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Neglecting the production of CO2, for it plays a small role in the dynamics, the full mech-
anism simplifies into

S
enzyme−−−−−−−−−→

R([H+],[S],[E])
2P

P + H+ k2−−⇀↽−−
k2r

PH+

H+ + OH−
k5−−⇀↽−−
k5r

H2O

(S.1)

where P, PH+ and OH− denote ammonia, ammonium and hydroxide respectively. The
corresponding reaction–diffusion equations in one spatial dimension are

∂t[S] = DS ∂
2
x[S]− R (S.2a)

∂t[P] = DP ∂
2
x[P] + 2R− k2[P][H+] + k2r[PH+] (S.2b)

∂t[PH+] = DPH ∂
2
x[PH+] + k2[P][H+]− k2r[PH+] (S.2c)

∂t[H
+] = DH ∂

2
x[H+] + k5r − k5[H

+][OH−] + k2r[PH+]− k2[P][H+] (S.2d)

∂t[OH−] = DOH ∂
2
x[OH−] + k5r − k5[H

+][OH−]. (S.2e)

The equilibrium between H2O, H+ and OH− is assumed to be established instantaneously,
therefore [OH−] can be substituted with Kw/[H

+] in eq. (S.2e) converting the LHS into

∂t[OH−] =
d(Kw/[H

+])

d[H+]
∂t[H

+] = − Kw

[H+]2
∂t[H

+].

Subtracting eq. (S.2e) from eq. (S.2d) and, for convenience, assuming that DH = DOH as
well as using the linearity of differentiation (DH ∂

2
x[H+]−DOH ∂

2
x(Kw/[H

+]) = DH ∂
2
x([H+]−

Kw/[H
+])) yields:(

1 +
Kw

[H+]2

)
∂t[H

+] = DH ∂
2
x

(
[H+]− Kw

[H+]

)
+ k2r[PH+]− k2[P][H+] (S.3)

Figure 1 shows the rate terms (2R− k2[P][H+] + k2r[PH+]) and (−k2[P][H+] + k2r[PH+])
during a cycle. It can be seen that 2R− k2[P][H+] + k2r[PH+] ≈ 0 for the acidic part of a
cycle where autocatalysis occurs (Figure 1a, solid line), and that −k2[P][H+] + k2r[PH+] ≈ 0
for the remainder (Figure 1a, dashed line). Using the latter assumption to reduce the model
removes the feedback mechanism and results in the loss of oscillations. Hence, we substitute
(−k2[P][H+] + k2r[PH+]) with −2R in eq. (S.3) on the basis that this simplification alters
the dynamics only moderately. As a result eq. (S.2) reduces into the 2–variable model:

∂t[S] = DS ∂
2
x[S]− R

∂t[H
+] =

[
DH ∂

2
x

(
[H+]− Kw

[H+]

)
− 2R

](
1 +

Kw

[H+]2

)−1
.

(S.4)
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Figure 1: Comparison of rates during a single oscillation in the five–variable model: (a)
solid line: 2R− k2[P][H+] + k2r[PH+]; dashed line: −k2[P][H+] + k2r[PH+]. (b) pH. Gray
lines mark the boundary between the acidic (I.) and basic (II.) parts of a cycle. Parameters
as in fig. 2.

pH traces for the five– and two–variable models are shown in Figure 2. The reduced model
captures the main characteristics of the oscillatory cycle reasonably well, i.e. the period
and amplitude.

Introducing s = [S]/Km, h = [H+]/KES1, d = DH/DS, κ = Km/KES1, κes = KES2/KES1,
κw = Kw/K

2
ES1, τ = tkE[E]/Km, x′ = x(kE[E])1/2(DSKm)−1/2, where τ and x′ are dimen-

sionless time and space, respectively; the one–dimensional spatial model corresponding to
eq. (S.4) becomes:

∂τs = ∂2x′s− r

∂τh =
[
d ∂2x′

(
h− κw

h

)
− 2κr

] (
1 +

κw
h2

)−1 (S.5)

where
r =

s

(1 + s) (1 + κes/h+ h)
.

