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The Biological Scope for 
Toxicology is Necessarily Broad

Goh, et al PNAS (2007)
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Traditional Studies Attempt to Cover 
Range of Potential Adverse Responses

Goldberg and Frazier (1989)
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Current System for Chemical Safety 
Testing Has Not Kept Pace

Judson, et al EHP (2010)
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Significant Economic and Animal 
Costs Associated with Testing

Toxicity Study
Number of 
Animals Approx. Cost

Skin sensitization (in vivo) 20 $7,000.00
Acute toxicity by oral route 20 $2,500.00
Repeated dose toxicty (one species, male and female (28 d), most 
appropriate route) (OECD407) 40 $100,000.00
In vivo somatic cell genotoxicity study 80 $35,000.00
Sub-chronic repeated dose toxicity, most appropriate route (90 d) (OECD 
408) 80 $220,000.00
Pre-natal developmental toxicity, one species, most appropriate route 
(OECD 414) 80 $150,000.00
Chronic tox/Carcinogenicity study combined (> 12 month) 280 $1,500,000.00
Two generation reproductive toxicity, one species, male, female (OECD 
416) 360* $500,000.00
Developmental neurotoxicity (OECD 426) 80* $750,000.00
*Offspring not counted
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Multiple Federal Efforts Have 
Begun to Address the Data Gap
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Current Coverage of Biological 
Space is Less Than Optimal

ToxCast Gene Coverage ToxCast Pathway Coverage*

ToxCast

Not in ToxCast
*At least one gene from 
pathway represented
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Incorporating a Broad 
Biological Screening Platform

Broad Primary Screen for Bioactivity/MOA

Secondary Confirmation 
Screen

Tertiary Screen to Discriminate 
Perturbation from Adverse 

Effect
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Requirements and Potential 
Platforms for HT Transcriptomics

• Measure or infer transcriptional changes across the whole 
genome (or very close to it)

• Compatible with 96- and 384-well plate formats (maybe 
1536?) and laboratory automation

• Work directly with cell lysates (no separate RNA purification)
• Compatible with multiple cell types and culture conditions
• Low levels of technical variance and robust correlation with 

orthogonal measures of gene expression changes
• Low cost ($20 - $40 per sample or less)

• Low coverage whole transcriptome RNA-seq (3 – 5 million 
mapped reads)

• Targeted RNA-seq (e.g., TempO-seq, TruSeq, SureSelect)
• Microarrays (e.g., Genechip HT)
• Bead-based (e.g., L1000)

Requirements

Potential Platforms
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How Would a HT Transcriptomic
Platform be Deployed?

Tier 0High-Throughput 
Transcriptomic

Assay

AOP/MOA

Concentration
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Concentration
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e

Cell Type #2

…
Cell Type #3

Lamb et al. Science (2006) Broad CMAPdb: 7,000 profiles; 1,309 compounds
NIH LINCs CMAPdb:  9,000 shRNAs, 3,000 over 
expression ORFs, and 4,000 compounds in 20 
cell types/lines (cell lines and primary cells)
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How Would a HT Transcriptomic
Platform be Deployed?

Tier 1
Select In Vitro
HTS Assays

Non-Selective 
Interacting Chemicals

Tier 0High-Throughput 
Transcriptomic

Assay

1°CMAP1°CMAP

Dose

Selective Interacting 
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Selective

Thomas et al., Tox Sci 2013
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Estimate Point-of-
Departure Based on AOP

Estimate Point-of-Departure 
Based on Biological Activity

Confirmation
Screen

Discriminate Perturbation 
from Adversity
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Approaches for Estimating a 
Transcriptomic Point of Departure

DR PathwayBMDExpress

http://sourceforge.net/projects/bmdexpress/

http://comptox.unc.edu/DRPathway.php
Yang et al., BMC Genomics, 2007
Thomas et al., Toxicol Sci., 2007
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Correlation of In Vivo Apical and 
Transcriptional Points of Departure
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Thomas et al., Toxicol Sci, 2013
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What About In Vitro
Transcriptional Responses?

0.1

1

10

100

1000

0.1 1 10 100 1000

Lo
w

es
t A

pi
ca

l B
M

D
 (m

g/
kg

/d
)

Lowest Transcriptional BMD (mg/kg/d)

 

   

   
  

   
  

1

10

100

1000

1 10 100 1000

Lo
w

es
t A

pi
ca

l B
M

D
 (m

g/
kg

/d
)

Lowest Transcriptional BMD (mg/kg/d)

 

   

    
 

    
 

1

10

100

1000

1 10 100 1000

Lo
w

es
t A

pi
ca

l B
M

D
 (m

g/
kg

/d
)

Lowest Transcriptional BMD (mg/kg/d)

 

   

    
 

    
 

1

10

100

1000

1 10 100 1000

Lo
w

es
t A

pi
ca

l B
M

D
 (m

g/
kg

/d
)

Lowest Transcriptional BMD (mg/kg/d)

 

   

   
  

   
  

In Vivo 
Transcriptional 
BMD

4 Weeks 13 Weeks

5 Days 2 Weeks

In Vitro 
Transcriptional 
BMD (12 h)

In Vitro 
Transcriptional 
BMD (5 d)
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Beginning the Search for a 
Platform

L1000

HepG2
Ishikawa
MCF7
HepaRG

34 chemicals
3 concentrations

6 Replicates
@ 6 hours

Affymetrix L1000

Collaboration with Proctor & Gamble (G. Daston and J. Naciff)
and Hamner Institutes (B. Wetmore and M. Black)

Visit Posters:   M. Martin et al., Poster #434; Wednesday afternoon
M. Black et al., Poster #316; Thursday morning

A549
HT29
A673
MCF7
HepaRG

12 chemicals
(6 conc)

10 chemicals
(9 conc)

3 Replicates
@ 6 and 24 hours L1000
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Beginning the Search for a 
Platform

L1000

HepG2
Ishikawa
MCF7
HepaRG

34 chemicals
3 concentrations

6 Replicates
@ 6 hours

Affymetrix L1000

A549
HT29
A673
MCF7
HepaRG

12 chemicals
(6 conc)

10 chemicals
(9 conc)

3 Replicates
@ 6 and 24 hours L1000

Targeted RNA-seq

Low Coverage RNA-seq

MCF7
…

7 chemicals
6 concentration

3 Replicates
@ 6 hours

Targeted RNA-seq

MCF7
…

7 chemicals
6 concentration

3 Replicates
@ 6 hours Low Coverage 

RNA-seq
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Beginning the Search for the 
Cell Types/Lines

1 Cell 
Type?

3 Cell Types?X Cell Types

Primary Cells?

Or

Cell Lines?

Or

Both?

$$$
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Exploring Cell Line 
Requirements

Primary Cell Atlas (302 cell types) NCI-60

(GSE49910)
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Scientific Rationale for Cell 
Type/Line Selection

See poster by N. Sipes et al., Poster #349; Thursday morning

Biologically-Driven? Data-Driven?
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Summary

• High-throughput transcriptomics has the potential to 
fundamentally change the way we evaluate chemicals for 
safety

• Greater coverage of biological space
• Reduced cost
• Ability to leverage large existing databases of gene expression data
• Fits logically in a tiered testing approach

• Allows estimates of points-of-departure for both selective and non-
selective chemicals

• Technical evaluations of multiple platforms are underway
• Cell type/line selection challenges remain
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