A Knowledge-Informed Chemotype Approach to Mining the ToxCast/Tox21 Chemical-Data Landscape Ann Richard U.S. EPA, National Center for Computational Toxicology Office of Research and Development 9th World Congress on Alternatives and Animal Use in the Life Sciences Prague, Czech Republic Aug 24-28, 2014 ### ToxCast & Tox21 Inventories: Chemicals, Data & Timelines | Set | Chemicals | Assays | Endpoints | Completion | Available | | |-------------------|-----------|--------|-----------|---------------|-----------|--| | ToxCast Phase I | 293 | ~600 | ~700 | 2011 | Now | | | ToxCast Phase II | 767 | ~600 | ~700 | 03/2013 | Now | | | ToxCast E1K | 800 | ~50 | ~120 | 03/2013 | Now | | | Tox21 | ~9000 | ~80 | ~150 | Ongoing | Ongoing | | | ToxCast Phase III | ~900 | ~300 | ~300 | Just starting | 2014-2015 | | ### **Toxicity Prediction Challenge:** Bringing all knowledge & data to bear on problem ### Chemical "probes" of biological activity - Use existing knowledge & SAR to mine HTS data - Use HTS data to inform & refine SAR models & approaches - Use all of these data to improve ability to model toxicity ## Chemical Elements to Data Integration: Chemical representations → Uses ### Structure vs. Bioactivity Similarity #### Structure similarity: - implies biological similarity - limited to local chemistry - subject to "activity cliffs" #### HTS bioactivity similarity: - implies mechanistic similarity - can link diverse local chemistries to common biological activities - noisy data, difficult to extract clear signal ### Similarity – in the "eye" of the beholder #### Public Resources: Chemotyper & ToxPrint Chemotypes ### Chemotype (CT) inventory profiling {CT} profile is a CT fingerprint provide a common structural basis for Inventory profiling & comparison ### Chemotype inventory profiling # Concept of Enrichment: Focus & Amplify to See ## Chemotype Enrichment, e.g. Flame Retardant (FR) Use Category 42 FRs amenable to HTS included in ToxCast Ph3 & Tox21 | 3296-90-0 | 2,2-Bis(bromomethyl)-1,3-propanediol | | { U | | | |---|---|--|---|--|--| | 115-28-6 | Chlorendic acid | | | | | | 2921-88-2 | Chlorpyrifos | 126-72-7 | Tris(2,3-dibromopropyl) phosphate | | | | 2385-85-5 | Mirex | 78-51-3 | Tris(2-butoxyethyl) phosphate | | | | 115-96-8 | Tris(2-chloroethyl) phosphate | 79-95-8 | 2,2',6,6'-Tetrachlorobisphenol A | | | | 78-42-2 | Tris(2-ethylhexyl) phosphate | 118-79-6 | 2,4,6-Tribromophenol | | | | 115-86-6 | Triphenyl phosphate | 56803-37-3 | tert-Butylphenyl diphenyl phosphate | | | | 126-73-8 | Tributyl phospha | | | | | | 79-94-7 | 3,3',5,5'-Tetrabro Are there enr | iched c | nemotypes 🗠 | | | | 13674-87-8 | Tris(1.3-dichloro | | | | | | 1163-19-5 | Decabromodiph Within this FR | ? subse | t relative to | | | | 19660-16-3 | 2,3-Dibromoprog | · Odboo | t Totativo to | | | | 563-04-2 | Tri-m-cresyl pho ToxCast & To | v212 | | | | | | Phosphonic acid TOXCAST & TO | /AZ I : | | | | | 20120-33-6 | dimethyl ester | 150/4-84-5 | iris(z-cnioroisopropyi)pnospnate | | | | | Discontrol business who subtes | 25155-23-1 | TXP | | | | 868-85-9 | Dimethyl hydrogen phosphite | | 2-Bromopropionic acid | | | | | Dimethyl methylphosphonate | 598-72-1 | 2-Bromopropionic acid | | | | 756-79-6 | | 598-72-1
3194-55-6 | 2-Bromopropionic acid
1,2,5,6,9,10-Hexabromocyclododecane | | | | 756-79-6
124-64-1 | Dimethyl methylphosphonate Tetrakis(hydroxymethyl)phosphonium chloride | | | | | | 756-79-6
124-64-1
55566-30-8 | Dimethyl methylphosphonate | 3194-55-6 | 1,2,5,6,9,10-Hexabromocyclododecane | | | | 868-85-9
756-79-6
124-64-1
55566-30-8
1330-78-5
512-56-1 | Dimethyl methylphosphonate Tetrakis(hydroxymethyl)phosphonium chloride Tetrakis(hydroxymethyl)phosphonium sulfate | 3194-55-6
6145-73-9 | 1,2,5,6,9,10-Hexabromocyclododecane Tris(2-chloropropyl) phosphate | | | | 756-79-6
124-64-1
55566-30-8
1330-78-5 | Dimethyl methylphosphonate Tetrakis(hydroxymethyl)phosphonium chloride Tetrakis(hydroxymethyl)phosphonium sulfate Tricresyl phosphate | 3194-55-6
6145-73-9
26040-51-7
68937-41-7 | 1,2,5,6,9,10-Hexabromocyclododecane Tris(2-chloropropyl) phosphate Bis(2-ethylhexyl) tetrabromophthalate | | | | 756-79-6
124-64-1
55566-30-8
1330-78-5 | Dimethyl methylphosphonate Tetrakis(hydroxymethyl)phosphonium chloride Tetrakis(hydroxymethyl)phosphonium sulfate Tricresyl phosphate | 3194-55-6
