Supporting Information

Does 8-Nitroguanine Form 8-Oxoguanine? An Insight from Its Reaction with OH Radical

Kanika Bhattacharjee and P. K. Shukla*
Department of Physics, Assam University, Silchar - 788 011, INDIA

Table S1: Gibbs free reaction energies and their corresponding enthalpy changes ($\mathrm{kcal} / \mathrm{mol}$) involved in addition reactions of OH radical at the different sites of 8 -nitroG as obtained at the different levels of theory in gas phase and aqueous media.

Level of theory	Reaction sites			
	C2	C4	C5	C8
Gas phase				
M06-2X/6-31G(d,p)	-13.59(-23.72)	-9.78(-19.45)	-6.24(-16.10)	-33.53(-43.18)
$\begin{aligned} & \text { M06-2X/ aug-cc-pVDZ// } \\ & \text { M06-2X/6-31G(d,p) } \end{aligned}$	-11.29(-21.42)	-8.72(-18.38)	-5.18(-15.05)	-31.83(-41.47)
M06-2X/aug-cc-pVDZ	-11.47(-21.53)	-9.02(-18.57)	-5.28(-15.15)	-32.19(-41.60)
DLPNO-CCSD(T)/cc-pVDZ//				
Aqueous media				
CPCM-DLPNO-CCSD(T)	c-pVDZ//			
M06-2X/6-31G(d,p)	-5.96(-16.09)	9.99(0.32)	5.22(-4.64)	-24.59(-34.23)

The corresponding enthalpy changes are given in parentheses.

Definitions:

The Gibbs free energy barrier $\left(\Delta G^{b}\right)$ and released energy $\left(\Delta G^{r}\right)$ for a one step chemical reaction in the present contribution are defined as below:

Relative Boltzmann Populations:

Boltzmann populations of adducts formed by addition of OH radical at the $\mathrm{C} 2, \mathrm{C} 4$ and C 5 sites of 8 -nitroG relative to that of the C 8 -site adduct at 298.15 K were calculated using the following formula:
$\frac{N_{j}}{N_{i}}=e^{-\frac{\left(G_{j}-G_{i}\right)}{K_{b} T}}$
where $\mathrm{G}_{\mathrm{j}}=$ Gibbs free energies of adducts $(\mathrm{j}=\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5$)
$\mathrm{G}_{\mathrm{i}}=$ Gibbs free energy of C8-site adduct.
$\mathrm{K}_{\mathrm{b}}=$ Boltzmann constant

