Supporting Information

Applying pose clustering and MD simulations to eliminate false positives in molecular docking

Spandana Makeneni†, David F. Thieker, Robert J. Woods*

Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA,

30602, USA

*Author to whom correspondence may be addressed.

Voice: +1-706-542-4454

Email: rwoods@ccrc.uga.edu

	Before MD	After MD					
	RMSDx ^a	RMSD x ^a	RMSDd ^c	ΔScore	Ligand	Number of	
System	(Docking	(Docking			Diffusion	Contacts ^e	
	Score ^b)	Score ^b)			Distance ^d	Before/After	
1M7D	7.6 (-6.5)	9.6 (-4.6)	1.2	+1.9	2.1	43/34	
	7.3 (-6.5)	10.0 (-4.3)	2.7	+2.2	2.0	48/33	
1MFA	14.8 (-5.0)	41.0 (0.0)	38.6	+5	-	40/0	
1MFB	5.4 (-6.3)	9.4 (-6.3)	2.7	0	1.8	70/83	
	6.0 (-5.6)	9.6 (-3.3)	7.6	+2.3	1.8	33/34	
1OP3	18.7 (-5.5)	22.6 (-3.3)	4.0	+2.2	2.0	37/17	
	11.4 (-5.4)	15.8 (-2.0)	6.4	+3.4	2.1	39/17	
1M7I	12.1 (-7.2)	23.9 (-0.1)	24.7	+7.1	1.8	61/10	
	11.2 (-6.7)	28.9(-0.1)	24.3	+6.6	2.2	73/6	
1UZ8	3.2 (-6.1)	12.3 (-1.2)	12.6	+4.9	2.1	44/10	
	5.9 (-5.8)	10.9 (-2.6)	6.2	+3.2	1.6	32/22	
1S3K	5.0 (-6.5)	9.1 (-3.2)	6.3	+3.3	1.8	36/17	
3TV3	6.7 (-5.6)	43.0 (-1.3)	42.0	+4.3	-	35/0	
	22.1 (-5.6)	24.1 (-4.1)	3.7	+1.5	1.8	45/42	

Table S1 RMSD values, distance values from the protein surface, and protein-ligand contacts of poses that drifted 2 Å from the known binding site during the course of the simulation.

^a RMSD relative to the crystal structure

^b kcal/mol

^c RMSD of the pose from MD relative to the docked pose before MD

^d Shortest distance between any atom in the ligand and any atom in the protein from the last frame of the MD simulation.

^e Total number of contacts between all atoms in the ligand with atoms on the protein surface.

Figure S1. Clustering results for the 10 cognate systems, each ranked from most (left) to least (right) stable based on docking score. Clusters that contain an acceptable pose (RMSD < 2 Å) are colored in red.

3

Figure S2 Heavy chain of 10M3(green) superimposed onto 10P3(blue) shows the difference in the conformation of the H3 loop between the apo and cognate structures.

Figure S3 Clustering results for apo systems, each ranked from most (left) to least (right) stable based on docking scores. Clusters that contain an acceptable pose (RMSD < 2 Å) are colored in red.

