Supporting Information

Applying pose clustering and MD simulations to eliminate false positives in molecular docking

Spandana Makeneni†, David F. Thieker, Robert J. Woods*
Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA

*Author to whom correspondence may be addressed.

Email: rwoods@ccrc.uga.edu

Table S1 RMSD values, distance values from the protein surface, and protein-ligand contacts of poses that drifted $2 \AA$ from the known binding site during the course of the simulation.

System	Before MD	After MD				
	RMSDx ${ }^{\text {a }}$ (Docking Score ${ }^{b}$)	$\begin{aligned} & \mathrm{RMSDx}^{\mathrm{a}} \\ & \left(\text { Docking }^{\text {Score }}\right. \text {) } \end{aligned}$	RMSDd ${ }^{\text {c }}$	Δ Score	Ligand Diffusion Distance ${ }^{\text {d }}$	Number of Contacts ${ }^{\text {e }}$ Before/After
1M7D	7.6 (-6.5)	9.6 (-4.6)	1.2	+1.9	2.1	43/34
	7.3 (-6.5)	10.0 (-4.3)	2.7	+2.2	2.0	48/33
1MFA	14.8 (-5.0)	41.0 (0.0)	38.6	+5	-	40/0
1MFB	5.4 (-6.3)	9.4 (-6.3)	2.7	0	1.8	70/83
	6.0 (-5.6)	9.6 (-3.3)	7.6	+2.3	1.8	33/34
1 OP 3	18.7 (-5.5)	22.6 (-3.3)	4.0	+2.2	2.0	37/17
	11.4 (-5.4)	15.8 (-2.0)	6.4	+3.4	2.1	39/17
1M7I	12.1 (-7.2)	23.9 (-0.1)	24.7	+7.1	1.8	61/10
	11.2 (-6.7)	28.9(-0.1)	24.3	+6.6	2.2	73/6
1UZ8	3.2 (-6.1)	12.3 (-1.2)	12.6	+4.9	2.1	44/10
	$5.9(-5.8)$	10.9 (-2.6)	6.2	+3.2	1.6	32/22
1S3K	5.0 (-6.5)	9.1 (-3.2)	6.3	+3.3	1.8	36/17
3TV3	6.7 (-5.6)	43.0 (-1.3)	42.0	+4.3	-	35/0
	22.1 (-5.6)	24.1 (-4.1)	3.7	+1.5	1.8	45/42
${ }^{\text {a }}$ RMSD relative to the crystal structure						
${ }^{\text {c }}$ RMSD of the pose from MD relative to the docked pose before MD						
${ }^{\text {e }}$ MD simula	${ }^{\mathrm{e}}$ Total number of contacts between all atoms in the ligand with atoms on the protein surface.					ace.

Figure S1. Clustering results for the 10 cognate systems, each ranked from most (left) to least (right) stable based on docking score. Clusters that contain an acceptable pose (RMSD $<2 \AA$) are colored in red.

Figure S2 Heavy chain of 10M3(green) superimposed onto 10P3(blue) shows the difference in the conformation of the H 3 loop between the apo and cognate structures.

Average Interaction Energies (Low to High)

Figure S3 Clustering results for apo systems, each ranked from most (left) to least (right) stable based on docking scores. Clusters that contain an acceptable pose (RMSD $<2 \AA$) are colored in red.

Table S2 Ligand RMSD (\AA) values of the top 10 poses after pose clustering, MD simulation, and post-MD rescoring for the cognate systems. Acceptable poses are shown in red. Poses that worsened by 2 Å from their initial position during MD are shown in green.

