addition to
the well-known pro-thrombotic and pro-inflammatory ac-
tions of PAR4-activating proteases, perhaps one reason for
this is that several important animal models, including mice,
rats, guinea pigs, rabbits, dogs and monkeys have similar
PAR4 expression to humans throughout the vasculature.
Platelets are one example of such conserved PAR4 expression
- even in the face of variable expression of the other PARs:
human platelets express PAR1 and PAR4 (Kahn et al., 1998b);
platelets from mice, rats and rabbits express PAR3 and PAR4
(Connolly et al., 1994; Connolly et al., 1996; Nakanishi-
Matsui ef al., 2000; Khan et al., 2005), while guinea pig plate-
lets express PAR1, PAR3 and PAR4 (Andrade-Gordon et al.,
2001). Non-human primates are the only known animal with
an identical platelet-PAR expression profile to that of humans
(Derian et al., 2003).Not surprisingly, this has been a signifi-
cant restraint in the pursuit of PAR antagonists as anti-platelet
agents. Despite this relatively conserved expression of PAR4
in vascular cells across species, there is some evidence to
suggest that PAR4 may function differently between species.
Specifically, PAR4 contributes to thrombin responses of
mouse endothelial cells (Kataoka et al., 2003) that PAR4
activation causes endothelium-dependent relaxation of rat
aorta (Hollenberg et al., 1999). However, in human artery
preparations as well as lung fibroblasts, these responses are
only elicited when treated with additional inflammatory me-
diators (Hamilton et al., 2001; Ramachandran et al., 2007).
The consequences of this distinct regulation of PAR4 expres-
sion by inflammatory cytokines remain unknown but are
likely to be important for future studies investigating the
roles of PAR4 in inflammation.

Key physiological functions

PAR4 knockout (PAR4—/—) mice have been used to elucidate
physiological functions dependent on PAR4 expression
(Table 1). Sambrano ef al. (2001) generated the first PAR4—/—
mice, in which p-galactosidase was expressed in place of
PAR4. Loss of PAR4 function was confirmed by platelet aggre-
gation studies where it was shown that PAR4—/— platelets
were completely unresponsive to both a PAR4-AP (AYPGKF)
and thrombin (Sambrano et al., 2001). PAR4—/— mice are
normal in appearance, size and fertility, with no platelet,
leukocyte or erythrocyte abnormalities (Sambrano et al.,
2001). Indeed, no spontaneous phenotype has been reported
in PAR4—/— mice to date.

Protection against thrombosis. The first phenotype reported in
PAR4—/— mice was protection against thrombosis, with mild
associated bleeding (Sambrano et al., 2001). Specifically, it was
shown that platelets from PAR4—/— mice were completely
unresponsive to thrombin, thus creating a clean genetic model
in which to test for the overall importance of thrombin-
mediated platelet activation for thrombosis in vivo (Sambrano
et al., 2001). Initially, ferric chloride-induced injury of mouse
mesenteric arterioles was utilized. Here, the time to vessel
occlusion after injury was prolonged about three-fold in
PAR4—/— mice (Sambrano et al., 2001). Subsequent studies
have shown a similar protection against thromboplastin-
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Table 1
Reported phenotypes in PAR4-deficient (PAR4—/—) mice

Phenotype References

Thrombosis PAR4—/— mice are protected against
and haemostasis arterial/arteriolar thrombosis.

PAR4—/— mice are protected against
pulmonary embolism.

PAR4—/— mice display increased
tail bleeding times.

PAR4—/— mice have diminished vasc

Hepatotoxicity PAR4—/— mice are protected against
acetaminophen-induced liver injury.

PAR4—/— mice are protected from cerebral Mao et al., 2010

infarct after cerebral artery occlusion.
Inflammation and PAR4—/— mice are protected from
vascular protection tissue oedema.

remodelling in the setting of diabetes.

Sambrano et al., 2001; Weiss et al.,
2002; Lee et al., 2012a, 2012b

Hamilton et al., 2004

Sambrano et al., 2001; Weiss et al., 2002;
Hamilton et al., 2004; Lee et al., 2012b
Busso et al., 2008