	1M7D			1CLY	
DMCD Defense		RMSD	RMSD		RMSD
KNISD Before	RMSD	After MD	Before MD	RMSD	After MD
MD (Sorteu by Donk)	After MD	(Sorted by	(Sorted by	After MD	(Sorted by
Kalik)		Rank)	Rank)		Rank)
0.4 (1)	1.1 (1)	1.1 (1)	0.7 (1)	1.1 (1)	1.1 (1)
2.2 (2)	1.1 (2)	1.1 (2)	6.0 (2)	7.7 (10)	1.1 (2)
7.9 (3)	7.8 (4)	5.7 (3)	5.3 (3)	5.3 (4)	5.7 (3)
6.6 (4)	6.9 (5)	7.8 (4)	3.9 (4)	1.1 (2)	5.3 (4)
7.6 (5)	9.6 (9)	6.9 (5)	7.0 (5)	7.1 (7)	5.5 (5)
8.4 (6)	7.0 (8)	6.9 (6)	7.0 (6)	6.7 (8)	7.2 (6)
7.3 (7)	10.0 (10)	8.9 (7)	6.9 (7)	7.2 (6)	7.1 (7)
6.3 (8)	6.9 (6)	7.0 (8)	6.5 (8)	5.7 (3)	6.7 (8)
5.9 (9)	5.7 (3)	9.6 (9)	6.6 (9)	7.5 (9)	7.5 (9)
8.7 (10)	8.9 (7)	10.0 (10)	5.5 (10)	5.5 (5)	7.7 (10)
	1MFA			1MFB	
RMSD Before		RMSD	RMSD		RMSD
MD (Sorted by	RMSD After MD	After MD	Before MD	RMSD	After MD
Rank)		(Sorted by	(Sorted by	After MD	(Sorted by
Канк)		Rank)	Rank)		Rank)
0.8 (1)	1.1 (1)	1.1 (1)	3.3 (1)	3.0 (3)	3.2 (1)
5.6 (2)	5.5 (3)	16.9 (2)	0.7 (2)	2.1 (2)	2.1 (2)
6.5 (3)	6.8 (5)	5.5 (3)	4.6 (3)	3.9 (7)	3.0 (3)
6.7 (4)	6.8 (7)	5.1 (4)	3.0 (4)	5.1 (4)	5.1 (4)
14.8 (5)	41.0 (10)	6.8 (5)	2.7 (5)	2.5 (8)	9.4 (5)
5.5 (6)	5.1 (4)	16.5 (6)	2.7 (6)	3.2 (1)	6.3 (6)
14.8 (7)	16.5 (6)	6.8 (7)	12.3 (7)	13.0 (10)	3.9 (7)
13.9 (8)	15.7 (9)	16.8 (8)	5.4 (8)	9.4 (5)	2.5 (8)
17.3 (9)	16.9 (2)	15.7 (9)	14.0 (9)	14.3 (9)	14.3 (9)
16.6 (10)	16.8 (8)	41.0(10)	5.9 (10)	6.3 (6)	13.0 (10)
	1 O P3			1UZ8	
RMSD Refore		RMSD	RMSD		RMSD
MD (Sorted by	RMSD	After MD	Before MD	RMSD	After MD
Donk)	After MD	(Sorted by	(Sorted by	After MD	(Sorted by
Kalik)		Rank)	Rank)		Rank)
0.9 (1)	0.8 (2)	0.9 (1)	0.7 (1)	0.7 (1)	0.7 (1)
5.2 (2)	6.0 (7)	0.8 (2)	4.7 (2)	5.3 (6)	0.7 (2)
13.4 (3)	13.8 (6)	2.0 (3)	5.4 (3)	4.9 (4)	5.1 (3)
3.3 (4)	4.2 (4)	4.2 (4)	4.5 (4)	5.2 (5)	4.9 (4)
6.0 (5)	9.6 (8)	13.0 (5)	4.9 (5)	5.3 (7)	5.2 (5)

Table S2 Ligand RMSD (Å) values of the top 10 poses after pose clustering, MD simulation, and post-MD rescoring for the cognate systems. Acceptable poses are shown in red. Poses that worsened by 2 Å from their initial position during MD are shown in green.