In three–dimensions, diffusive transport is considered through applying the ∇2 = (∂2x +
∂2y + ∂2z ) Laplace operator to the concentration field of chemical components. The finite
difference form of the Laplacian is chosen depending on the spatial geometry of the studied
system. Having enzyme-loaded beads in a 2D hexagonal lattice within a 3D volume lends
itself to resolving the entire space as a hexagonal–close–packed (hcp) array of cells (Fig-
ure 3a). To approximate the diffusion-induced concentration change with time inside each
cell, we define vectors ~ui = (ui,x, ui,y, ui,z) pointing from the center of a cell to the center
of the adjacent cells, with |~ui| = 1 being the grid spacing (Figure 3b). The D~u f |f0 and
D2
~u f |f0 directional first and second derivatives of f at f0 along f0fi are computed (after

dropping i) according to

D~u f = (ux, uy, uz) · (∂xf, ∂yf, ∂zf) = ux ∂xf + uy ∂yf + uz ∂zf,
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Figure 2: pH oscillations in the middle of a 100 µm wide, urease-loaded (E = 12000 u/ml)
1D compartment in contact with acidic urea solution ([S]0 = 0.35 mM; [H+]0 = 0.1 mM)
in the (a) five–variable model: eq. (S.2); and (b) two–variable model: eq. (S.4). In the
five–variable model DS = DP = DPH = 1.4 × 10−5 cm2 s−1; DH = 9 × 10−5 cm2 s−1;
DOH = 6× 10−5 cm2 s−1.

D2
~u f = D~u (D~u f) = u2x ∂

2
xf + u2y ∂

2
yf + u2z ∂

2
zf + 2uxuy ∂

2
xyf + 2uxuz ∂

2
xzf + 2uyuz ∂

2
yzf

which, in turn, can be used in estimating fi via Taylor–expansion as

fi ≈ f0 + lD ~ui f |f0 +
l2

2
D2
~ui
f
∣∣
f0
.

By realizing that the first and mixed second partial derivatives cancel out (coefficients for

Figure 3: Unit cell configuration of hexagonal close-packed grid. f denotes f(x, y, z),
whereas f0 and fi stand for f(x0, y0, z0) and f(xi, yi, zi), respectively at the same instant
in time.
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Figure 4: Spatial distributions of enzyme with mean 500 and standard deviation 150 (µ =
1, σ = 0.3) within arrays of beads.

the partial derivatives are listed in Table 1), we find that∑
fi ≈ 12f0 + 2l2(∂2xf |f0 + ∂2yf |f0 + ∂2zf |f0),

thus for a grid node representing a cell in an hcp lattice the Laplacian can be approximated
as

∇2
hcpf0 ≈

∑
fi − 12 f0

2l2
. (S.6)

Spatial inhomogeneity in enzyme was implemented though multiplying the rate term for
each microbead with a coefficient. Coefficient values were generated using the Marsaglia–
Bray method [S1] and followed the normal distribution with mean (µ) equal to one and
standard deviations (σ): 0.1, 0.2 and 0.3.

i ux uy uz

1 1/2
√

3/2 0
2 1 0 0

3 1/2 −
√

3/2 0

4 −1/2 −
√

3/2 0
5 −1 0 0

6 −1/2
√

3/2 0

7 1/2
√

3/6
√

6/3

8 0 −
√

3/3
√

6/3

9 −1/2
√

3/6
√

6/3

10 1/2
√

3/6 −
√

6/3

11 0 −
√

3/3 −
√

6/3

12 −1/2
√

3/6 −
√

6/3

Table 1: Coefficients for partial derivatives in D~u f |f0 and D2
~u f
∣∣
f0

.
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