ular Pavic et al., 2014

Miyakawa et al., 2015

induced pulmonary embolism (Weiss et al., 2002), laser-induced
endothelial cell ablation in mesenteric arterioles (Vandendries
et al., 2007) and electrolytic-induced (Lee et al., 2012a) and
trauma-induced (Lee ef al., 2012b) injury of the carotid artery
in PAR4—/— mice. Bone marrow transplantation studies
confirmed that the anti-thrombotic effects observed in
PAR4—/— mice were due to deficiency of PAR4 in platelets
(Hamilton et al., 2004). Intriguingly, it appears that the
protection against thrombosis associated with PAR4 deficiency
leaves other haemostatic responses intact (Vandendries et al.,
2007). PAR4 deficiency in mice is also associated with a mild
bleeding phenotype. This haemostatic effect has been most
commonly assessed via tail bleeding time, where PAR4—/—
mice are consistently shown to have prolonged tail bleeding
times compared with wild-type mice (Sambrano et al., 2001;
Weiss et al., 2002). Despite this commonly reported effect
upon active limb trauma, there is no evidence for spontaneous
bleeding in PAR4—/— mice. PAR4 deficiency also has protective
benefits in a mouse model of stroke (transient middle cerebral
artery occlusion, in which PAR4—/— mice exhibited lower
cerebral infarct volume, improved neurological and motor
function and reduced blood brain barrier disruption and
cerebral oedema, compared with wild-type animals (Mao et al.,
2010). Additional models of atherosclerotic plaque formation
in ApoE—/— have indicated that PAR4 probably does not play
a protective role in this setting (Hamilton et al., 2009).
However, diabetic mice also deficient in PAR4 exhibit
protective vascular remodelling phenotypes (Pavic et al.,
2014), indicating that PAR4 may be functionally important in
certain diabetic vasculopathies.

Inflammation. PAR4 has also been linked to inflammation and
neuropathic pain pathways. This is perhaps not surprising given
that serine proteases capable of activating PAR4 (i.e. thrombin
from coagulation activation, cathepsin G released from
neutrophils and trypsin released from mast cells) are well
known to drive many pro-inflammatory effects. Most studies
investigating the role of PAR4 in inflammatory settings have
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examined gain of function phenotypes, most commonly in
response to exogenous PAR4 agonists. One of the earliest
studies implicating PAR4 in pro-inflammatory reactions found
that PAR4 activation mimics the effects of thrombin on
leukocyte rolling and adhesion and increases leukocyte
migration (Vergnolle et al., 2002). Specifically, superfusion of
rat mesenteric venules with either thrombin or a PAR4-AP (but
not a PAR1-AP), significantly increased the number of rolling
leukocytes, as well as leukocyte recruitment to the peritoneal
cavity, suggesting that thrombin-induced effects on leukocytes
during inflammation may be mediated largely by PAR4
(Vergnolle et al., 2002). In subsequent studies, PAR4 activation
mediated the formation of oedema in rat paws (Hollenberg
et al., 2004; Houle et al., 2005; Mcdougall et al., 2009) via
neutrophils and the kallikrein—kinin system (Houle et al.,
2005). In support of these observations, PAR4—/— mice
develop significantly reduced paw swelling in response to
tissue-factor-initiated inflammation (Busso et al., 2008).

Nociception. PAR4 expression is up-regulated in DRG neurons
during nociceptor activation and neurogenic pain (Dattilio
et al., 2005; Chen et al., 2013) and in sensory neurons of the
colon (Auge et al., 2009), suggesting a potential role for PAR4 in
nociception associated with inflammatory pathologies of the
viscera, such as inflammatory bowel disease. In addition, PAR4
may be important in transmitting the signals for neurogenic
itch (Tsujii et al., 2008; Papoiu et al., 2015; Patricio ef al., 2015).
PAR4 activation is thought to attenuate nociception via sensory
neurons by inhibiting nociceptive signals (Asfaha et al., 2007).
These analgesic effects of PAR4 activation have been modelled
in vivo, where injections of PAR4-agonist peptides in rat paws
evoke analgesia in response to both mechanical and thermal
stimuli (Asfaha et al, 2007). Further, in the setting of
inflammatory bowel disease in mice, colonic delivery of PAR4
agonists reduced basal visceral pain and visceral hypersensitivity
caused by PAR2 (Auge et al., 2009). For a detailed review on PAR4
in pain and inflammatory pathologies, see Fu et al. (2015).
Together, these studies help identify PAR4 as a likely mediator of
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multiple pathological processes and provide rationale for the
development of pharmacological reagents targeting PAR4.

Pharmacology

Agonists

Current agonists of PAR4 consist of amidated peptides based
on the native tethered ligand sequence of the receptor
(Table 2). A hexapeptide matching the sequence immedi-
ately downstream of the thrombin cleavage site of the recep-
tor, GYPGQV-NH, (Figure 1) selectively activates PAR4,
although prohibitively high concentrations of ~500 uM are
required for effective activation (Faruqi et al., 2000). The
native tethered ligand sequence of mouse PAR4, GYPGKEF-
NH,, activates both human and mouse PAR4 with slightly
greater potency (Kahn et al., 1998b). However, an alanine
scan of this sequence undertaken to identify residues critical
for receptor activation inadvertently uncovered a more
potent peptide agonist, AYPGKF-NH,, which has become
the gold standard PAR4 activator. This peptide has an ECso
of between 5 and 100 pM, depending on the setting (Table 2)
and is highly specific for PAR4 (Faruqi et al.,, 2000;
Hollenberg et al., 2004).

