On the supramolecular polymerization of [5]helicenes. Consequences of self-assembly on configurational stability

Jorge S. Valera Rafael Gómez, and Luis Sánchez*
Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; e-mail: Iusamar@quim.ucm.es

Table of Contents

1.- Supplementary Figures S-2
Concentration-dependent ${ }^{1} \mathrm{H}$ NMR spectra of 1 S-2
VT-UV-Vis spectra of 1 S-2
Concentration-dependent ${ }^{1} \mathrm{H}$ NMR experiments of 2 S-3
VT-UV-Vis spectra of 2 S-4
Solvent denaturation experiments of 2 S-5
HPLC chromatograms of 1 and 2 S-5
CD spectra of the two enantiomers of 2 S-6
AFM images S-6
Time-dependent CD spectra S-7
3. Experimental section S-8
4. Synthetic details and characterization S-9
5. Collection of NMR spectra S-13

1. Supplementary Figures

Figure S1. Concentration-dependent ${ }^{1} \mathrm{H}$ NMR spectra of 1 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz}, 298 \mathrm{~K})$ showing the aromatic, the amide and the methylene linked to the nitrogen atom and to the aromatic backbone protons.

Figure S2. UV-Vis spectra of 1 in MCH at $20^{\circ} \mathrm{C}$ (black line) and $90^{\circ} \mathrm{C}$ (red line) at a concentration of $100 \mu \mathrm{M}$.

Figure S3. Concentration-dependent ${ }^{1} \mathrm{H}$ NMR spectra of 2 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz}, 298 \mathrm{~K})$ showing the aromatic, the amide and the methylene linked to the nitrogen atom and to the aromatic backbone protons.

Figure S4. Partial ${ }^{1} \mathrm{H}$ DOSY NMR ($\Delta=160 \mathrm{~ms}, \mathrm{t}=3 \mathrm{~ms}$) spectra of 2 at different concentrations $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 300 \mathrm{MHz}\right)$.

Figure S5. (a) Chemical structure of [5]helicene 2 depicting with curved arrows of different colors the intramolecular through-space coupling signals. (b) ROESY NMR spectra (CDCI3, $300 \mathrm{MHz}, 20 \times 10^{-3} \mathrm{M}, 293 \mathrm{~K}$) of 2. The dotted coloured lines highlight the intramolecular through-space coupling signals.

Figure S6. (a) VT-UV-Vis spectra of 2 in $\mathrm{MCH}\left(\mathrm{C}_{\mathrm{T}}=10 \mu \mathrm{M}\right.$; cooling rate $=1 \mathrm{Kmin}^{-1}$). (b) Plots of the variation of the absorbance at $\lambda=$ 339 nm against temperature at different concentrations. The red curves represent the fit to the EQ model.

Figure S7. (a) UV-Vis spectra of $\mathbf{2}$ in $\mathrm{MCH} / \mathrm{CHCl}_{3}$ mixtures ($c_{T}=10 \mu \mathrm{M}, 208 \mathrm{~K}$). The black and red lines depict the UV-Vis spectra of 1b in MCH and CHCl_{3}, respectively. (b) Plot of the degree of aggregation (α) versus the molar fraction of the good solvent CHCl_{3}. The red line shows the fitting to the SD model.

Figure S8. HPLC traces of helicenes 1 (a-c) and 2 (d-f) in their racemic (a, d) and enantiomerically enriched forms (b, c, e, f) on a $(R, R)-W h e l k ~ 01$ chiral column (experimental conditions for 1: eluents: toluene/2-propanol mixture ($97 / 3$) as eluent, flow rate: 5 $\mathrm{mL} / \mathrm{min}$; for 2: hexane/2-propanol (80/20) as eluent; flow rate $2,5 \mathrm{~mL} / \mathrm{min}$).

Figure S9. CD spectra of the two M and P enantiomers of 2 in a molecularly dissolved state $\left(\mathrm{CHCl}_{3}, 298 \mathrm{~K}, \sim 1 \times 10^{-5} \mathrm{M}\right)(\mathrm{a})$ and in the aggregated state (MCH, $298 \mathrm{~K}, \sim 1 \times 10-5 \mathrm{M}$) (b).

Figure S10. AFM images of the racemic mixture (a) and the M enantiomer (b) of $2(10 \mu \mathrm{M}, 298 \mathrm{~K}$, mica as surface, \mathbf{z} scale $=10 \mathrm{~nm})$. (c) Height profile (green line in panel (b)) of the rod-like structures formed from the self-assembly of M-2.

