Switches Induced by Quorum Sensing in a Model of Enzyme-loaded Microparticles
 Tamas Bansagi Jr. and Annette F. Taylor
 J. R. Soc. Interface

Supplementary Information

Neglecting the production of CO_{2}, for it plays a small role in the dynamics, the full mechanism simplifies into

$$
\begin{array}{r}
\mathrm{S} \underset{\mathrm{R}\left(\left[\mathrm{H}^{+}\right],[\mathrm{S}],[\mathrm{E}]\right)}{\frac{\text { enzyme }}{\rightleftharpoons}} 2 \mathrm{P} \\
\mathrm{P}+\mathrm{H}^{+} \stackrel{\mathrm{k}_{2}}{\rightleftharpoons} \mathrm{PH}^{+} \tag{S.1}\\
\mathrm{H}^{+}+\mathrm{OH}^{-} \underset{\mathrm{k}_{5 \mathrm{r}}}{\stackrel{\mathrm{k}_{5}}{\rightleftharpoons}} \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

where $\mathrm{P}, \mathrm{PH}^{+}$and OH^{-}denote ammonia, ammonium and hydroxide respectively. The corresponding reaction-diffusion equations in one spatial dimension are

$$
\begin{align*}
\partial_{t}[\mathrm{~S}] & =D_{\mathrm{S}} \partial_{x}^{2}[\mathrm{~S}]-\mathrm{R} \tag{S.2a}\\
\partial_{t}[\mathrm{P}] & =D_{\mathrm{P}} \partial_{x}^{2}[\mathrm{P}]+2 \mathrm{R}-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right] \tag{S.2b}\\
\partial_{t}\left[\mathrm{PH}^{+}\right] & =D_{\mathrm{PH}} \partial_{x}^{2}\left[\mathrm{PH}^{+}\right]+\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]-\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right] \tag{S.2c}\\
\partial_{t}\left[\mathrm{H}^{+}\right] & =D_{\mathrm{H}} \partial_{x}^{2}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{5 \mathrm{r}}-\mathrm{k}_{5}\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right] \tag{S.2d}\\
\partial_{t}\left[\mathrm{OH}^{-}\right] & =D_{\mathrm{OH}} \partial_{x}^{2}\left[\mathrm{OH}^{-}\right]+\mathrm{k}_{5 \mathrm{r}}-\mathrm{k}_{5}\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] . \tag{S.2e}
\end{align*}
$$

The equilibrium between $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and OH^{-}is assumed to be established instantaneously, therefore $\left[\mathrm{OH}^{-}\right]$can be substituted with $\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]$in eq. (S.2e) converting the LHS into

$$
\partial_{t}\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{d}\left(\mathrm{~K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]\right)}{\mathrm{d}\left[\mathrm{H}^{+}\right]} \partial_{t}\left[\mathrm{H}^{+}\right]=-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]^{2}} \partial_{t}\left[\mathrm{H}^{+}\right]
$$

Subtracting eq. (S.2e) from eq. (S.2d) and, for convenience, assuming that $D_{\mathrm{H}}=D_{\mathrm{OH}}$ as well as using the linearity of differentiation $\left(D_{\mathrm{H}} \partial_{x}^{2}\left[\mathrm{H}^{+}\right]-D_{\mathrm{OH}} \partial_{x}^{2}\left(\mathrm{~K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]\right)=D_{\mathrm{H}} \partial_{x}^{2}\left(\left[\mathrm{H}^{+}\right]-\right.\right.$ $\left.\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]\right)$) yields:

$$
\begin{equation*}
\left(1+\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]^{2}}\right) \partial_{t}\left[\mathrm{H}^{+}\right]=D_{\mathrm{H}} \partial_{x}^{2}\left(\left[\mathrm{H}^{+}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}\right)+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right] \tag{S.3}
\end{equation*}
$$