Antagonists

Research into the physiological function of PAR4 relies on
the development of specific and effective antagonists. The
unique structure and activation mechanism of PARs has
long posed a problem for the development of such inhibi-
tors. In particular, activation by proteolytic cleavage is a
highly efficient and irreversible system, while the tethered
ligand-based activation mechanism requires antagonism of
the binding of an agonist intrinsic to the receptor and
presumably with considerable steric advantage. These issues
have hindered the development of PAR4 antagonists,
although recent efforts have begun to overcome these
challenges, with several distinct antagonist classes emerg-
ing (Table 2).

Peptidomimetics. The first approach taken to identify potential
inhibitors of PAR4 was the generation of numerous peptide
analogues based on the tethered ligand sequences of human,
mouse and rat PAR4. The peptidomimetic approach yielded
two sequences based on mouse PAR4 and modified by the
addition of a frans-cinnamoyl (tc) group (Hollenberg and
Saifeddine, 2001). The resulting compound, tc-YPGKF-NH,,
appeared to bind but not activate PAR4 and abolished PAR4-
AP-induced aggregation of rat platelets and significantly
reduced thrombin-induced platelet aggregation, at least at
high concentrations (400 pM) (Hollenberg and Saifeddine,
2001). tc-YPGKF-NHj, also inhibited thrombin-induced platelet
aggregation in human platelets (Ma et al., 2005), although
there is limited other evidence of this agent inhibiting human
PAR4 (Hollenberg et al., 2004).

Low MW compounds. Low MW PAR4 antagonists have also
been developed via screening of various heterocyclic
structures. The first compound identified to selectively inhibit
PAR4 was an indazole derivative known as YD-3 [1-benzyl-3

PAR4 structure and function

(ethoxycarbonylphenyl)-indazole] (Lee et al., 2001; Wu et al.,
2002). YD-3 inhibited thrombin-induced platelet aggregation
in rabbits with an ICso of 28 uM but, in humans, it only partly
inhibited platelet aggregation in response to thrombin
concentrations lower than 0.5 nM (Wu et al.,, 2002, 2003).
Several studies have aimed to increase the efficacy of YD-3,
and have produced several derivatives (Huang et al., 2006;
Chen et al., 2008), including the N2-(substituted benzyl)-3-(4-
methylphenyl)-2H-indazoles, compounds numbered 19, 25,
and 31(Huang et al., 2006). The ICso of these compounds in
HL-60 cell lines was reported to be greater than 36 uM (Huang
et al., 2006). The newest low MW PAR4 inhibitor, ML354, is a
substituted indole-based derivative (Young et al., 2013; Wen
et al., 2014). This compound inhibited PAR4-AP-induced
integrin activation with an ICs, of 140 nM, but also PAR1-AP-
induced integrin activation with an ICso of 10 pM. Initial
studies using these recently developed low MW PAR4
antagonists have helped to generate interest in PAR4 as a novel
therapeutic target for anti-angiogenic drugs (Huang et al,
2006). A clinical candidate for PAR4 inhibition, BMS-986120, is
currently being evaluated in phase I clinical trials for safety
and tolerability for the prevention and/or treatment of
thromboembolic disorders (NCT02208882).

Pepducins. Pepducins are a distinct class of PAR4 inhibitors
that mimic the region of the receptor that binds G proteins
and essentially work by blocking the interactions between
the receptor and effector G protein (Covic et al., 2002a).
Specifically, peptides with a sequence corresponding to the
third intracellular loop of a given receptor (the region
responsible for interaction with G proteins) are conjugated
to an N-terminal palmitate (pal) that anchors the peptide to
the lipid membrane of a cell. Once anchored within the
membrane, it is proposed that pepducins act by binding G
proteins and thus prevent downstream signalling. PARs were
used as the target receptors for initial proof-of-concept
studies, and pepducins exist against both PAR1 and PAR4
(Covic et al., 2002a). The anti-PAR4 pepducin, P4pal-10 (pal-
SGRRYGHALR-NH,) inhibited ~85% of thrombin-induced
aggregation of both human and mouse platelets at a
concentration of 3 uM and is effective in vivo, as assessed by
increased tail bleeding time in mice (Covic et al., 2002a,
2002b). However, the specificity of P4pal-10 remains
debatable, as it displays a level of cross-reactivity with PAR1-
AP-induced platelet activation (Covic et al., 2002b), as well
as collagen and TXA, (Stampfuss et al., 2003). A subsequent
pepducin (P4pal-il) targeted against the first intracellular
loop (i1) was synthesized to address the issue of specificity
and has been shown to inhibit PAR4-AP-induced platelet
aggregation without affecting PAR1-AP-induced platelet
aggregation (Leger et al., 2006).