Figure S11. CD spectra of $\mathrm{M}-2$ in $\mathrm{CHCl}_{3}(\mathrm{a})$ and $\mathrm{MCH}(\mathrm{b})\left(c_{T}=10 \mathrm{mM} ; \mathrm{T}=283 \mathrm{~K}\right)$ measured at different times upon preparation.

Figure S12. CD spectra of $M-2$ in $\mathrm{CHCl}_{3}(\mathrm{a})$ and $\mathrm{MCH}(\mathrm{b})\left(c_{T}=10 \mathrm{mM} ; \mathrm{T}=328 \mathrm{~K}\right)$. (c) Natural logarithmic plot of the variation of enantiomeric excess of $\mathrm{M}-2$ in CHCl_{3} versus time to derive the racemization constant Krac. $^{\text {. }}$

Figure S13. CD spectra of $P-1$ in $\mathrm{MCH}(\mathrm{a})\left(c_{T}=10 \mathrm{mM}\right.$; $\left.T=328 \mathrm{~K}\right)$. (b) Natural logarithmic plot of the variation of the variation of enantiomeric excess versus time to derive the racemization constant $k_{r a c}$.

3. Experimental section

General. All solvents were dried according to standard procedures. Reagents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right.$), spectrometer at 298 K using partially deuterated solvents as internal standards. Coupling constants (J) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: $s=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet, br $=$ broad. FT-IR spectra were recorded on a Bruker Tensor 27 (ATR device) spectrometer. High resolution mass spectra (HRMS) were recorded on a FTMS Bruker APEX Q IV spectrometer. UV-Vis spectra were registered on a Jasco-V630 spectrophotometer equipped with a Peltier thermoelectric temperature controller. The spectra were recorded in the continuous mode between 220 and 450 nm , with a wavelength increment of 1 nm , a response time of 4 s , and a bandwidth of 1 nm . A 1 cm path length quartz cuvette (Hellma) was used. Thermal experiments were performed at constant heating rates of $1 \mathrm{~K} \mathrm{~min}^{-1}$ in methylcyclohexane. Circular dichroism (CD) measurements were performed on a Jasco-1500 dichrograph equipped with a Peltier thermoelectric temperature controller. The spectra were recorded in the continuous mode between 220 and 450 nm , with a wavelength increment of 1 nm , a response time of 4 s , and a bandwidth of 1 nm . A 1 cm path length quartz cuvette (Hellma) was used. The spectra were recorded in the continuous mode between 350 and 600 nm , with a wavelength increment of 1 nm , a response time of 4 s , and a bandwidth of 1 nm . A 1 cm path length quartz cuvette (Hellma) was used. A 1 cm path length quartz cuvette (Hellma) was used. HPLC experiments were conducted using a (R,R)-Whelk $01(5 / 100)$ chiral column ($25 \mathrm{~cm} \times 10 \mathrm{~mm}$) with toluene/2-propanol mixture ($97 / 3$) for compound 1 and hexane/2propanol (80/20) for compound 2 as eluents. Atomic Force Microscopy was performed on a SPM Nanoscope Illa multimode microscope working on tapping mode with a RTESPA tip (Veeco) at a working frequency of $\sim 235 \mathrm{kHz}$.

Racemization Experiments in solution

The value of the Gibbs activation energy of enantiomerization $\Delta G^{\ddagger}(T)$ for compounds $P-1$ and $M-2$ were obtained by resolution of the corresponding enantiomers in HPLC and by following the decay of the enantioenriched sample dissolved in MCH , for $P-1$, and CHCl_{3} for $M-2$ at a determined temperature $(328 \mathrm{~K})$ over time (t) by monitoring the change in the maximum (332 , for , for $P-1$, and 349 nm for $M-2$) of the circular dichroism spectrum. The value ee corresponds to the maximum at 349 nm at 293 K , and it relates to the enantiopure sample as shown by HPLC. Considering that the racemization process follows a first-order kinetics, the representation of In ($e e_{t} / e e_{0}$) versus t (where $e e_{t}$ corresponds to the CD signal at the maximum at different times) allows to obtain the $k_{r a c}$ as these parameters are related through the equation $\ln \left(e e_{t} / e e_{0}\right)=-k_{\text {ract }}$. The constant $k_{\text {rac }}$ is also used to calculate the half-time of the process according to $t_{1 / 2}=\ln 2 / k_{\text {rac }}$.
The free activation energy $\Delta G^{\ddagger}(328 \mathrm{~K})$ for the racemization is calculated by using the Eyring equation $\Delta G^{\ddagger}(T)=-R T \ln \left(k_{e} h / \kappa k_{B} T\right)$ where k_{e} is the constant of enantiomerization $\left(k_{e}=k_{r a c} / 2\right), R$ is the gas constant $\left(R=8.31441 \mathrm{~J} \mathrm{~K}^{-1}\right)$, h is the Planck constant $(h=$ $6.626176 .10^{-34} \mathrm{Js}$), k_{B} is the Boltzmann constant ($k_{B}=1.380662 .10^{-23} \mathrm{JK}^{-1}$), and κ is the transmission coefficient ($\kappa=0.5$). The transmission coefficient $\kappa=0.5$ in the Eyring equation was used because the enantiomerization process is defined as a reversible first order reaction. ${ }^{1}$

