Supporting Information
 Synthesis of 1,2-Dihydroquinolines by Co(III)-Catalyzed [3 + 3] Annulation of Anilides with Benzylallenes

Ramajayam Kuppusamy, ${ }^{\dagger}$ Rajagopal Santhoshkumar, ${ }^{\dagger}$ Ramadoss Boobalan, ${ }^{\dagger} H s i n-R u W u \not{ }^{\dagger}$ and Chien-Hong Cheng** ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
${ }^{\ddagger}$ Instrumentation Center, MOST, National Tsing Hua University, Hsinchu 30013, Taiwan. chcheng@mx.nthu.edu.tw

Table of Contents	Page No
General information	S 2
General procedure for preparation of allenes	S 2
General procedure for Co $^{\text {III}}$-catalyzed [3+3] annulation of anilides with allenes	S 4
Optimization Studies	S 5
Mechanistic studies	S 9
Procedure for synthesis of 4aa	S 14
Procedure for synthesis of 6aa	S 15
References	S 15
Spectroscopic data	S 15
${ }^{1}$ H and ${ }^{13}$ C NMR spectra	S 32
ORTEP diagram and X-ray data of 3ga	S 69

General information

Unless otherwise mentioned, all reactions were carried out under an atmosphere of nitrogen in flame dried glassware. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under nitrogen: THF (Na-benzophenone), toluene (Na), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$ and $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{CaH}_{2}\right)$. Anhydrous PhCl , DCE, $\mathrm{CH}_{3} \mathrm{NO}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$, DMF, TFE, o-xylene and benzene were purchased from Acros Organics, Alfa Aesar and used as such from the commercial sources. Commercially available chemicals were obtained from Acros Organics, Sigma Aldrich Chemical Co., Alfa Aesar and used as such from the commercial sources. All the reactions were monitored by analytical thin layer chromatography (TLC) using commercial aluminum sheets precoated with silica gel (TLC Silica Gel 60 F254). TLC plates were visualized by exposure to short wave ultraviolet light (254 nm). Flash chromatography was performed on siliaflash G60 (70-230 mesh) by standard techniques using appropriate mixtures of n-hexane and ethyl acetate. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Mercury $400 \mathrm{MHz}\left({ }^{1} \mathbf{H}\right.$ was recorded at rt) and Bruker DMX $600 \mathrm{MHz}\left({ }^{1} \mathbf{H}\right.$ and ${ }^{13} \mathbf{C}$ NMR were recorded at ≈-20 to $-40^{\circ} \mathrm{C}$) in solvents as indicated. Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are given in ppm relative to TMS. The residual solvent signals were used as references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and the chemical shifts converted to the TMS scale (TMS: $\delta \mathrm{H}=0.00 \mathrm{ppm}, \mathrm{CDCl}_{3}: \delta \mathrm{H}=7.24 \mathrm{ppm}, \delta \mathrm{C}=77.00$ ppm). EI mass spectra were recorded on JEOL JMS-700. IR spectra were recorded neat on a Horiba Fourier Transform Infrared Spectroscopy FT-720. The wave numbers (v) of recorded IR-signals are quoted in cm^{-1}. Melting points were recorded on a Fargo MP-2D apparatus. Anilides ${ }^{2}, d_{5}-$ acetanilide ${ }^{2}$, and allenes ${ }^{3}$ were prepared according to the previously reported procedure.

General procedure for preparation of allenes ${ }^{3}$

To a $100-\mathrm{mL}$ round-bottomed flask containing dry magnesium turnings ($2.9 \mathrm{~g}, 0.12 \mathrm{~mol}, 1.2$ equiv), diethyl ether (40 mL) and 1,2-Dibromoethane $(0.5 \mathrm{~mL})$ were added under N_{2}. Then benzyl bromide (0.1 mol) was added to the reaction mixture slowly. After the addition, the mixture is heated under reflux for 2 h . Another $250-\mathrm{mL}$ round-bottomed flask containing propargyl bromide (17.8 mL of an $80 \mathrm{wt} . \%$ solution in toluene, $0.12 \mathrm{~mol}, 1.2$ equiv) and diethyl ether (20 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. The prepared Grignard reagent was added to the propargyl bromide slowly. After
the addition, the resulting mixture is stirred for an additional 2 h at $0^{\circ} \mathrm{C}$. Then the mixture is quenched with aqueous ammonium chloride solution. The aqueous phase is extracted with diethyl ether. The combined organic phases were dried over anhydrous MgSO_{4}, and concentrated by rotary evaporation. Purification is performed by vacuum distillation to afford corresponding allene.

Buta-2,3-dien-1-ylbenzene (2a)

Colorless oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3$ H), 5.36-5.29 (m, 1 H), 4.78-4.75 (m, 2 H), 3.42-3.39 (m, 2 H).