Function-blocking antibodies. ~Several function-blocking anti-
PAR4 antibodies have also been developed and proven to be
useful PAR4 antagonists. The first anti-PAR4 function-
blocking antibody was a rabbit polyclonal antibody against
the thrombin cleavage site of human PAR4. This antibody
inhibited thrombin-induced aggregation of human platelets
in the presence of concomitant PAR1 inhibition at a
concentration of 1 mg~rnL71 (Kahn et al.,, 1999). More
recently, a strategy was employed by Mumaw et al. (2014) to

British Journal of Pharmacology (2016) 173 2952-2965 2959

125



*UOIIRAINDE HYYd PRINPUI-UIGUIOIY) 3gIyul 0) papJodal suoeIIuUadu0d ale sanjep ‘@dusanbas puebi| passyial ‘s11,
‘uoijeAnde padnpui-apidad isiuobe pyvd JO uoiqiyul 03 puodsaliod sanjea )|,
‘UONBANDE $YYd PIINPUI-UIqUIOIY) JO uonIgiyul 0} puodsaiiod sanjea 05,

S L French and ) R Hamilton

SE6Z-Y3H uomiqiyu! ered ays abeaes)d (014 S "9H¥ L)
S10Z b 12 Memwinip ‘syo[1e|d uewny 5 Jw-b1 og uiquiody | |euopouow dSNOA
uewny (zLued)
¥10Z "D 39 MeMWINIA syo1e|d ‘asnop T._E.mc oL uoibai dluoluy |euopdAjod ygqey
sise|qoiqly 9)Is abeaed)d JeuojdAjod saipoqnue
6661 "0 32 uyey ‘s39[91e|d jel ‘uewny Sy Tw-buw ulquioayg lqqey Buppdojg-uonouny
uewny dooj Jejnjj@oenul
9007 “p 32 19637 s19193€]d ‘sbid eauinn S Towrt g 15414 LI-ledyd
uewny dooj Jejnjj@denul
q ‘eZ00¢ |0 19 21A0D siv|leld ‘asnoN AT L piyL 0L-ledyd supnpdsg
#10Z “[b 32 USAA
€102 “Iv 32 Bunox s19[31e|d uewny qAU O L ays bulpuiq S PSETN
900¢ “Iv 32 bueny s19[93eld uewny AT 9¢< axs buipuiq S7L L€ ‘sz 6l
002 “Ip 12 bua{ ‘c00¢ S[|92 9|2snwi uewny ‘jel spunodwod
“Ip 32 NAA “200T I 32 N yroows ‘s3aaie|d Nqqey AT 82 ays bulpuiq S €-aA MIN MO
S00Z “Iv 32 BN ‘#00¢
“Iv 32 B13qUB|IOH 1L00Z “0 32 B1aqual|oH s1oeld uewny ‘Jey T 001 ays bulpuiq S11 CHN-49DdA-21 sonawiwopndad

EXITEYEYERY]

eloy ey AT L
#00Z "0 32 biaquajjoH s1993e|d ey AT €L
s)se|qouqiy asnow
0002 “/v 32 1bn.eq pa1dajsued) uewnH ALY oys buipuiq S11 CHN-INDJAY
002 "0 32 biaquajjoH s1993eld ey AT OF
s)se|qouqiy asnow
6661 "0 32 uyey pa1dajsuel] uewny T 001 aus buipuiq S CHN-4MDdAD
syse|qoJqiy asnowl sapndad
000 “Ip 32 1bn.eq pa1dajsuel] uewnH AT 005 ays bulpuiq S11 CHN-ADDJAD pajepiwy

9JUd.19j9Y

adf} |I9>

J103daday

s)siuobejuy

J10)daday

s3ysiuoby

punodwo>

punodwo>

sisiuobejue pue sysiuobe yyvd
Z 3|qel

2960 British Journal of Pharmacology (2016) 173 2952-2965

126



raise anti-PAR4 antibodies against the anionic region
sequence of PAR4 (C**ANDSDTLTLPD), just downstream of
the thrombin cleavage site. The lead antibody to emerge
from these studies, CAN12, not only inhibits thrombin-
induced aggregation of human platelets but also inhibits
aggregation induced by PAR4-AP, ADP or collagen (Mumaw
et al., 2014), suggesting major issues with specificity. CAN12
was shown to inhibit arterial thrombosis in the Rose Bengal
carotid artery thrombosis model at 0.5 mg-kg~' (Mumaw
et al., 2014), indicating cross-reactivity with murine PAR4.
Beneficial effects were seen when CAN12 was infused both
10 min pre-injury and 15 min post-injury. A new series of
monoclonal antibodies from the same group has been very
recently reported and appear to bind either to the anionic
region or to the thrombin cleavage site of PAR4 and partially
inhibit thrombin-induced cleavage of the receptor in
expression systems (Mumaw et al., 2015).

