A step towards capturing the flux in scientific knowledge

PhD Departmental Seminar

Dept. of Computer Science, University of Auckland

Prashant Gupta p.gupta@auckland.ac.nz

Context of eResearch

Data, observations, instruments

Collaborations

CHANGE IS THE ONLY CONSTANT

"The flux of things is one ultimate generalization around which we must weave our philosophical system."
--Alfred N. Whitehead, Process and Reality

Conceptual transition in Physical Optics

18th Century – Light as material corpuscles

Early 20th Century – Light as wave particles

Knowledge Representation

■ DATABASES

<quiz>
<question>
Who was the forty-second
president of the U.S.A.?
</question>
<answer>
William Jefferson Clinton
</answer>
<!-- Note: We need to add
nore questions later.-->
</quiz>

sec:Replay

sec:Rootif

sec:Backdoor

sec:RoutingTablePoise

sec:FormatStringAttack

seo:Rabbit

see:StatisticalAttack

seo:Phishing

see:IPSplicing

see:PasswordSniffing

Ontology

The Problem

How our contemporary computational systems deal with the flux (or conceptual change) in scientific knowledge and its implications?

First aspect

How do ontologies deal with conceptual change

Geological revolution

Before

Thagard, P. (1992). Conceptual revolutions. Princeton University Press.

Ontologies – often static in nature

- They do not support continuous revision and refinement
- o Problems:
 - Complexity
 - Dependencies

Proposed solution

Formalize representation of conceptual changes and their effects, which would facilitate to automate some aspects of the process of revision

Second aspect

Implications of conceptual change on dependent applications

Semantic Heterogeneity

Same concepts but different interpretations

Diverse concepts but same interpretations

Geographical Maps

- Can we use a new categorical scheme for existing geospatial data?
- How to compare or integrate maps based on different categorical schemas or made at different times or places?

... LCBD1, LCDB2, and Ecosat comparison ...

Proposed solution

Create a category versioning system and have explicit connections of each version with their corresponding applications

Third aspect

How can we capture the flux

Why?

- o How we reached the current state of knowledge?
- What factors and processes were involved?
- O Why it is the way it is (and not some other way)?

What are we missing?

- The source of interpretation behind knowledge formation, i.e. the process of generating knowledge (categories) from raw data
- We argue that we require an approach to represent our scientific knowledge that reflects:
 - The scientific processes involved in its creation and revision
 - The evolution of scientific knowledge over time

Proposed solution

Connect categories with the process of science that drives their formation and revision

Category Representation

Does the current representation of a category fully explain its existence and identity and conveys the complete meaning associated with it?

Birth and evolution of a category

Research Goal

Three aspects of our goal:

- Facilitating the automation of category revision process dynamic
- Connecting categories with the processes that were involved in their revision Living and more meaningful
- 3. Create a category versioning system and have explicit connections of each version of categories with their corresponding dataset and applications Do not lose previous knowledge if there is a conceptual change

Research objectives

 Build a conceptual model to explore the factors (change events) that may cause changes to category and their corresponding outcomes, i.e. inputs and outputs relating to different kinds of change

Research Objectives

Evaluation

- Evaluate the framework using datasets and categories that has already gone through some conceptual changes.
 - Good examples available relate to taxonomic revision in biology and landcover mapping in geography
- Evaluate the benefits of the framework by connecting two datasets based on different versions of categories

Questions ??

Thanks to

Prof Mark Gahegan (Supervisor)

Prof Gillian Dobbie (Co-supervisor)

Prof Pat Langley

Fellow students