The data derived for $P-1$ are:
$k_{r a c}=(4.3 \pm 0.1) \times 10^{-2} \mathrm{~min}^{-1}$
$t_{1 / 2}=16.0 \pm 0.4 \mathrm{~min}$
$k_{e}=(2.2 \pm 0.1) \times 10^{-2} \mathrm{~min}^{-1}$
$\Delta G^{\ddagger}(328 K)=100 \pm 3 \mathrm{~kJ} \mathrm{~mol}^{-1}=\mathbf{2 4 . 0} \pm \mathbf{0 . 6} \mathbf{~ k c a l ~ m o l}^{-1}$
The data derived for $M-2$ are:
$k_{r a c}=(9.2 \pm 0.7) \times 10^{-2} \mathrm{~min}^{-1}$
$t_{1 / 2}=7.5 \pm 0.6 \mathrm{~min}$
$k_{e}=(4.6 \pm 0.4) \times x 10^{-2} \mathrm{~min}^{-1}$
$\Delta G^{\ddagger}(328 K)=98 \pm 8 \mathrm{~kJ} \mathrm{~mol}^{-1}=\mathbf{2 3} \mathbf{2} \mathbf{2} \mathbf{~ k c a l ~ m o l}^{-1}$
[1] a) G. Schoetz, O. Trapp, V. Schurig, Electrophoresis 2001, 22, 3185-3190. (b) K. J. Laidler, Chemical Kinetics, 3rd ed.; Harper \& Row: New York, 1987.

4. Synthetic details and characterization

Scheme S1. Synthesis of the 5,7,8,10-tetrasubstituted [5]helicenes 1 and 2.

Compounds $4,{ }^{2} \mathbf{8 a}{ }^{3}$ and $\mathbf{8 b}{ }^{4}$ were prepared according to previously reported synthetic procedures and showed identical spectroscopic properties than those reported therein.
[1] a) T. Ooi, M. Kameda and K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139. b) S. Goretta, C. Tasciotti, S. Mathieu, M. Smet, W. Maes, Y. M. Chabre, W. Dehaen, R. Giasson, J. M. Raimundo, C. R. Henry, C. Barth, and M. Gingras, Org.Lett. 2009, $11,3846$.
[2] F. García, J. Buendía, S. Ghosh, A. Ajayaghosh and L. Sánchez, Chem. Comm. 2013, 49, 9278.
[3] E. E. Greciano and L. Sánchez, Chem. Eur. J. 2016, 22, 13724.

Synthesis of (\pm)-7,8-di(1-decynyl)[5]helicene.