This diverse set of PAR4 antagonists, developed over
recent years, have been invaluable for investigations into
the physiological roles of PAR4 and have also served to
promote targeting of this receptor as a novel therapeutic
approach. However, there still remains significant work to
be done to develop PAR4 antagonists suitable for potential
clinical utility.

Clinical significance

Cardiovascular disease remains a major clinical problem.
Increasingly prevalent conditions such as diabetes, hyperten-
sion and coronary artery disease eventuate in diseased and
pro-thrombotic vasculature and a common endpoint of
these, often co-existing, conditions is the formation of
pathological arterial thrombosis leading to myocardial
infarction or ischaemic stroke. Together, such conditions
account for ~40% of all deaths in Western countries
(Mozaftfarian et al., 2015). Given that platelets are the key
cellular component of arterial thrombi, anti-platelet agents
are the primary therapy for the prevention of myocardial
infarction and ischaemic stroke. There are several anti-
platelet drugs on the market, but a lack of efficacy and safety
of these existing drugs has fuelled a need for improved thera-
pies. Given the importance of PARs for platelet activation,
PAR antagonists represent one of the leading classes of new
anti-platelet drugs.

Targeting PAR4 as an anti-platelet approach?

Ever since the discovery of PAR1 as the major platelet throm-
bin receptor, there was strong interest in developing PAR1
antagonists as novel anti-platelet agents. This led to the
development of the first PAR1 antagonist, vorapaxar (trade
name Zontivity), which was recently granted FDA approval
for use in the USA for the prevention of myocardial infarction
and peripheral artery disease. Vorapaxar was assessed in two
large-scale phase III clinical trials, of which one was
terminated early due to a significant increase in intracranial
haemorrhage in the vorapaxar-treated cohort (Scirica et al.,
2012; Tricoci et al., 2012). Indeed, throughout these trials,
vorapaxar was associated with reduction of ischaemic out-
comes in some subgroups, whereas in others was associated
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with adverse bleeding events (French et al., 2015). Subse-
quent studies examining blood from patients receiving
vorapaxar have confirmed that PAR4-mediated platelet
responses remain intact (Judge et al., 2014). As a result, there
is growing interest in the clinical potential of PAR4 antago-
nists as novel anti-platelet agents.

Clinically significant variants of PAR4

Further support for the targeting of PAR4 as an anti-platelet
approach comes from recent studies demonstrating racial dif-
ferences in the expression and reactivity of platelet PAR4
(Edelstein et al., 2013; Edelstein et al., 2014; Tourdot et al.,
2014). Significantly, these differences appear to associate with
resistance to current anti-platelet drugs and overall poorer
cardiovascular outcomes (Edelstein et al., 2013; Edelstein
et al., 2014; Tourdot ef al., 2014). Specifically, platelets from
healthy Black subjects were hyper-responsive to PAR4-AP
when compared with platelets from non-Black subjects. This
increased sensitivity persisted in the face of PAR1 antagonism
(vorapaxar) or aspirin treatment. This work led to the identi-
fication of a genetic variant of PAR4, Ala'?°Thr, which is asso-
ciated with greater PAR4 reactivity and occurs at a higher
frequency in Black subjects than in non-Black subjects. This
racial difference may have important clinical implications
and potential therapeutic impact on specific population re-
sponses, and therefore clinical outcomes, to anti-platelet
therapy, and further supports the idea of targeting platelet
PAR4 for improved anti-thrombotic therapy.

Conclusions

Despite the discovery of PAR4 over 15 years ago, compara-
tively little is known about the function of this receptor. Gen-
eration and characterization of PAR4—/— mice has yielded
phenotypes relating to thrombosis and haemostasis, as well
as inflammation and vascular protection — prompting recent
interest in the field and leading to the development of im-
proved inhibitors for investigations into PAR4 function. This
important ground work now allows several key remaining
questions to be addressed. For instance, apart from thrombo-
sis, inflammation, and pain, what physiological functions are
there for PAR4? How can PAR4 be best inhibited pharmacolog-
ically? What is the importance of PAR4 expression and reac-
tivity differences observed in genetically distinct patient
groups and how will this affect treatment options for people
with cardiovascular and/or inflammatory diseases? In addi-
tion, the limited number of molecular pharmacology studies
of PAR4 leaves several other unanswered questions: how im-
portant is receptor dimerization for specific cell signalling
events? Does the importance of PAR3/PAR4 co-factoring in
mouse platelets extend to other receptors in other settings?
Does biased signalling occur for PAR4, as it does for both
PAR1 and PAR2? The recent increase in interest in PAR4 will,
we hope, culminate in the development of improved phar-
macological reagents and further molecular pharmacology
experiments that will provide the tools to address these ques-
tions in the coming years.
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Introduction

