## Supporting information

Micro and Nanocrystalline Inverse Spinel LiCoVO<sub>4</sub> for Intercalation Pseudocapacitive Li<sup>+</sup> Storage with Ultrahigh Energy Density and Long-Term Cycling

Haritha Hareendrakrishnakumar, Reshma Chulliyote, and Mary Gladis Joseph\*

Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala,

Thiruvananthapuram 695 547, India

Corresponding Author\*: marygladis@iist.ac.in

## **Electrochemical Measurements**

The mass loading ratio between positive and negative electrodes in the asymmetric supercapacitor (full-cell) was optimized according to the specific capacitance calculated from their discharge curves and can be expressed as follows:

$$\frac{m_{+}}{m_{-}} = \frac{C_{-} \times V_{-}}{C_{+} \times V_{+}} \tag{1}$$

where *m* (g) is the mass of active material in positive and negative electrode, *C* (F g<sup>-1</sup>) is the specific capacitance of single electrode calculated using (2), and  $\Delta V$  (V) is the operating potential of each electrodes.

Specific capacitance can be calculated from the discharge curves according to the following equation:

$$C = \frac{I \times \Delta t}{m \times \Delta V} \tag{2}$$

where C (F g<sup>-1</sup>) is the specific capacitance calculated based on the mass of the active material, I (A) is the constant discharge current,  $\Delta t$  (s) is the discharge time,  $\Delta V$  (V) is the discharge voltage excluding the IR drop, and m (g) is the mass of active material coated on the individual electrode for 3-electrode setup or the total mass of active materials on the two electrodes for full-cell setup.

Energy density and power density were calculated according to the following equations:

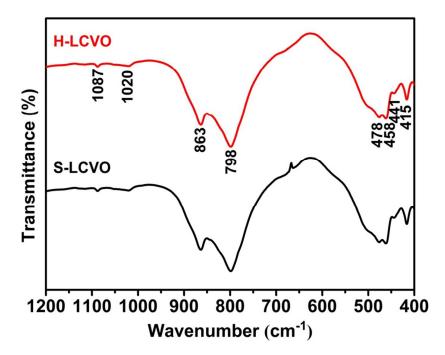
$$E = \frac{1}{2} CV^2$$
(3)  
$$P = \frac{E}{t}$$
(4)

where C (F g<sup>-1</sup>) is the specific capacitance of the full-cell, V (V) is the operating potential of the cell, t (s) is the discharge time, E (Wh kg<sup>-1</sup>) is the energy density, and P (kW kg<sup>-1</sup>) is the power density.

## Calculation of average crystallite size from powder XRD using Scherrer equation

The average crystallite size of S-LCVO and H-LCVO were calculated from the full width at half maximum (FWHM) of the diffraction peak using Scherrer equation:

$$D = \frac{K\lambda}{\beta \cos\theta}$$


where D (nm) is the average crystallite size,

*K* is the Scherrer constant, 0.94 for cubic crystal structure,

 $\lambda$  is the wavelength of Cu-Ka radiation (0.15406 nm),

 $\beta$  (radian) is the full width at half maximum of the peak corresponding to (311) plane,

 $\theta$  is the angle obtained from  $2\theta$  value corresponding to the maximum intensity peak.



**Figure S1.** FT-IR spectrum of solid state (S-LCVO) and hydrothermally (H-LCVO) derived LiCoVO<sub>4</sub>

FT-IR spectrum of LiCoVO<sub>4</sub> synthesized via solid-state and hydrothermal reaction in the wave number ranging from 400 to 1200 cm<sup>-1</sup> is represented in Fig. S1. The absorption band observed at 863 and 798 cm<sup>-1</sup> are assigned to the stretching vibrations of VO<sub>4</sub> tetrahedrons. The bands sited around 600 to 450 cm<sup>-1</sup> region are associated with the vibrations of Ni-O bonds in NiO<sub>6</sub> and Li-O bonds in LiO<sub>6</sub> octahedral units or bending vibrations of VO<sub>4</sub> tetrahedron. The two weak absorption bands observed at 1087 and 1020 cm<sup>-1</sup> corresponds to the asymmetric stretching vibration mode of Ni-O bonds in NiO<sub>6</sub> octahedron. The two weak bands around 441 and 415 cm<sup>-1</sup> refer to asymmetric stretching vibrations of Li-O bonds in LiO<sub>6</sub> octahedron.<sup>1</sup>

References:

1. Bhuvaneswari, M. S.; Selvasekarapandian, S.; Kamishima, O.; Kawamura, J.; Hattori, T.; Vibrational Analysis of Lithium Nickel Vanadate, *J. Power Sources* **2005**, *139*, 279-283.