Compound $4(290 \mathrm{mg}, 0.67 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(70 \mathrm{mg}, 9.6 \times 10^{-2} \mathrm{mmol}\right)$ and $\mathrm{Cul}\left(10 \mathrm{mg}, 4.8 \times 10^{-2} \mathrm{mmol}\right)$ are dissolved in anhydrous THF (18 mL) under argon atmosphere and subjected to vacuum/argon cycles. Subsequently, 2 mL of a 1 M solution of tetrabutylammonium fluoride in THF (2 mmol) are added and the resulting mixture is subjected to vacuum/argon cycles. After that, 1decyne ($0.29 \mathrm{~mL}, 1.6 \mathrm{mmol}$) is charged and the solution is stirred under reflux overnight. After 24 hours, a new amount of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}), \mathrm{Cul}(10 \mathrm{mg})$ and 1 -decyne $(0.15 \mathrm{~mL})$ is added and the mixture is stirred and refluxed overnight. The solvent is evaporated and the residue is redissolved in CHCl_{3} and washed with 1 M aqueous HCl , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer is dried with MgSO_{4}, and further filtration and removal of the solvent affords a residue which is subjected to a silica gel chromatography column (hexane as eluent) obtaining 5 as a pale yellow solid in a 62% yield ($230 \mathrm{mg}, 0.42 \mathrm{mmol}$). ${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ~ \delta ~}$ (ppm): 8.49 (d, ${ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$), 8.33 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {e orf }}$), 7.97 ($\mathrm{d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {fore e }}$), $7,94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right) 7.51$ (ddd, ${ }^{3} J=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$ or c $), 7.25$ (ddd, ${ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$ or b), $2.71\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right.$, $\left.4 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.86-1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 1.65-1.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 1.41-1.33\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{j}-\mathrm{m}}\right), 0.91\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{n}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{CDCl}, 75$ $\mathrm{MHz}) \delta(\mathrm{ppm}): 132.7,131.8,130.7,129.5,128.0,127.8,126.6,126.5,124.6,124.6,124.1,100.4,78.7,32.1,29.5,29.5,29.3,29.2$, 22.9, 20.3, 14.3. FTIR $v\left(\mathrm{~cm}^{-1}\right): 2926,2856,2222,1514,1461,1431,1384,1343,1262,817,751,664$. HRMS m/z: $\mathrm{C}_{42} \mathrm{H}_{46}[\mathrm{M}]^{+}$ calculated 550.3600 ; found 550.3616 .

Synthesis of compound (\pm)-7,8-didecyl[5]helicene.

A solution of $5(240 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ is bubbled with argon for 10 minutes in absence of light. After that, $10 \% \mathrm{Pd} / \mathrm{C}(14 \mathrm{mg}, 0.13 \mathrm{mmol})$ is added, and hydrogen is passed through the solution during 4 hours. After the removal of the catalyst with celite and subsequent elimination of the solvent, the residue is purified with a silica gel column chromatography (hexane as eluent), affording 6 as a light yellow solid in a 60% yield ($140 \mathrm{mg}, 0.25 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4,2\right)}$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$), $8.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {e orf }}\right.$), $7.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {for e }}\right), 7.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 7.47\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$), 7.21 (ddd, $\left.{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.22\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{n}}\right)$, $1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 1.51-1.25\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}_{\mathrm{j}-\mathrm{o}}\right), 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right) .{ }^{13} \mathrm{C}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 135.1,131.6,131.3$, $130.9,129.9,127.4,127.1,126.2,125.9,124.4,122.4,32.1,31.5,30.6,29.9,29.8,29.7,29.6,29.5,22.9,14.3$. FTIR v $\left(\mathrm{cm}^{-1}\right): 2923$, 2853, 1513, 1461, 1376, 1249, 1124, 808, 750. HRMS m/z: $\mathrm{C}_{42} \mathrm{H}_{54}[\mathrm{M}]^{+}$calculated 558.4226; found 558.4240.

Synthesis of compound (\pm)-5,10-dibromo-7,8-didecyl[5]helicene.

A solution of $6(0.13 \mathrm{~g}, 0.31 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ is cooled down to $-78^{\circ} \mathrm{C}$ and a solution of bromine ($36 \mu \mathrm{~L}$, $0.69 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ is added dropwise. After 10 minutes, the mixture is allowed to reach room temperature and is stirred overnight. The resulting organic phase is washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and dried with MgSO_{4}. Further filtration and removal of the solvent affords a residue that is purified by silica gel column chromatography (hexane as eluent) giving 7 as a waxy pale yellow solid in a 77% yield ($171 \mathrm{mg}, 0.24 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 8.29\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right)$, $8.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 7.49$ (ddd, ${ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$), $7.15\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 3.07\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 1.50-1.24\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{H}_{\mathrm{i}-\mathrm{n}}\right), 0.90\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right) .{ }^{13} \mathrm{C}-$ RMN ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\delta(\mathrm{ppm}): 135.2,132.2,131.5,130.0,129.9,127.2,126.9,126.3,125.8,125.5,122.3,32.1,31.4,30.4,29.9$, 29.8, 29.6, 29.5, 29.4, 22.9, 14.3. FTIR v (cm^{-1}): 2924, 2853, 1592, 1462, 1329, 1210, 865, 759. HRMS m/z: $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{Br}_{2}[\mathrm{M}]^{+}$calculated 716.2436; found 716.2466.

Synthesis of $(\pm)-4,4^{\prime}$-(7,8-didecyl[5]helicene-5,10-diyl)bis(N-decylbenzamide).