Antiplatelet agents are the main pharmacotherapy
for arterial thrombosis prevention and are central in
the management of cardiovascular conditions such as
myocardial infarction, transient ischaemic attack, and
coronary and peripheral artery diseases. Yet despite their
long history and extensive clinical use, antiplatelet agents
appear to have reached a disappointingly low therapeutic
ceiling-predominantly due to the narrow therapeutic
window afforded by strategies targeting platelet function.
Platelets are critical for normal hemostasis as well as
pathological thrombosis. Inhibiting platelet function for
protective benefit without causing unwanted bleeding limits
the efficacy of current antiplatelet drugs. Aspirin and the
thienopyridine class of drugs (e.g., clopidogrel, prasugrel,
ticagrelor) are by far the most commonly prescribed
antiplatelet agents, yet prevent just 15 and 17% of lethal
cardiovascular events respectively (1,2). Combination
therapy provides a marginal increase in efficacy (~7%),
but also increases the risk of bleeding (2). More potent
antiplatelet drugs, such as the glycoprotein oy,f; inhibitors,
carry even more bleeding risk and are thereby limited to
acute use settings such as periprocedural percutaneous
coronary intervention (3,4). Therefore, the search to
identify antiplatelet drugs that increase the therapeutic
window of antithrombotic therapy continues. A recent
study by Wong ez al. (5) provides compelling evidence that
targeting the platelet thrombin receptor, PAR4, may achieve

© Annals of Translational Medicine. All rights reserved.

this goal.

In the setting of thrombosis, platelets are activated by
a combination of endogenous agonists, some of which are
blocked by existing drugs. For example, aspirin prevents
production of the platelet activator thromboxane A,
while the thienopyridines block the major platelet ADP
receptor, P2Y,,. Thrombin is the most potent platelet
activator, which it achieves predominantly via two cell
surface GPCRs, protease-activated receptor 1 (PARI) and
PAR4. PARI has greater affinity for thrombin than PAR4
and has therefore been the focus of drug development
targeting thrombin-induced platelet activation. The first
PARI antagonist, vorapaxar, was approved by the US FDA
in 2014 for the prevention of thrombotic events in patients
with a history of myocardial infarction or peripheral
artery disease. Yet because it must be administered in
addition to standard-of-care antiplatelet therapy (aspirin
and/or a thienopyridine), vorapaxar provides only limited
therapeutic benefit to a small group of patients without
significantly increasing major bleeding (6,7). In line with
the clinical experience of other combination antiplatelet
therapies, the narrow therapeutic window of vorapaxar
in the presence of standard-of-care antiplatelet drugs has
translated to limited clinical utility. As a result, there has
been much renewed interest in targeting the ‘second’
platelet thrombin receptor, PAR4, for antithrombotic
therapy. Although previous studies have rationalised
PAR4 as a viable antithrombotic target (8-11), the work
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Table 1 Characteristics of the PAR4 antagonist BMS-986120

Test Experimental system Parameter measured Value for BMS-986120
Binding HEK293T membranes Ky 0.098 nM
Kn 0.12nM™"min™’
Kot 0.008 min™
Specificity HEK293T Calcium mobilisation ICy, vs. PAR4-AP 0.56 nM
HEK293T Calcium mobilisation ICy, vs. PAR1-AP >5,000 nM
CHO Calcium mobilisation ICy, vs. PAR2-AP >42,000 nM
Efficacy (inhibition of HEK293T ICs,: activation of G4, 3.4 nM
PAR4 signaling) ICs: activation of G, 3.9 nM
ICs,: activation of G4 31 nM
ICs,: B-arrestin 2 recruitment 7.2nM
ICso: ERK1/2 activation 47 nM
Efficacy (inhibition of Platelet-rich plasma (human)  ICs, vs. y-thrombin 7.3nM
platelet aggregation) .\ 16 biood (human) ICso vs. PAR4-AP 9.5 nM
Whole blood (monkey) ICs, vs. PAR4-AP 2.1 nM

Efficacy (prevention of
in vivo thrombosis)

Safety (impact on
in vivo hemostasis)

Monkey

Monkey

Carotid artery occlusion time (fold-increase
vs. vehicle)

Thrombus weight (% reduction vs. vehicle)

Kidney bleeding time (fold increase vs.
vehicle)

Mesenteric bleeding time (fold increase vs.
vehicle)

2.7x, 0.2 mg/kg; 3%, 0.5 mg/kg;
no occlusion, 1 mg/kg

36%, 0.2 mg/kg; 50%,
0.5 mg/kg; 82%, 1 mg/kg

1.4x, 0.2 mg/kg; 1.9x,
0.5 mg/kg; 2.2%, 1 mg/kg

1.4x, 0.2 mg/kg; 1.7x,
0.5 mg/kg; 1.8x, 1 mg/kg

PARA4, protease-activated receptor-4.

by Wong and colleagues expands on this to describe the
development of a potent and specific small molecule PAR4
antagonist with a markedly improved therapeutic window
over one standard antiplatelet drug (clopidogrel) in a
preclinical model.