1-(Buta-2,3-dien-1-yl)-2-methylbenzene (2b)

Pale yellow oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19-7.11$ (m, 4 H), 5.26-5.19 (m, 1 H), 4.69-4.66 (m, 2H), 3.35-3.31 (m, 2 H), $2.30(\mathrm{~s}, 3 \mathrm{H})$.

1-(Buta-2,3-dien-1-yl)-3-methylbenzene (2c)

Colorless oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.02$
$(\mathrm{m}, 3 \mathrm{H}), 5.30-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~S}, 3$
H)

1-(Buta-2,3-dien-1-yl)-3-methoxybenzene (2d)

Pale yellow oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.70(\mathrm{~m}, 2$ H), 3.79 (S, 3 H), 3.47-3.31 (m, 2 H$)$.

1-(Buta-2,3-dien-1-yl)-4-methylbenzene (2e)

Pale yellow oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.42-5.35$ (m, 1 H), 4.85-4.82 (m, 2 H), 3.46-3.42 (m, 2 H$), 2.45(\mathrm{~s}, 3 \mathrm{H})$.

1-Bromo-4-(buta-2,3-dien-1-yl)benzene (2f)

Pale yellow oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.25-5.18$ (m, 1 H), 4.72-4.69 (m, 2 H), 3.30-3.26 (m, 2 H).

1-(Buta-2,3-dien-1-yl)-4-fluorobenzene (2g)

Pale yellow oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.95$ (m, 2 H$), 5.29-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.71$ (m, 2 H$), 3.34-3.31$ (m, 2 H$)$.

1-(Buta-2,3-dien-1-yl)-4-vinylbenzene (2h)

Colorless oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.68(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.31$ (m, 2 H).

1-(Buta-2,3-dien-1-yl)naphthalene (2i)

Pale yellow oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}$, 2 H), 5.46-5.39 (m, 1 H), 4.75-4.72 (m, 2 H), 3.85-3.82 (m, 2 H).

General procedure for $\mathrm{Co}^{\text {III }}$-catalyzed [3+3] annulation of anilides with allenes

To a sealed tube, anilides $\mathbf{1}(0.33 \mathrm{mmol})$, allenes $2(0.50 \mathrm{mmol})$, $\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right]$ (0.030 mmol$)$, $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.070 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.070 \mathrm{mmol})$ were added inside
the glove box sealed with a rubber septum. Nitromethane (2.0 mL) was added to the sealed tube via syringe and the reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 15 h . Then, the mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was filtered through a celite pad and the celite pad washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure product 3 .

Optimization Studies:

i) Table S1. Screening of Solvents ${ }^{\text {a,b }}$

\bar{a} Unless otherwise mentioned, all reactions were carried out using 1a (0.20 mmol), 2a (0.30 $\mathrm{mmol}),\left[\mathrm{CoCp} *(\mathrm{CO}) \mathrm{I}_{2}\right](10 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(0.040 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.040 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}$ $(0.20 \mathrm{mmol})$ and solvent $(2.0 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{b}$ Yields were determined by the ${ }^{1} \mathrm{H}$ NMR integration method; the value in the parenthesis was isolated yield. ${ }^{c} \mathrm{No} \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{d} \mathrm{No}$ AgSbF 6 .

ii) Table S2. Screening of Acetate Additives ${ }^{\text {a,b }}$

Entry	Additive 1	Yield of 3aa (\%)	Yield of 4aa (\%)
1	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	90 (86)	-
2	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	54	-
3	$\mathrm{Fe}(\mathrm{OAc})_{2}$	14	-
4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	60	-
5	$\mathrm{Cu}(\mathrm{OPiv})_{2}$	20	-
6	$\mathrm{Mn}(\mathrm{OAc})_{2}$	14	-
7	$\mathrm{CH}_{3} \mathrm{COOH}$	48	-
8	PivOH	10	-
9	NaOAc	-	-
10	KOAc	-	-
11	CsOAc	-	-

${ }^{a}$ Unless otherwise mentioned, all reactions were carried out using 1a (0.20 mmol), 2a (0.30 mmol), $\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right](10 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(0.040 \mathrm{mmol})$, Additive $1(0.040 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(0.20 \mathrm{mmol})$ and solvent $(2.0 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{b}$ Yields were determined by the ${ }^{1} \mathrm{H}$ NMR integration method; the value in the parenthesis was isolated yield.

iii) Table S3. Screening of Silver Additives ${ }^{\text {a,b }}$

1a

2a

$\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL}), 80^{\circ} \mathrm{C}, 15 \mathrm{~h}$

3aa

4aa

Entry	Additive 2	Yield of 3aa (\%)	Yield of 4aa (\%)
1	AgSbF $_{6}$	$90(86)$	-
2	AgPF $_{6}$	82	-
3	AgOTf $^{\text {AgBF4 }}$	74	-
4	NaSbF_{6}	66	-
5	16	-	