Figure 1 shows the rate terms $\left(2 \mathrm{R}-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]\right)$and $\left(-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]\right)$ during a cycle. It can be seen that $2 \mathrm{R}-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right] \approx 0$ for the acidic part of a cycle where autocatalysis occurs (Figure 1a, solid line), and that $-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right] \approx 0$ for the remainder (Figure 1a, dashed line). Using the latter assumption to reduce the model removes the feedback mechanism and results in the loss of oscillations. Hence, we substitute $\left(-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]\right)$with -2 R in eq. (S.3) on the basis that this simplification alters the dynamics only moderately. As a result eq. (S.2) reduces into the 2 -variable model:

$$
\begin{align*}
\partial_{t}[\mathrm{~S}] & =D_{\mathrm{S}} \partial_{x}^{2}[\mathrm{~S}]-\mathrm{R} \\
\partial_{t}\left[\mathrm{H}^{+}\right] & =\left[D_{\mathrm{H}} \partial_{x}^{2}\left(\left[\mathrm{H}^{+}\right]-\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}\right)-2 \mathrm{R}\right]\left(1+\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]^{2}}\right)^{-1} \tag{S.4}
\end{align*}
$$

Figure 1: Comparison of rates during a single oscillation in the five-variable model: (a) solid line: $2 \mathrm{R}-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]$; dashed line: $-\mathrm{k}_{2}[\mathrm{P}]\left[\mathrm{H}^{+}\right]+\mathrm{k}_{2 \mathrm{r}}\left[\mathrm{PH}^{+}\right]$. (b) pH . Gray lines mark the boundary between the acidic (I.) and basic (II.) parts of a cycle. Parameters as in fig. 2.
pH traces for the five- and two-variable models are shown in Figure 2. The reduced model captures the main characteristics of the oscillatory cycle reasonably well, i.e. the period and amplitude.

Introducing $s=[\mathrm{S}] / \mathrm{K}_{\mathrm{m}}, h=\left[\mathrm{H}^{+}\right] / \mathrm{K}_{\mathrm{ES} 1}, d=D_{\mathrm{H}} / D_{\mathrm{S}}, \kappa=\mathrm{K}_{\mathrm{m}} / \mathrm{K}_{\mathrm{ES} 1}, \kappa_{\mathrm{es}}=\mathrm{K}_{\mathrm{ES} 2} / \mathrm{K}_{\mathrm{ES} 1}$, $\kappa_{\mathrm{w}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{ES} 1}^{2}, \tau=t \mathrm{k}_{\mathrm{E}}[\mathrm{E}] / \mathrm{K}_{\mathrm{m}}, x^{\prime}=x\left(\mathrm{k}_{\mathrm{E}}[\mathrm{E}]\right)^{1 / 2}\left(\mathrm{D}_{\mathrm{S}} \mathrm{K}_{\mathrm{m}}\right)^{-1 / 2}$, where τ and x^{\prime} are dimensionless time and space, respectively; the one-dimensional spatial model corresponding to eq. (S.4) becomes:

$$
\begin{align*}
& \partial_{\tau} s=\partial_{x^{\prime}}^{2} s-r \\
& \partial_{\tau} h=\left[d \partial_{x^{\prime}}^{2}\left(h-\frac{\kappa_{\mathrm{w}}}{h}\right)-2 \kappa r\right]\left(1+\frac{\kappa_{\mathrm{w}}}{h^{2}}\right)^{-1} \tag{S.5}
\end{align*}
$$

where

$$
r=\frac{s}{(1+s)\left(1+\kappa_{\mathrm{es}} / h+h\right)} .
$$

In three-dimensions, diffusive transport is considered through applying the $\nabla^{2}=\left(\partial_{x}^{2}+\right.$ $\partial_{y}^{2}+\partial_{z}^{2}$) Laplace operator to the concentration field of chemical components. The finite difference form of the Laplacian is chosen depending on the spatial geometry of the studied system. Having enzyme-loaded beads in a 2 D hexagonal lattice within a 3 D volume lends itself to resolving the entire space as a hexagonal-close-packed (hcp) array of cells (Figure 3 a). To approximate the diffusion-induced concentration change with time inside each cell, we define vectors $\overrightarrow{u_{i}}=\left(u_{i, x}, u_{i, y}, u_{i, z}\right)$ pointing from the center of a cell to the center of the adjacent cells, with $\left|\overrightarrow{u_{i}}\right|=1$ being the grid spacing (Figure 3b). The $\left.D_{\vec{u}} f\right|_{f_{0}}$ and $\left.D_{\vec{u}}^{2} f\right|_{f_{0}}$ directional first and second derivatives of f at f_{0} along $\overline{f_{0} f_{i}}$ are computed (after dropping i) according to

$$
D_{\vec{u}} f=\left(u_{x}, u_{y}, u_{z}\right) \cdot\left(\partial_{x} f, \partial_{y} f, \partial_{z} f\right)=u_{x} \partial_{x} f+u_{y} \partial_{y} f+u_{z} \partial_{z} f
$$