Discovery of a potent and specific small
molecule PAR4 antagonist

In proof-of-concept work that supports previous studies
(8-11), the team at BMS first used function-blocking anti-
PAR4 antibodies in a guinea pig model to show iz vive anti-
thrombotic efficacy and relative safety of selective PAR4
blockade. To shift to the highly desired small molecule
approach, they then embarked on an impressive drug
discovery program. The unique activation mechanism of

© Annals of Translational Medicine. All rights reserved.

PARs has provided a major hurdle for the development of
efficacious antagonists. Thrombin cleavage of PARs reveals
an endogenous tethered ligand which then binds to and
self-activates the receptor. Therefore, antagonists must
overcome an agonist that is intrinsic to the receptor and
presumably has considerable steric advantage. Wong and
colleagues screened a library of over 1 million compounds
to identify a lead candidate that was then subject to iterative
rounds of medicinal chemistry and testing to result in BMS-
986120—a potent and selective PAR4 antagonist with
impressive oral bioavailability and antithrombotic efficacy
(Table 1).

Selective inhibition of PAR4 over PARI has been
elusive in previous efforts developing small molecule
PAR4 antagonists. For example, the indazole-derivative
YD-3 (12) and its derivative ML354 (13) exhibit cross-
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reactivity toward PAR1 (12,13). Here though, BMS-986120
demonstrated specificity in both HEK293 cells transfected
with PAR4 and human platelets, with no effect observed on
platelet activation by a PARI activating peptide, collagen,
ADP, or thromboxane A, (Table I). To demonstrate efficacy
of BMS-986120, the authors examined inhibitory profiles
of platelet aggregation against two isoforms of thrombin—
o and vy, thought to preferentially activate PAR1 and PAR4
respectively. BMS-986120 effectively suppressed platelet
aggregation in response to y-thrombin but required
concomitant PARI inhibition to do so against o-thrombin.
Whether complete blockade of thrombin-induced platelet
activation will be required for effective antithrombotic
therapy, or whether partial inhibition will be sufficient,
remains to be determined.

For PAR antagonists to be efficacious against
endogenous enzymatic activation of the receptor by
thrombin, they must exhibit strong binding affinity. Yet
in the clinical context it is highly desirable for an anti-
platelet agent to have the potential to be rapidly reversed
should any unwanted bleeding challenges occur. Wong
et al. used (‘H)-BMS-986120 binding to PAR4-expressing
cell membranes to reveal that BMS-986120 is a high
affinity and reversible binder of PAR4 (Tuble 1). In studies
performed on platelets isolated from monkeys dosed with
BMS-986120, this translated to normalised aggregation
24 h after a single dose of 0.2 mg/kg. A more detailed
time course will be required to determine the half-life
of BMS-986120. Although the dissociation constant is
relatively fast, competition studies would be useful to
demonstrate whether there was potential for an antidote
if required. Regardless, the pharmacodynamic profile
is considerably advantageous in comparison to other
antiplatelet drugs. For example, platelet inhibition by the
PAR1 antagonist vorapaxar is retained 4-8 weeks after
a single loading dose in humans (14) while aspirin and
clopidogrel are both irreversible protein modifiers with
long-term effects.

Most importantly though, BMS-986120 appeared
to provide an impressive therapeutic window, with a
single oral dose of BMS-986120 providing marked
antithrombotic effects and a low bleeding profile in a series
of in vivo models in the cynomolgus monkey (7able I).
Appropriate examination of iz vivo platelet PAR function
is limited to primates since the traditional small animal
models (e.g., mice, rats, guinea-pigs, rabbits, dogs) have
a different PAR expression profile to that of humans.
Therefore, Wong and colleagues used an electrolytic model
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of carotid artery thrombosis in the cynomolgus monkey
for preclinical evaluation of their PAR4 antagonist. BMS-
986120 alone prevented occlusive thrombus formation
at the highest dose (1 mg/kg) and significantly reduced
thrombosis at lower doses (0.2-0.5 mg/kg). Hemostasis,
measured either by kidney or mesenteric bleeding time,
was increased by just over 2-fold at the 1 mg/kg dose and
much less at the lower doses. Importantly, when this dose-
response of BMS-986120 on hemostasis and thrombosis
was compared directly with that of clopidogrel, there
was a clear separation provided by BMS-986120 that
was not evident with clopidogrel. At doses of these two
agents that caused equivalent anti-thrombotic effects,
markedly more bleeding was observed with clopidogrel
compared with BMS-986120. For example, at a dose that
caused a 50% reduction in thrombus weight, clopidogrel
induced a 7.3- to 8.1-fold increase in bleeding compared
with a 1.7- to 1.9-fold increase for BMS-986120. This
was more pronounced at doses that caused a near 100%
reduction in thrombus weight, with clopidogrel inducing
a >10-fold increase in bleeding versus a 1.8- to 2.2-fold
increase for BMS-986120. Given this stark difference,
it would be interesting to known how the therapeutic
window changed when used in combination with aspirin,
P2Y,, antagonists and/or vorapaxar.