${ }^{a}$ Unless otherwise mentioned, all reactions were carried out using $1 \mathbf{1 a}(0.20 \mathrm{mmol})$, 2a (0.30 mmol), $\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right](10 \mathrm{~mol} \%)$, Additive $(0.04 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(0.20 \mathrm{mmol})$ and solvent $(2.0 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{b}$ Yields were determined by the ${ }^{1} \mathrm{H} \mathrm{NMR}$ integration method; the value in the parenthesis was isolated yield.
iv) Table S4. Screening of Oxidants ${ }^{\text {a,b }}$

Entry			
	Oxidant (equiv)	Yield of 3aa (\%)	Yield of 4aa (\%)
1	$\mathrm{Ag}_{2} \mathrm{O}$ (1)	90 (86)	-
2	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1)	95 (91)	-
$3^{\text {c }}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1)$	55	-
4	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2)$	62	-
5	$\mathrm{AgOAc}(2)$	82	-
6	$\mathrm{Mn}(\mathrm{OAc}) 2$ (2)	47	-
7	O_{2}	24	14
8	$\mathrm{AgBF}_{4}(2)$	22	26
9	$\mathrm{AgPF}_{6}(2)$	-	-
10	AgOTf (2)	18	-
11	$\mathrm{Cu}(\mathrm{OAc})_{2}(2)$	60	-
12	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1) /$ Open air	47	15
13	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.03) /$ Open air	30	20
14	Open air	24	37

${ }^{a}$ Unless otherwise mentioned, all reactions were carried out using $1 \mathbf{1 a}(0.20 \mathrm{mmol})$, 2a $(0.30 \mathrm{mmol})$, $\left[\mathrm{CoCp} *(\mathrm{CO}) \mathrm{I}_{2}\right](10 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(0.04 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol})$, Oxidant $(0.20 \mathrm{mmol})$ and solvent $(2.0 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{b}$ Yields were determined by the ${ }^{1} \mathrm{H} \mathrm{NMR}$ integration method; the value in the parenthesis was isolated yield. ${ }^{c} \mathrm{No} \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.
v) Table S5. Screening of Temperatures ${ }^{\text {a,b }}$

Entry	Temperature ${ }^{\circ} \mathrm{C}$	Yield of 3aa (\%)	Yield of 4aa (\%)
1	60	76	-
2	80	95 (91)	-
3	100	78	9
4	120	75	10

${ }^{a}$ Unless otherwise mentioned, all reactions were carried out using 1a (0.20 mmol), 2a $(0.30 \mathrm{mmol})$, $\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right](10 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(0.040 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol})$, Oxidant $(0.20 \mathrm{mmol})$ and solvent (2.0 mL) at temperature ${ }^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{b}$ Yields were determined by the ${ }^{1} \mathrm{H}$ NMR integration method; the value in the parenthesis was isolated yield.

vi) Table S6. Screening of Catalysts ${ }^{\text {a,b }}$

Entry	Catalyst	Yield of 3aa (\%)	Yield of 4aa (\%)
1	[CoCp*(CO)I ${ }_{2}$]	95 (91)	-
2	$\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	-	-
3	$\mathrm{Co}(\mathrm{OAc})_{2}$	-	-
4	$\mathrm{Co}(\mathrm{acac})_{3}$	-	-
5	CoI_{2}	-	-
6	CoBr_{2}	-	-
7	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}$	35	-
8	$\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}$	-	-
$9{ }^{\text {c }}$	$\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right]$	56	-
10	$\left[\mathrm{RuCl}_{2}(\mathrm{p} \text {-cymene) }]_{2}\right.$	-	-
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-	-

${ }^{a}$ Unless otherwise mentioned, all reactions were carried out using $1 \mathbf{a}(0.20 \mathrm{mmol})$, 2a $(0.30 \mathrm{mmol})$, Catalyst ($10 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(0.040 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.040 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(0.20 \mathrm{mmol})$ and solvent (2.0 mL) at $80{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~h} .{ }^{b}$ Yields were determined by the ${ }^{1} \mathrm{H}$ NMR integration method; the value in the parenthesis was isolated yield. ${ }^{c}\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right](5 \mathrm{~mol} \%)$.

Mechanistic studies:

i) Reaction of $\mathbf{D}_{\mathbf{5}}$ - $\mathbf{1 b}$ without Allene

To a sealed tube, $\mathbf{D}_{\mathbf{5}-1 \mathbf{b}}(0.33 \mathrm{mmol}),\left[\mathrm{CoCp} *(\mathrm{CO}) \mathrm{I}_{2}\right](0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.070 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.070 \mathrm{mmol})$ were added inside the glove box and sealed with a rubber septum. $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL})$ was added to the seal tube via syringe and the reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 15 h . Then, the mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was filtered through a celite pad and the celite pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure. The $\mathrm{H}^{1} \mathrm{NMR}$ analysis indicates that there is a 50% ortho H / D exchange.