1M7D			1CLY		
RMSD Before MD (Sorted by Rank)	$\begin{gathered} \text { RMSD } \\ \text { After MD } \end{gathered}$	RMSD After MD (Sorted by Rank)	RMSD Before MD (Sorted by Rank)	$\begin{gathered} \text { RMSD } \\ \text { After MD } \end{gathered}$	RMSD After MD (Sorted by Rank)
0.4 (1)	1.1 (1)	1.1 (1)	0.7 (1)	1.1 (1)	1.1 (1)
2.2 (2)	1.1 (2)	1.1 (2)	6.0 (2)	7.7 (10)	1.1 (2)
7.9 (3)	7.8 (4)	5.7 (3)	5.3 (3)	5.3 (4)	5.7 (3)
6.6 (4)	6.9 (5)	7.8 (4)	3.9 (4)	1.1 (2)	5.3 (4)
7.6 (5)	9.6 (9)	6.9 (5)	7.0 (5)	7.1 (7)	5.5 (5)
8.4 (6)	7.0 (8)	6.9 (6)	7.0 (6)	6.7 (8)	7.2 (6)
7.3 (7)	10.0 (10)	8.9 (7)	6.9 (7)	7.2 (6)	7.1 (7)
6.3 (8)	6.9 (6)	7.0 (8)	6.5 (8)	5.7 (3)	6.7 (8)
5.9 (9)	5.7 (3)	9.6 (9)	6.6 (9)	7.5 (9)	7.5 (9)
8.7 (10)	8.9 (7)	10.0 (10)	5.5 (10)	5.5 (5)	7.7 (10)
1MFA			1MFB		
RMSD Before MD (Sorted by Rank)	$\begin{gathered} \text { RMSD } \\ \text { After MD } \end{gathered}$	RMSD After MD (Sorted by Rank)	RMSD Before MD (Sorted by Rank)	RMSD After MD	RMSD After MD (Sorted by Rank)
0.8 (1)	1.1 (1)	1.1 (1)	3.3 (1)	3.0 (3)	3.2 (1)
5.6 (2)	5.5 (3)	16.9 (2)	0.7 (2)	2.1 (2)	2.1 (2)
6.5 (3)	6.8 (5)	5.5 (3)	4.6 (3)	3.9 (7)	3.0 (3)
6.7 (4)	6.8 (7)	5.1 (4)	3.0 (4)	5.1 (4)	5.1 (4)
14.8 (5)	41.0 (10)	6.8 (5)	2.7 (5)	2.5 (8)	9.4 (5)
5.5 (6)	5.1 (4)	16.5 (6)	2.7 (6)	3.2 (1)	6.3 (6)
14.8 (7)	16.5 (6)	6.8 (7)	12.3 (7)	13.0 (10)	3.9 (7)
13.9 (8)	15.7 (9)	16.8 (8)	5.4 (8)	9.4 (5)	2.5 (8)
17.3 (9)	16.9 (2)	15.7 (9)	14.0 (9)	14.3 (9)	14.3 (9)
16.6 (10)	16.8 (8)	41.0(10)	5.9 (10)	6.3 (6)	13.0 (10)
10 P 3			1UZ8		
RMSD Before MD (Sorted by Rank)	$\begin{gathered} \text { RMSD } \\ \text { After MD } \end{gathered}$	RMSD After MD (Sorted by Rank)	RMSD Before MD (Sorted by Rank)	RMSD After MD	RMSD After MD (Sorted by Rank)
0.9 (1)	0.8 (2)	0.9 (1)	0.7 (1)	0.7 (1)	0.7 (1)
5.2 (2)	6.0 (7)	0.8 (2)	4.7 (2)	5.3 (6)	0.7 (2)
13.4 (3)	13.8 (6)	2.0 (3)	5.4 (3)	4.9 (4)	5.1 (3)
3.3 (4)	4.2 (4)	4.2 (4)	4.5 (4)	5.2 (5)	4.9 (4)
6.0 (5)	9.6 (8)	13.0 (5)	4.9 (5)	5.3 (7)	5.2 (5)

