Self-Calibration Phenomenon for Near-infrared Clinical Measurements: Theory, Simulation and Experiments

Idit Feder,¹ Hamootal Duadi,¹ Ruchira Chakraborty¹ and Dror Fixler^{1,*}

¹Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel

Supporting Information

Mourant¹ presented a MC simulation, for a higher range of reduced scattering coefficients, that showed path lengths do not depend on the scattering properties of the medium at a distance of $r_{IPL} = 1.7 mm$ from the source (Supporting Information, Figure S1). They used lower wavelengths, which indicate higher reduced scattering coefficients, yielding a lower IPL point than our experiments.

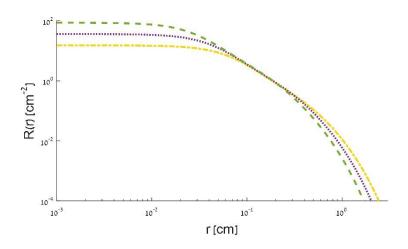


Figure S1: MC simulation of a crossing point, which is indifferent to changes in the scattering property (yellow dash-dot ,magenta dot ,green dash represent μ'_s of $14cm^{-1}$, $21cm^{-1}$, $32cm^{-1}$ respectively)

 Mourant, J. R.; Bigio, I. J.; Jack, D. A.; Johnson, T. M.; Miller, H. D., Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties. *Applied Optics* 1997, 36 (22), 5655-5661.