ii) Reaction of $\mathbf{D}_{\mathbf{5}}$-1b with Allene

$\left[D_{5}\right]-1 b$

2a
$\left[\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{CO})_{2}\right]$ ($10 \mathrm{~mol} \%$),
AgSbF_{6} (0.2 equiv)
 $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL}), 80^{\circ} \mathrm{C}, 15 \mathrm{~h}$

[D_{4}]-ba;82\%

13\% H/D exchange

To a sealed tube, $\left[\mathrm{CoCp} *(\mathrm{CO}) \mathrm{I}_{2}\right](0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}), \mathbf{D}_{\mathbf{5}}-\mathbf{1 b}(0.33 \mathrm{mmol}), \mathbf{2 a}$ $(0.50 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.070 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.070 \mathrm{mmol})$ were added inside a glove box and sealed with a rubber septum. $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL})$ was added to the sealed tube via syringe and the reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 15 h . Then, the mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was filtered through a celite pad and the celite pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the
residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure product $\left[\mathbf{D}_{\mathbf{4}}\right]$-ba in 82% yield. The $\mathrm{H}^{1} \mathrm{NMR}$ analysis indicates that there is a 13% ortho H / D exchange.

iii) Kinetic Isotope Experiments

a) Competition experiment

To a sealed tube, $\left[\mathrm{CoCp}^{*}(\mathrm{CO}) \mathrm{I}_{2}\right](0.03 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}), \mathbf{1 b}(0.33 \mathrm{mmol}), \mathbf{D}_{\mathbf{5}} \mathbf{- 1 b}$ (0.33 mmol), allenes $2(0.50 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.07 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.07 \mathrm{mmol})$ were added inside the glove box and sealed with a rubber septum. $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL})$ was added to the sealed tube via syringe and the reaction mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 15 minutes. Then, the mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was filtered through a Celite pad and the Celite pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure products $\mathbf{3 b a}+\left[\mathbf{D}_{\mathbf{4}}\right] \mathbf{- 3 b a}$ in $\mathbf{1 6 \%}$ yield. An intermolecular kinetic isotopic effect KIE ≈ 3.4 was determined by ${ }^{1} \mathrm{H}$ NMR.

b) Parallel experiment

To two separate sealed tubes, $\left[\mathrm{CoCp} *(\mathrm{CO}) \mathrm{I}_{2}\right](0.030 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.33 \mathrm{mmol}), \mathbf{1 b}$ or $\mathbf{D}_{\mathbf{5}}$ 1b $(0.33 \mathrm{mmol})$, allenes $\mathbf{2}(0.50 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.070 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.070 \mathrm{mmol})$ were added inside the glove box and sealed with a rubber septum. $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL})$ was added to the sealed tube via syringe and the reaction mixture was allowed to stir at $80{ }^{\circ} \mathrm{C}$ for 15 minutes. Then, the mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Both the mixtures were mixed and filtered through a celite pad and the celite pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure products $\mathbf{3 b a}+\left[\mathbf{D}_{4}\right]-$ 3ba in 13% yield. An intermolecular kinetic isotopic effect KIE ≈ 1.8 was determined by ${ }^{1} \mathrm{H}$ NMR..

iv) Procedure for synthesis of (\boldsymbol{E}) - N -(4-Methyl-2-(4-phenylbuta-1,3-dien-2yl)phenyl)acetamide (5aa)

To a sealed tube, $\left[\operatorname{RuCl}_{2}(p-c y m e n e)\right]_{2}(2.5 \mathrm{~mol} \%), 4$-methyl acetanilide $\mathbf{1 a}(1.34 \mathrm{mmol})$, allenes $\mathbf{2 a}(2.00 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(2.68 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.27 \mathrm{mmol})$ were added inside the glove box and closed with a rubber septum. 1,4-Dioxane (10 mL) was added to the sealed tube via syringe and the reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 15 h . Then, the mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was filtered through a celite pad and the celite pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure product 5aa in 33\% yield.

Procedure for synthesis of 4aa

To a solution of 1-(4-Methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one 3aa (0.38 mmol) in EtOH (10 mL) was added potassium hydroxide (1.90 mmol) under nitrogen atmosphere. The reaction mixture was allowed to stir at $120{ }^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. Then, the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine $(2 \times 10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure product $\mathbf{4} \mathbf{a}$ in 87%.

Procedure for the synthesis of 6aa

To a solution of 1-(4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one 3aa (0.38 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$ under a nitrogen atmosphere. The reaction mixture was allowed to stir at room temperature for 15 h under H_{2} atmosphere (1 atm). Then, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the mixture was filtered through a celite pad. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired pure product 6aa in 93\%.

References

(1) Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.
(2) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc., 2008, 130, 16474-16475.
(3) Ni, S.; Zhu, C.; Chen, J.; Ma, S. Org. Synth. 2013, 90, 327-337.