13.0 (6)	13.0 (5)	13.8 (6)	3.2 (6)	12.3 (10)	5.3 (6)
18.7 (7)	22.6 (9)	6.0 (7)	4.5 (7)	5.1 (3)	5.3 (7)
1.6 (8)	0.9 (1)	9.6 (8)	5.9 (8)	10.9 (9)	6.3 (8)
2.4 (9)	2.0 (3)	22.6 (9)	4.9 (9)	6.3 (8)	10.9 (9)
11.4 (10)	15.8 (10)	15.8 (10)	3.7 (10)	0.7 (2)	12.3 (10)
	1M7I			3C6S	
DMCD Defense		RMSD	RMSD		RMSD
KMSD Belore	RMSD	After MD	Before MD	RMSD After	After MD
MD (Soried by	After MD	(Sorted by	(Sorted by	MD	(Sorted by
Kank)		Rank)	Rank)		Rank)
0.6 (1)	1.8 (1)	1.8 (1)	8.1 (1)	8.5 (3)	2.5 (1)
11.9 (2)	11.8 (8)	4.7 (2)	1.9 (2)	2.5 (1)	2.6 (2)
12.1 (3)	23.9 (10)	6.7 (3)	8.0 (3)	8.5 (5)	8.5 (3)
5.4 (4)	6.7 (3)	7.2 (4)	8.3 (4)	8.4 (6)	6.6 (4)
4.9 (5)	5.8 (7)	10.9 (5)	3.9 (5)	3.9 (7)	8.5 (5)
4.4 (6)	4.7 (2)	12.0 (6)	7.2 (6)	6.6 (4)	8.4 (6)
11.2 (7)	28.9 (9)	5.8 (7)	4.0 (7)	2.6 (2)	3.9 (7)
11.6 (8)	10.9 (5)	11.8 (8)	5.2 (8)	5.1 (9)	5.6 (8)
11.6 (9)	12.0 (6)	28.9 (9)	14.9 (9)	20.2 (10)	5.1 (9)
8.1 (10)	7.2 (4)	23.9 (10)	5.9 (10)	5.6 (8)	20.2 (10)

H1	10M3	1UZ6	1M7D	1M7I	3C5S
26	0.2	0.3	0.5	0.8	1.5
27	0.1	0.4	0.3	0.3	
28	1.1	0.9	0.3	0.4	
29	0.0	0.3	0.6	0.5	
30	0.1	1.1	0.2	0.3	1.8
31	0.1	0.2	0.3	0.4	1.4
32	0.2	1.4	0.3	0.4	5.3
33	0.2	0.3	0.4	0.4	0.5
34	0.2	0.2	0.3	0.3	1.6
35	0.2	0.2	0.3	0.3	0.4
H2	10M3	1UZ6	1M7D	1M7I	3C5S
50	0.5	0.3	0.4	0.5	0.4
51	0.1	0.2	0.8	0.6	0.5
52	0.2	0.3	0.5	0.4	0.9
52A	N/A	0.3	0.5	0.5	
52B	N/A	N/A	0.9	1.0	
52C	N/A	N/A	0.3	0.4	
53	0.4	0.4	1.1	1.1	
54	0.5	0.3	1.3	1.5	
55	1.3	0.3	0.4	0.4	
56	4.5	0.1	0.6	0.4	
57	0.3	0.3	0.5	0.4	0.5
58	1.6	0.3	0.4	1.2	0.5
Н3	10M3	1UZ6	1M7D	1M7I	3C5S
95	0.5	1.2	0.6	0.5	0.3
96	2.6	0.5	0.5	0.5	0.3
97	5.5	0.5	0.8	0.9	
98	5.9	1.4	0.9	0.8	
99	10.1	2.4	0.6	0.6	
100	7.9	0.5	0.2	0.3	
100A	3.7	N/A	N/A	N/A	N/A
100B	2.7	N/A	N/A	N/A	N/A
100C	1.2	N/A	N/A	N/A	N/A
100D	0.9	N/A	N/A	N/A	N/A
100E	0.4	N/A	N/A	N/A	N/A
100F	0.2	N/A	N/A	N/A	N/A
101	0.2	0.5	0.4	0.3	0.5

 $\label{eq:stable} \textbf{Table S3.} Differences in positions of residues (Å) in the heavy chain CDR loop regions in the apo$ and co-complexes.

102 0.2 0.4

0.3

-- Indicates missing residues in the apo sequence N/A Indicates that the insertions do not exist