A potential mechanism for an improved
therapeutic window

How is it that PAR4 inhibition provides such strong
separation between impacting on thrombosis and
hemostasis? One clue comes from recent work
indicating that PAR4 performs distinct functions to
other key platelet receptors. PAR4 activation elicits a
slower, but significantly more sustained, intracellular
calcium response than that elicited by PAR1 (15). This
prolonged calcium signal mediates later-stage platelet
activation events, such as the platelet procoagulant
response involving phosphatidylserine exposure on
the platelet membrane and consequent assembly of
coagulation factors leading to thrombin generation and
fibrin formation. Indeed, selective inhibition of PAR4
but not PARI significantly inhibits thrombin activity
and fibrin deposition in human thrombi ex vivo (8).
One explanation for the improved therapeutic window
of BMS-986120 reported by Wong et 4/. is that PAR4
inhibition is blocking platelet function at a distinct time
and place to all existing approaches.

Ann Transl Med 2017

atm. amegroups.com

135



Page 4 of 5

What does the future hold for PAR4 antagonists?

BMS-986120 was evaluated in a phase 1 dosing study,
yet despite efficacy and a lack of adverse events no phase
2 studies of this compound were undertaken. Rather, BMS
are investigating the related compound, BMS-986141,
which also underwent a phase 1 study (NCT02341638)
and a subsequent phase 2 trial for the prevention of mini-
stroke (NCT02671461). The trial (A Phase 2, Placebo
Controlled, Randomized, Double-Blind, Parallel-Arm
Study to Evaluate Efficacy and Safety of BMS-986141 For
the Prevention of Recurrent Brain Infarction in Subjects
Receiving Acetylsalicylic Acid Following Acute Ischemic
Stroke or Transient Ischemic Attack) had a primary efficacy
endpoint of a composite of symptomatic ischemic stroke
or unrecognized brain infarction, and a primary safety
endpoint of a composite of adjudicated major bleeding and
adjudicated clinically relevant non-major bleeding during
the treatment period. It was completed in April 2017 but
has not yet been reported.

It is far too early to predict the likely clinical success
and/or usefulness of PAR4 antagonists, and several key
questions remain. How well will PAR4 antagonism combine
with current standard-of-care agents? This is a central
point, since any trial will be conducted in the presence of
standard-of-care, which frequently involves dual antiplatelet
therapy. With the PARI antagonist vorapaxar, for example,
the increased bleeding observed is believed to be due to
poor compatibility with clopidogrel. Indeed, sub-study
analyses show no additional bleeding in patients receiving
aspirin plus vorapaxar versus those receiving aspirin alone
(6,16). Here, it is interesting to note that BMS chose to
investigate a patient group being treated with aspirin alone
in its first phase 2 trial of its lead PAR4 antagonist.

What specific indications will be best served by a PAR4
antagonist? Again, sub-study analyses of the vorapaxar trials
may provide pointers. These trials showed the most efficacy
in reducing the rate of spontaneous myocardial infarction
as well as in prevention of vascular complications associated
with peripheral artery disease. This is perhaps unsurprising
given the well-known role of thrombin generation in
acute myocardial infarction, particularly in patients with
a background of unstable angina and/or coronary artery
disease (17). Whether PAR4 antagonism will similarly
demonstrate superior efficacy in these clinical situations
where thrombin-induced platelet activation are implicated
is an obvious place to start for future clinical trials.

Finally, one emerging issue for PAR4 antagonism is
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that of population genetics. Recent studies have revealed
a commonly expressed genetic variant of PAR4 (rs773902;
encoding either Alal20 or Thr120) that appears to
significantly alter receptor pharmacology. Specifically, the
Thr120 PAR4 variant, expressed in 20-80% of people
depending on the population, renders the receptor hyper-
sensitive to agonists and hypo-sensitive to antagonists
(18,19). The mechanism behind this change in PAR4
pharmacology remains unknown, as does whether all PAR4
antagonists, including BMS-986120 and BMS-986141,
will be similarly affected. Studies directly addressing
these points will be critical in determining whether the
approach proposed by Wong et al. will afford consistent
antithrombotic benefit across the population.

Conclusions

The recent preclinical study by Wong er al. (5) details
the development and preclinical evaluation of the first
PAR4 antagonist to enter a clinical trial and represents a
potentially important breakthrough in the treatment of
arterial thrombosis. While further insights are still to be
gained regarding the utility of PAR4 antagonism in clinical
settings, this study has contributed an important reagent
to help study this previously under-appreciated platelet
activation mechanism, and has identified a potentially useful
approach for the safe and effective prevention of arterial
thrombosis.
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