Spectroscopic Data

1-(4,6-Dimethyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3aa)

White solid: m.p. $109-112{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=6.0 \mathrm{~Hz}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1$, $138.8,134.9,132.2,130.7,129.6,128.1,127.6,127.3,126.3,124.4,123.9,52.3,22.6,21.1,18.3 ;$

HRMS (EI^{+}): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}$ 277.1467, found 277.1464; IR (KBr): 2915, 1820, 1658, 1493 and $1033 \mathrm{~cm}^{-1}$.

4,6-Dimethyl-2-phenylquinoline (4aa)

Yellow solid: m.p. $88-91{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.4$ Hz, 1 H), 7.73 (s, 1 H), 7.66 (d, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.2$, $146.5,144.0,139.8,135.8,131.5,129.9,129.0,128.7,127.4,127.1,122.6,119.7,21.8,19.0$; HRMS (EI^{+}): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N} 233.1204$ found 233.1202; IR (KBr): 2923, 1596, 1349, 817 and $701 \mathrm{~cm}^{-1}$.

1-(4-Methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3ba)

Orange solid: m.p. $108-110{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}$, $7 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,138.7,134.8,130.6,129.8,128.1,127.3,127.0,126.5$, 125.3, 124.6, 123.3, 52.4, 22.6, 18.2; HRMS (EI ${ }^{+}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$ 263.1310, found 263.1304; IR (KBr): 2946, 1658, 1488, 1373 and $817 \mathrm{~cm}^{-1}$.

1-(6-Methoxy-4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3ca)

White solid: m.p. $105-108{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=9.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,156.8,138.5,131.1,130.7,128.1,127.8,127.3,127.3,127.1,125.5,55.2$, 52.2, 22.5, 18.2; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2} 293.1416$, found 293.1417; IR (KBr): 2946, $1743,1656,1033$ and $817 \mathrm{~cm}^{-1}$.

1-(4-Methyl-2,6-diphenylquinolin-1(2H)-yl)ethan-1-one (3da)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (s, 3 H), 2.24 (s, 3 H); ${ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 170.1,140.0,138.7,138.0,134.0,130.6$, 130.1, 128.7, 128.2, 127.4, 127.3, 127.3, 126.7, 125.7, 124.8, 122.0, 52.5, 22.8, 18.3; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO} 339.1623$, found 339.1627 ; IR (KBr): 2915, 1774, 1481, 1373 and $701 \mathrm{~cm}^{-1}$.

1-(6-Chloro-4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3ea)

White solid: m.p. $100-103{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20-7.15 $(\mathrm{m}, 5 \mathrm{H}), 7.11(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1$ H), $6.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.9$, $138.1,133.2,131.4,130.6,129.9,128.2,127.8,127.6,127.3,126.8,125.6,123.4,52.3,22.6,18.1$; HRMS (EI^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO} 297.0920$, found 297.0917; IR (KBr): 2915, 1743, 1658, 1103 and $601 \mathrm{~cm}^{-1}$.

1-(6-Fluoro-4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3fa)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.7 .21-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{dd}, J=9.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{dd}, J=9.0 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=8.4 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 170.0, $160.0(\mathrm{~d}, J=243 \mathrm{~Hz}), 138.2,131.8,131.7,130.6,130.2,128.2,127.8,127.5,127.3,125.8$, $125.8,113.5(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 110.3(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 52.2,22.5,18.1 ; \mathbf{H R M S}_{\left(\mathrm{EI}^{+}\right)}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}$ 281.1216, found 281.1211; IR (KBr): 2946, 1743, 1650, 1272 and $1033 \mathrm{~cm}^{-1}$.

Ethyl 1-acetyl-4-methyl-2-phenyl-1,2-dihydroquinoline-6-carboxylate (3ga)

White solid: m.p. $155-158{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (s, 1 H), 7.84 (d, $J=7.2 \mathrm{~Hz}, 1$ H), 7.17-7.15 (m, 5 H), $7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1$ H), 4.35-4.34(m, 2 H$), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 169.9,166.0,138.8,138.2,130.3,129.6,128.4,128.2,127.6,127.3,127.0,126.8,124.7$, 124.1, 61.1, 52.7, 22.9, 18.3, 14.2; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} 335.1521$, found 335.1529; IR (KBr): 2977, 1712, 1666, 1025 and $825 \mathrm{~cm}^{-1}$.

1,1'-(4-Methyl-2-phenylquinoline-1,6(2H)-diyl)bis(ethan-1-one) (3ha)

White solid: m.p. $134-137{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1$ H), $7.17(\mathrm{~s}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.59 (s, 3 H), 2.26 ($\mathrm{s}, 3 \mathrm{H}$), 2.23 (s, 3 H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.4,169.9,139.1$, $138.2,133.4,130.2,129.7,128.2,127.7,127.6,127.3,127.2,124.1,123.2,52.7,26.7,22.9,18.3$; HRMS (EI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$ 305.1416, found 305.1413; IR (KBr): 2946, 1673, 1558, 917 and $817 \mathrm{~cm}^{-1}$.