Figure 2: pH oscillations in the middle of a $100 \mu \mathrm{~m}$ wide, urease-loaded $(\mathrm{E}=12000 \mathrm{u} / \mathrm{ml})$ 1 D compartment in contact with acidic urea solution $\left([S]_{0}=0.35 \mathrm{mM} ;\left[\mathrm{H}^{+}\right]_{0}=0.1 \mathrm{mM}\right)$ in the (a) five-variable model: eq. (S.2); and (b) two-variable model: eq. (S.4). In the five-variable model $D_{\mathrm{S}}=D_{\mathrm{P}}=D_{\mathrm{PH}}=1.4 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} ; D_{\mathrm{H}}=9 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$; $D_{\mathrm{OH}}=6 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.

$$
D_{\vec{u}}^{2} f=D_{\vec{u}}\left(D_{\vec{u}} f\right)=u_{x}^{2} \partial_{x}^{2} f+u_{y}^{2} \partial_{y}^{2} f+u_{z}^{2} \partial_{z}^{2} f+2 u_{x} u_{y} \partial_{x y}^{2} f+2 u_{x} u_{z} \partial_{x z}^{2} f+2 u_{y} u_{z} \partial_{y z}^{2} f
$$

which, in turn, can be used in estimating f_{i} via Taylor-expansion as

$$
f_{i} \approx f_{0}+\left.l D_{\overrightarrow{u_{i}}} f\right|_{f_{0}}+\left.\frac{l^{2}}{2} D_{\overrightarrow{u_{i}}}^{2} f\right|_{f_{0}}
$$

By realizing that the first and mixed second partial derivatives cancel out (coefficients for

Figure 3: Unit cell configuration of hexagonal close-packed grid. f denotes $f(x, y, z)$, whereas f_{0} and f_{i} stand for $f\left(x_{0}, y_{0}, z_{0}\right)$ and $f\left(x_{i}, y_{i}, z_{i}\right)$, respectively at the same instant in time.

Figure 4: Spatial distributions of enzyme with mean 500 and standard deviation $150(\mu=$ $1, \sigma=0.3$) within arrays of beads.
the partial derivatives are listed in Table 1), we find that

$$
\sum f_{i} \approx 12 f_{0}+2 l^{2}\left(\left.\partial_{x}^{2} f\right|_{f_{0}}+\left.\partial_{y}^{2} f\right|_{f_{0}}+\left.\partial_{z}^{2} f\right|_{f_{0}}\right)
$$

thus for a grid node representing a cell in an hcp lattice the Laplacian can be approximated as

$$
\begin{equation*}
\nabla_{h c p}^{2} f_{0} \approx \frac{\sum f_{i}-12 f_{0}}{2 l^{2}} \tag{S.6}
\end{equation*}
$$

Spatial inhomogeneity in enzyme was implemented though multiplying the rate term for each microbead with a coefficient. Coefficient values were generated using the MarsagliaBray method [S1] and followed the normal distribution with mean (μ) equal to one and standard deviations $(\sigma): 0.1,0.2$ and 0.3 .

i	u_{x}	u_{y}	u_{z}
1	$1 / 2$	$\sqrt{3} / 2$	0
2	1	0	0
3	$1 / 2$	$-\sqrt{3} / 2$	0
4	$-1 / 2$	$-\sqrt{3} / 2$	0
5	-1	0	0
6	$-1 / 2$	$\sqrt{3} / 2$	0
7	$1 / 2$	$\sqrt{3} / 6$	$\sqrt{6} / 3$
8	0	$-\sqrt{3} / 3$	$\sqrt{6} / 3$
9	$-1 / 2$	$\sqrt{3} / 6$	$\sqrt{6} / 3$
10	$1 / 2$	$\sqrt{3} / 6$	$-\sqrt{6} / 3$
11	0	$-\sqrt{3} / 3$	$-\sqrt{6} / 3$
12	$-1 / 2$	$\sqrt{3} / 6$	$-\sqrt{6} / 3$

Table 1: Coefficients for partial derivatives in $\left.D_{\vec{u}} f\right|_{f_{0}}$ and $\left.D_{\vec{u}}^{2} f\right|_{f_{0}}$.

References

[S1] G. Marsaglia and T.A. Bray, A convenient method for generating normal variables, SIAM Review, 6, 260, 1964