SI

13.0 (6)	13.0 (5)	13.8 (6)	3.2 (6)	12.3 (10)	5.3 (6)
18.7 (7)	22.6 (9)	6.0 (7)	4.5 (7)	5.1 (3)	5.3 (7)
1.6 (8)	0.9 (1)	9.6 (8)	5.9 (8)	10.9 (9)	6.3 (8)
2.4 (9)	2.0 (3)	22.6 (9)	4.9 (9)	6.3 (8)	10.9 (9)
11.4 (10)	15.8 (10)	15.8 (10)	3.7 (10)	0.7 (2)	12.3 (10)
1M7I			3C6S		
		RMSD	RMSD		RMSD
	RMSD	After MD	Before MD	RMSD After	After MD
	After MD	(Sorted by	(Sorted by	MD	(Sorted by
		Rank)	Rank)		Rank)
0.6 (1)	1.8 (1)	1.8 (1)	8.1 (1)	8.5 (3)	2.5 (1)
11.9 (2)	11.8 (8)	4.7 (2)	1.9 (2)	2.5 (1)	2.6 (2)
12.1 (3)	23.9 (10)	6.7 (3)	8.0 (3)	8.5 (5)	8.5 (3)
5.4 (4)	6.7 (3)	7.2 (4)	8.3 (4)	8.4 (6)	6.6 (4)
4.9 (5)	5.8 (7)	10.9 (5)	3.9 (5)	3.9 (7)	8.5 (5)
4.4 (6)	4.7 (2)	12.0 (6)	7.2 (6)	6.6 (4)	8.4 (6)
11.2 (7)	28.9 (9)	5.8 (7)	4.0 (7)	2.6 (2)	3.9 (7)
11.6 (8)	10.9 (5)	11.8 (8)	5.2 (8)	5.1 (9)	5.6 (8)
11.6 (9)	12.0 (6)	28.9 (9)	14.9 (9)	20.2 (10)	5.1 (9)
8.1 (10)	7.2 (4)	23.9 (10)	5.9 (10)	5.6 (8)	20.2 (10)

Table S3. Differences in positions of residues (\AA) in the heavy chain CDR loop regions in the apoand co-complexes.

H1	10M3	1UZ6	1M7D	1M7I	3C5S
26	0.2	0.3	0.5	0.8	1.5
27	0.1	0.4	0.3	0.3	--
28	1.1	0.9	0.3	0.4	--
29	0.0	0.3	0.6	0.5	--
30	0.1	1.1	0.2	0.3	1.8
31	0.1	0.2	0.3	0.4	1.4
32	0.2	1.4	0.3	0.4	5.3
33	0.2	0.3	0.4	0.4	0.5
34	0.2	0.2	0.3	0.3	1.6
35	0.2	0.2	0.3	0.3	0.4
H2	10M3	1UZ6	1M7D	1M7I	3C5S
50	0.5	0.3	0.4	0.5	0.4
51	0.1	0.2	0.8	0.6	0.5
52	0.2	0.3	0.5	0.4	0.9
52A	N/A	0.3	0.5	0.5	--
52B	N/A	N/A	0.9	1.0	--
52C	N/A	N/A	0.3	0.4	--
53	0.4	0.4	1.1	1.1	--
54	0.5	0.3	1.3	1.5	--
55	1.3	0.3	0.4	0.4	--
56	4.5	0.1	0.6	0.4	--
57	0.3	0.3	0.5	0.4	0.5
58	1.6	0.3	0.4	1.2	0.5
H3	$10 \mathrm{M3}$	1UZ6	1M7D	1M7I	3C5S
95	0.5	1.2	0.6	0.5	0.3
96	2.6	0.5	0.5	0.5	0.3
97	5.5	0.5	0.8	0.9	--
98	5.9	1.4	0.9	0.8	--
99	10.1	2.4	0.6	0.6	--
100	7.9	0.5	0.2	0.3	--
100A	3.7	N/A	N/A	N/A	N/A
100B	2.7	N/A	N/A	N/A	N/A
100C	1.2	N/A	N/A	N/A	N/A
100D	0.9	N/A	N/A	N/A	N/A
100E	0.4	N/A	N/A	N/A	N/A
100F	0.2	N/A	N/A	N/A	N/A
101	0.2	0.5	0.4	0.3	0.5

-- Indicates missing residues in the apo sequence N / A Indicates that the insertions do not exist