1-(4-Methyl-6-nitro-2-phenylquinolin-1(2H)-yl)ethan-1-one (3ia)

Brown solid: m.p. $157-160{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}$, $J=8.4 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1$ H), $6.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.9$, $144.1,140.5,137.6,130.3,129.5,128.4,127.9,127.2,124.3,122.5,118.8,52.9,23.0,18.2 ;$ HRMS (EI^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ 308.1161, found 308.1159; IR (KBr): 2923, 1812, 1673, 1342 and $817 \mathrm{~cm}^{-1}$.

4-Methyl-6-nitro-2-phenylquinoline (4ia)

Brown solid: m.p. $177-180{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{dd}$, $J=9.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.55-$ $7.48(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.3,150.5,147.1,144.9,138.5$, $131.8,130.3,129.0,127.7,126.2,122.9,121.2,120.8,19.1 ;$ HRMS $\left(\mathrm{EI}^{+}\right):$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ 264.0899, found 264.0895; IR (KBr): 2946, 1820, 1550, 1342 and $709 \mathrm{~cm}^{-1}$.

1-(6-Hydroxy-4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3ja)

Yellow solid: m.p. $155-157^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.20-7.15$ (m, 5 H), 6.95 (d, $J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 172.4$, $157.2,139.8,132.7,132.6,129.3,128.6,128.5,127.5,127.3,127.2,114.7,111.1,53.6,22.5,18.4 ;$ HRMS (EI^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{1}{ }_{1} \mathrm{NO}_{2} 279.1259$, found 323.1263; IR (KBr): 3665, 2340, 1677, 1481, 709 and $517 \mathrm{~cm}^{-1}$.

1-(4,7-Dimethyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3ka)

Colourless oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (s, 1 H), $6.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3$ H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,138.8,136.9,134.5,130.6,128.0,127.3,127.2,127.1$, 125.9, 125.1, 125.1, 123.0, 52.2, 22.7, 21.2, 18.2; HRMS (EI ${ }^{+}$) calcd for $\mathrm{C}_{19}{ }_{19}{ }_{19} \mathrm{NO}$ 277.1467, found $277.1461 ; \mathbf{I R}(\mathrm{KBr}): 2923,1658,1504,1373$ and $856 \mathrm{~cm}^{-1}$.

1-(4-Methyl-2-phenylbenzo[h]quinolin-1(2H)-yl)ethan-1-one (3la)

Brown oil: ${ }^{\mathbf{1} H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ H), $7.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4$, 138.5, 132.9, 131.5, $130.4,129.1,128.0,127.9,127.7,127.2,127.0,126.5,126.1,125.5,123.4,121.0,52.8,23.2,18.4 ;$ HRMS (EI ${ }^{+}$: calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO} 313.1467$, found 313.1463; IR (KBr): 2946, 1658, 1465, 1373 and $771 \mathrm{~cm}^{-1}$.

1-(4-Methyl-2-phenylbenzo[g]quinolin-1(2H)-yl)ethan-1-one (3ma)

Brown oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.47-7.43 (m, 2 H), 7.33 (s, 1 H), 7.28-7.26 (m, 2 H), 7.20-7.14 (m, 3 H) 6.61 (d, J = $6.6 \mathrm{~Hz}, 1$ H), $6.23(\mathrm{dd}, J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.9$, 138.7, 133.3, 132.0, 131.0, 130.7, 128.9, 128.2, 128.0, 127.7, 127.5, 127.4, 126.8, 126.3, 125.8, 122.3, 122.2, 53.0, 22.7, 18.4; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO} 313.1467$ found 313.1469 ; IR $(\mathrm{KBr}): 2946,1658,1465,1373$ and $887 \mathrm{~cm}^{-1}$.

1-(8-Methoxy-4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3na)

Colourless oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 172.1,152.5,139.0,131.5,130.8,127.8,127.7,126.8,126.6,126.1,123.9$, 115.6, 111.1, 55.5, 52.1, 21.5, 18.4; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ 293.1416, found 293.1412; IR (KBr): 2946, 1658, 1465, 1365 and $817 \mathrm{~cm}^{-1}$.

1-(4-Methyl-2,8-diphenylquinolin-1(2H)-yl)ethan-1-one (3oa)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.12$ (m, 4 H), 6.67-6.66 (m, 1 H), $6.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (s, 3 H), $1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 170.4,139.0,137.8,136.2,131.9,131.4$, 130.1, 128.8, 128.4, 128.2, 127.6, 127.1, 126.3, 122.3, 53.2, 22.1, 18.5; HRMS (EI'): calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO} 339.1623$, found 339.1622; IR (KBr): 2946, 1658, 1450, 1365 and $856 \mathrm{~cm}^{-1}$.