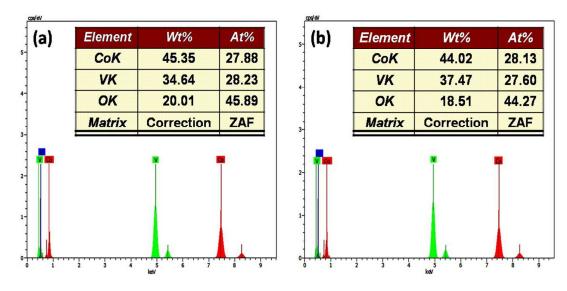



Figure S2. EDS spectrum of (a) S-LCVO (b) H-LCVO

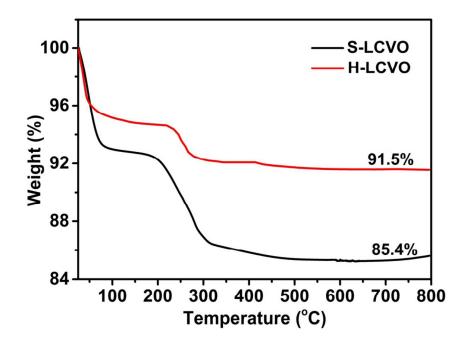
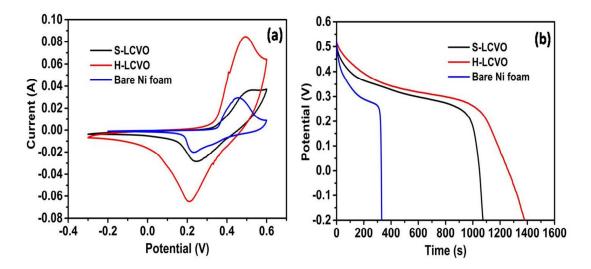
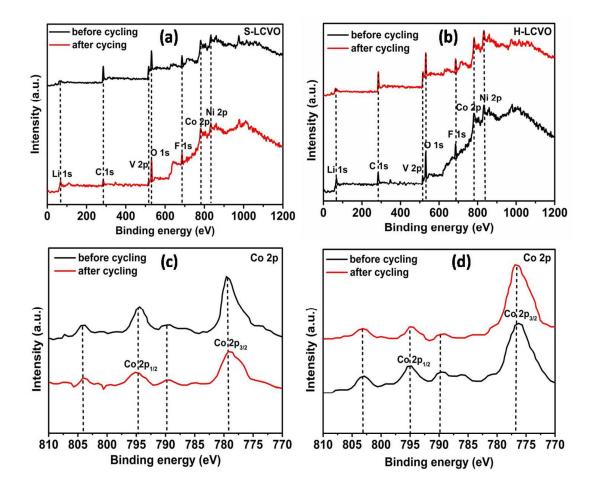
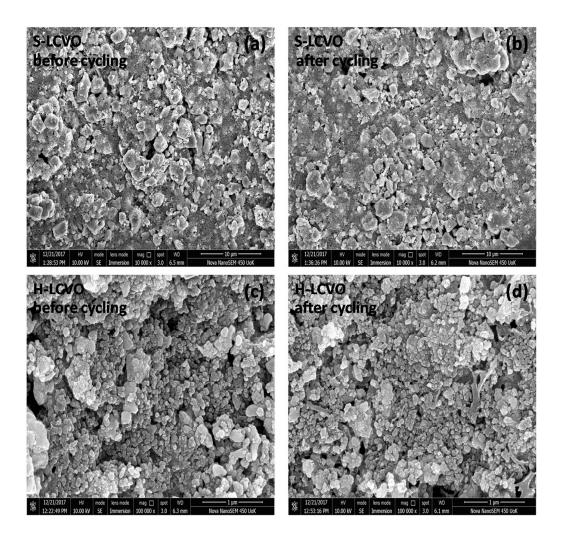
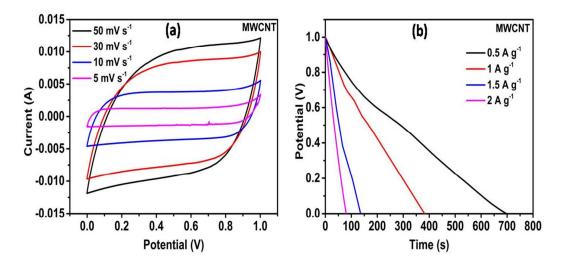





Figure S3. TGA curves of S-LCVO and H-LCVO


Fig. S3 shows the thermal decomposition profile of S-LCVO and H-LCVO in a temperature range of 25 to 800 °C. The initial weight loss below 100 °C is attributed to the evaporation of residual water. The next weight loss observed in the temperature range of 200 to 300 °C is due to the decomposition of residual precursor materials, which takes place at its melting points. After 300 °C, both S-LCVO and H-LCVO gives a stable decomposition curve. The percentage weight loss until the weight stabilizes is 14.6% for S-LCVO and 8.5% for H-LCVO.




**Figure S4.** (a) CV curves of S-LCVO, H-LCVO, and bare Ni foam substrate at the same sweep rate of 100 mV s<sup>-1</sup> (b) Galvanostatic discharge curves of S-LCVO, H-LCVO, and bare Ni foam substrate at the same sweep rate of 0.5 A  $g^{-1}$ .



**Figure S5.** XPS survey spectrum of (a) S-LCVO electrode before and after cycling (b) H-LCVO electrode before and after cycling. Comparative XPS core level spectrum of Co 2p (c) S-LCVO electrode before and after cycling (d) H-LCVO electrode before and after cycling



**Figure S6.** FESEM images: S-LCVO (a) before cycling (b) after cycling and H-LCVO (c) before cycling (d) after cycling



**Figure S7.** Electrochemical evaluation of MWCNT electrode in 1 M LiOH electrolyte: (a) CV curves at different potential sweep rates (b) galvanostatic discharge curves at different applied current densities.