To a deoxygenated solution of $\mathbf{7}(80 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathbf{8 a}(86 \mathrm{mg}, 0.28 \mathrm{mmol})$ in tetrahydrofuran $(24 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13$ $\mathrm{mg}, 1.12 \times 10^{-2} \mathrm{mmol}$), and an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(230 \mathrm{mg}, 1.68 \mathrm{mmol}$ in 4 mL of water) are added and the resulting mixture is deoxygenated again. The reaction is refluxed for 4 hours, and the crude is extracted with chloroform. The organic layer is washed with 1 M aqueous $\mathrm{HCl}, \mathrm{NH}_{4} \mathrm{Cl}$ and brine. After drying and removal of the solvent, the crude is purified by silica gel column chromatography (gradient from chloroform to chloroform/methanol 10:0.1). The product obtained is further purified by precipitation in methanol, affording 1 as a yellow solid in a 34% yield ($40 \mathrm{mg}, 0.03 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$), $8.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 8.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{q}}\right), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 7.80\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{p}}\right), 7.40\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.3\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 7.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 6.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{r}}\right), 3.55(\mathrm{~m}, 4 \mathrm{H}$,
 135.6, 134.0, 131.9, 130.5, 130.3, 130.0, 127.2, 126.2, 125.8, 125.7, 124.7, 123.2, 40.4, 32.0, 31.5, 30.4, 29.9, 29.8, 29.7, 29.6, 29.5, 29.5, 29.4, 27.2, 22.8, 14.3. FTIR v (cm^{-1}): 3322, 2956, 2923, 2853, 1635, 1546, 1503, 1461, 1309, 1262, 1095, 1020, 856, 801, 765. HRMS m/z: $\mathrm{C}_{76} \mathrm{H}_{104} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}$calculated 1076.8098; found 1076.8046.

Synthesis of $\quad \pm$)-N, $N^{-}-((((4,4 '-(7,8$-didecyl[5]helicene-5,10-diyl)bis(benzoyl))bis-(azanediyl))bis(ethane-2,1-diyl))bis(3,4,5tris(dodecyloxy)benzamide

To a deoxygenated solution of $7(50 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathbf{8 b}(150 \mathrm{mg}, 0.17 \mathrm{mmol})$ in tetrahydrofuran $(15 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8$ $\left.\mathrm{mg}, 7.00 \times 10^{-3} \mathrm{mmol}\right)$, and an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.05 \mathrm{mmol}$ in 3 mL of water $)$ are added and the resulting mixture is deoxygenated again. The reaction is refluxed for 4 hours, and the crude is extracted with chloroform. The organic layer is washed with 1 M aqueous $\mathrm{HCl}, \mathrm{NH}_{4} \mathrm{Cl}$ and brine. After drying and removal of the solvent, the crude is purified by silica gel column chromatography (gradient from chloroform to chloroform/methanol 10:0.1) and the product obtained is precipitated in methanol, affording 2 as a dark yellow solid in a 44% yield ($70 \mathrm{mg}, 0.03 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 8.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{H}_{\mathrm{a}}\right), 8.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{q}}\right), 7.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 7.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 7.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right), 7.81-7.70\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{r}}\right.$ oru)), 7.61-7.69 (br, 2H, Hu or r), 7.36 (dd, ${ }^{3} J=8.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$), $7.20\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 7.14\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{v}}\right), 4.3$
 $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 168.9,168.8,153.2,144.9,141.2,137.7,135.5,132.9,131.9,130.5,130.4,130.4,129.9,128.8,127.6$, $126.2,126.2,125.8,125.5,124.7,123.2,105.7,73.6,69.3,43.6,41.4,41.1,32.1,32.0,31.3,30.5,30.4,29.9,29.9,29.8,29.8,29.7$, $29.6,29.5,29.5,26.3,26.2,22.8,22.8,14.3,14.2$. FTIR v ($\left.\mathrm{cm}^{-1}\right): 3307,3020,2923,2853,1631,1581,1544,1498,1467,1344,1304$, $1265,1215,1115,858,752,668 . \operatorname{HRMS} \mathrm{m} / \mathrm{z}: \mathrm{C}_{146} \mathrm{H}_{226} \mathrm{~N}_{4} \mathrm{O}_{10}[\mathrm{M}+\mathrm{Na}]^{+}$calculated 2218.7197; found 2218.7236.

Collection of NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of compound $(\pm)-5\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectrum of compound $(\pm)-5\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $(\pm) \mathbf{- 6}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $(\pm) \mathbf{- 6}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $(\pm)-7\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $(\pm) \mathbf{- 1}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectrum of compound ($\mathbf{\pm}$)-2 $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