1-(5,8-Dimethoxy-4-methyl-2-phenylquinolin-1(2H)-yl)ethan-1-one (3pa)

Yellow solid: m.p. $100-103{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 172.2,150.4,147.0,138.7,131.8,128.2,127.7$, 126.7, 125.7, 120.3, 111.1. 108.8, 56.0, 55.5, 51.5, 22.4, 21.6; HRMS $\left(\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}$ 323.1521, found 323.1525; IR (KBr): 2931, 1658, 1442, 1365 and $856 \mathrm{~cm}^{-1}$.

$\mathrm{N}, \mathrm{N}, 4,6$-Tetramethyl-2-phenylquinoline-1(2H)-carboxamide (3qa)

Green oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.10(\mathrm{~m}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{dd}, J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.10$ (s, 3 H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,141.4,135.4,131.6,130.1,128.7,128.0,127.4$, $127.3,127.0,126.3,124.3,120.5,57.1,38.1,20.9,18.3$; HRMS (EI ${ }^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ 306.1732, found 306.1728; IR (KBr): 2923, 1650, 1488, 1380 and $833 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-phenylquinolin-1(2H)-yl)propan-1-one (3ra)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.47-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 173.8,138.8,134.8,131.8,130.7,129.7,128.0,127.5,127.4,127.2,126.5,124.3,124.0,52.4$, 27.4, 21.0, 18.2, 10.2; HRMS (EI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO} 291.1623$,found 291.1624; IR (KBr): $2938,1658,1496,1380$ and $848 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-phenylquinolin-1(2H)-yl)-2-methylpropan-1-one (3sa)

Brown solid: m.p. $87-90{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 177.8,138.7,134.8,131.9,130.7,129.8,128.0,127.5,127.4,127.2,126.5$, 124.0, 124.0, 52.6, 30.3, 21.1, 20.5, 19.7, 18.2; HRMS (EI ${ }^{+}$: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO} 305.1780$, found 305.1782; IR (KBr): 2969, 1658, 1488, 1388 and $825 \mathrm{~cm}^{-1}$.

Ethyl 4,6-dimethyl-2-phenylquinoline-1(2H)-carboxylate (3ta)

Brown oil: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.7 .23-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.20(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.6,140.1,133.3,132.1,130.5,128.6$, 128.2, 128.0, 127.4, 127.0, 124.8, 124.4, 123.7, 62.1, 55.0, 21.0, 18.5, 14.4; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} 307.1572$, found 307.1571; IR (KBr): 2946, 1697, 1589, 1496 and $825 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-(o-tolyl)quinolin-1(2H)-yl)ethan-1-one (3ab)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}$, $J=7.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1$ H), $6.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 170.2,136.6,135.8,135.1,133.0,130.5,130.0,129.9,127.7,127.5,127.3$, 127.1, 125.5, 124.8, 123.9, 50.3, 22.8, 21.1, 19.9, 18.2; HRMS (EI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$ 291.1623, found 291.1626; IR (KBr): 2923, 1658, 1488, 1373 and $817 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-(m-tolyl)quinolin-1(2H)-yl)ethan-1-one (3ac)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}$, $3 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.1,138.8,137.7,134.8,132.3$, $130.5,129.6,128.1,128.1,127.9,127.6,126.5,124.4,124.1,123.9,52.3,22.7,21.3,21.1,18.3 ;$ HRMS (EI^{+}): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO} 291.1623$, found 291.1620; IR (KBr): 2923, 1658, 1496, 1373 and $840 \mathrm{~cm}^{-1}$.

1-(2-(3-Methoxyphenyl)-4,6-dimethylquinolin-1(2H)-yl)ethan-1-one (3ad)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-$ $6.05(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 170.2,159.0,140.5,134.9,132.2,130.8,129.5,129.1,127.6,126.1,124.4,124.0,119.6,113.1$, 112.1, 54.9, 52.1, 22.7, 21.1, 18.3; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} 307.1572$ found 307.1576; IR (KBr): 2915, 2360, 1658, 1041 and $794 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-(p-tolyl)quinolin-1(2H)-yl)ethan-1-one (3ae)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 169.9,136.9,135.8,134.8,132.4,130.5,129.7,128.8,127.5,127.3,126.7,124.4,123.9,52.2$, 22.6, 21.0, 20.9, 18.2; HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{NO} 291.1623$, found 291.1620; IR (KBr): 2923, 1658, 1493, 1380 and $809 \mathrm{~cm}^{-1}$.

1-(2-(4-Bromophenyl)-4,6-dimethylquinolin-1(2H)-yl)ethan-1-one (3af)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=$ $6.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 170.1,137.9,135.1,132.0,131.3,131.1,129.5,129.2,127.8,125.6,124.3,124.1,121.2,51.6$, 22.5, 21.0, 18.2; HRMS (EI^{+}): calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO} 355.0572$, found 355.0568; IR (KBr): 2946, $1658,1488,1373$ and $694 \mathrm{~cm}^{-1}$.

