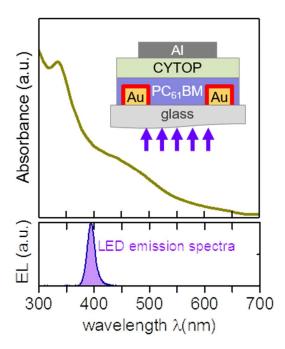
Supporting Information

High Speed Ultraviolet Phototransistors based on an Ambipolar Fullerene Derivative


Wentao Huang¹, Yen-Hung Lin¹, & Thomas D. Anthopoulos^{1,2*}

*Corresponding to: thomas.anthopoulos@kaust.edu.sa

SI Figures

Figure S1. Schematic representation of PFBT application process. (1) Au source and drain contact were thermally evaporated on glass substrate through shadow mask. (2) The whole substrate was immersed into a 1:100 vol.% diluted solution of PFBT in IPA for 1 h. (3) The substrate was then rinsed-off with pure IPA to remove the excess of PFBT. (4) The obtained substrate was eventually dried through a 10-min annealing process at 100 °C in nitrogen.

Figure S2. Absorption spectrum of a PC₆₁BM layer and electroluminescence (EL) spectrum of the UV LED used for optoelectronic characterisation of the devices. Inset: schematic of the TG-BC transistor architecture employed and the geometry of the UV illumination employed (from the bottom).