1-(2-(4-Fluorophenyl)-4,6-dimethylquinolin-1(2H)-yl)ethan-1-one (3ag)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}): $\delta 170.1,161.9(\mathrm{~d}, J=245 \mathrm{~Hz}), 135.0,134.5$, $132.0,131.0,129.5,129.2(\mathrm{~d}, J=9 \mathrm{~Hz}), 127.8,126.1,124.4,124.0,115.0(\mathrm{~d}, J=21 \mathrm{~Hz}), 51.6$, 22.7, 21.1, 18.3; HRMS (EI ${ }^{+}$: calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO} 295.1372$, found 295.1368; IR (KBr): 3039, $1360,1658,817$ and $671 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-(4-vinylphenyl)quinolin-1(2H)-yl)ethan-1-one (3ah)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.55(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (s, 3 H), 2.23 (s, 3 H), 2.16 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,138.3,136.2,136.0$, $134.9,132.1,130.8,129.5,127.6,127.5,126.1,125.9,124.3,124.0,113.7,51.9,22.7,21.1,18.3 ;$ HRMS (EI^{+}): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO} 303.1623$, found 303.1617; IR (KBr): 2915, 1658, 1496, 1018 and $794 \mathrm{~cm}^{-1}$.

1-(4,6-Dimethyl-2-(naphthalen-1-yl)quinolin-1(2H)-yl)ethan-1-one (3ai)

Brown solid: m.p. $167-170{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.09$ (m, 3 H), $6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3$ H), $2.22(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.3,135.5,133.7,133.1,132.9$, 131.6, 131.1 130.6, 128.4, 128.4, 127.6, 127.5, 126.4, 125.9, 125.5, 125.4, 124.7, 124.4, 123.8, 49.5, 22.8, 21.1, 18.2; HRMS (EI'): calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO} 327.1623$, found 327.1621; IR (KBr): 2946, 1658, 1488, 1373 and $894 \mathrm{~cm}^{-1}$.
(E)-N-(4-Methyl-2-(4-phenylbuta-1,3-dien-2-yl)phenyl)acetamide (5aa)

Yellow oil: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1$ H), $5.61(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1$, $145.0,136.4,133.6,132.9,132.4,130.2,129.7,129.2,129.1,128.6,128.0,126.7,121.2,120.4$, 24.6, 20.8.

1-(4,6-Dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (6aa)

white solid: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.22(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.15 (m, 3 H), 7.11-7.07 (m, $3 \mathrm{H}), 5.67(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, 1.35-1.34 (m, 4 H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,143.6,140.3,135.5,135.5,128.2$, $126.8,126.6,126.1,125.2,124.0,56.6,43.5,30.1,22.9,21.2,16.4 ; \mathbf{H R M S}^{\left(\mathrm{EI}^{+}\right): ~ c a l c d ~ f o r ~}$ $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ 279.1623, found 279.1620; IR (KBr): 3432, 2360, 1658, 1018 and $709 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 c}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 d}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3aa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{4 a a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 b a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 c a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3da

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 e a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 f a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 g a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ha

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ia

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4ia

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 j a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 k a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3la

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 m a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3 na

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 o a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 p a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 q a}$

1	1	1	1	1	1	1	1	1	1

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3 ra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3 sa

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ta

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ac $\underbrace{\text { 머№ }}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3af

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 a g}$

(

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ah

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 3ai

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 a a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{6 a a}$
资

ORTEP Diagram and X-ray Data of 3ga

Table S7. Crystal data and structure refinement for 170626LT2.

Identification code	170626 LT 2	
Empirical formula	C 21 H 21 N O 3	
Formula weight	335.39	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 21 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=13.6373(5) \AA$	
	$\mathrm{b}=15.8546(6) \AA=90^{\circ}$.	
Volume	$\mathrm{c}=8.1178(2) \AA$	$\beta=104.499(2)^{\circ}$.
Z	$1699.28(10) \AA 0^{\circ}$.	
Density (calculated $)$	4	
Absorption coefficient	$1.311 \mathrm{Mg} / \mathrm{m}^{3}$	
F(000)	$0.087 \mathrm{~mm}{ }^{-1}$	
Crystal size	712	
Theta range for data collection	$0.20 \times 0.15 \times 0.15 \mathrm{~mm}^{3}$	
Index ranges	1.542 to 26.461°.	
Reflections collected	$-17<=\mathrm{h}<=17,-19<=\mathrm{k}<=19,-7<=1<=10$	
Independent reflections	14623	
Completeness to theta $=25.242^{\circ}$	$3499[\mathrm{R}(\mathrm{int})=0.0383]$	

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Semi-empirical from equivalents
0.9485 and 0.8901

Full-matrix least-squares on F^{2}
3499 / 0 / 229
1.081
$\mathrm{R} 1=0.0409, \mathrm{wR} 2=0.0984$
$\mathrm{R} 1=0.0514, \mathrm{wR} 2=0.1120$
n/a
0.299 and -0.342 e. \AA^{-3}