6145-73-9
26040-51-7 | 1,2,5,6,9,10-Hexabromocyclododecane Tris(2-chloropropyl) phosphate Bis(2-ethylhexyl) tetrabromophthalate Phenol, isopropylated, phosphate (3:1) | | | | 756-79-6
124-64-1
55566-30-8
1330-78-5 | Dimethyl methylphosphonate Tetrakis(hydroxymethyl)phosphonium chloride Tetrakis(hydroxymethyl)phosphonium sulfate Tricresyl phosphate | 3194-55-6
6145-73-9
26040-51-7
68937-41-7 | 1,2,5,6,9,10-Hexabromocyclododecane Tris(2-chloropropyl) phosphate Bis(2-ethylhexyl) tetrabromophthalate Phenol, isopropylated, phosphate (3:1) Phosphonic acid, [[bis(2-hydroxyethyl)amino]methyl]-, | | | ## Chemotype Enrichment, e.g. Flame Retardant (FR) Use Category www.chemotyper.org #### 14 Tox21 Chemotype Analogs of Chlorendic Acid ## Chemotype-Assay Enrichments {CT-Assay}: Mining the data Use FR-chemotypes to explore possible ToxCast assay associations relevant to this dataset ### Preliminary Results: {CT-Assay}_{ToxCast-FR} | Assay | FR Chemotype (CT) | Odds | # CT | # CT | # assay | Total | |-----------------------------------|--|-------|------|-------|----------|-------| | | | Ratio | TP | total | positive | cmpds | | ATG_RARg_TRANS | bond:CX_halide_alkyl-X_dihalo_(1_2-) | 6 | 8 | 46 | 71 | 1857 | | ATG_RARa_TRANS | bond:CX_halide_alkyl-X_dihalo_(1_2-) | 5 | 8 | 46 | 77 | 1857 | | ATG_RARg_TRANS | bond:CX_halide_alkyl-X_dihalo_(1_3) | 8 | 9 | 40 | 71 | 1857 | | ATG_RARg_TRANS | bond:CX_halide_alkyl-X_trihalo_(1_2_3-) | 9 | 8 | 34 | 71 | 1857 | | ATG_RARa_TRANS | bond:CX_halide_alkyl-X_trihalo_(1_2_3-) | 5 | 6 | 34 | 77 | 1857 | | ATG_RXRb_TRANS | chain:alkaneBranch_isooctyl_hexyl_2-methyl | 6 | 8 | 17 | 261 | 1857 | | Tox21_TR_LUC_GH3_Antagonist | bond:CX_halide_alkyl-X_bicyclo[2_2_1]heptene | 18 | 6 | 10 | 151 | 1858 | | Tox21_MitochondrialToxicity_ratio | bond:CX_halide_alkenyl-X_dihalo_(1_2-) | 10 | 12 | 17 | 385 | 1858 | | Tox21_MitochondrialToxicity_ratio | bond:CX_halide_alkyl-X_bicyclo[2_2_1]heptene | 35 | 9 | 10 | 385 | 1858 | | Tox21_MitochondrialToxicity_ratio | bond:CX_halide_alkyl-X_tertiary | 8 | 10 | 15 | 385 | 1858 | Significant {CT-Assay}_{ToxCast-FR} associations potentially related to developmental outcomes ### Chemotype-Activity Enrichments Create {CT-Activity} profiles for any biological activity subset to focus investigations into local CT domains and enhance HTS or structure-activity signal ### Tox21 Mitochondrial Membrane Potential (MMP) Disruption Assay Study OBJECTIVES: To identify individual chemicals and general structural features associated with the decrease of mitochondrial membrane potential (MMP) in HepG2 cells. - 913/8300 MMP "actives" - Precompute 651 structural similarity clusters for Tox21 Inventory using ChemAxon proprietary fingerprints - 76 of 651 clusters significantly enriched for actives - representative features extracted from active clusters by visual inspection (http://www.ncbi.nlm.nih.gov/pcsubstance; search term "tox21"). Profiling of the Tox21 Chemical Collection for Mitochondrial Function I. Compounds that Decrease Mitochondrial Membrane Potential Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice R, Simeonov A, Austin CP, Xia M, (Submitted to EHP) ### Tox21 Mitochondrial Membrane Potential (MMP) Disruption Assay | 1 (| Compute (CT) | | | | |------|--|----|------|--| | 1. (| 1. Compute {CT} _{Tox21-MMP} | | | | | | chain:aromaticAlkane_Ph-C6 | | | | | | bond:CX_halide_alkenyl-X_dihalo_(1_2-) | | | | | | ring:hetero_[6_6]_O_benzopyrone_(1_4-) | | | | | | ring:fused_PAH_phenanthrene | | | | | | bond:metal_group_III_other_Sn_organo | | | | | | bond:P=O_phosphate_thioate | | | | | | bond:metal_group_III_other_Sn_gener | ic | 13.1 | | | | bond:COH_alcohol_aromatic_phenol | | 10.0 | | Most significantly enriched CTs in MMP active subset Which Tox21 & ToxCast assays are enriched w/ positives in these {CT} subsets? 2. Compute {CT-Assay}_{ToxCast-MMP} | ToxCast/Tox21 Assays | {СТ}ММР | OR I | #TP (CT | # CT | # Assay | Total # | |---------------------------------------|--|------|----------|----------|----------|---------| | TOXCASI/ TOXZI ASSAYS | | | & Assay) | Positive | positive | Cmpds | | APR_CellLoss_72h_dn | bond:C(=O)N_carbamate_dithio | 8 | 8 | 8 | 305 | 958 | | ATG_PXRE_CIS | bond:CX_halide_aromatic- | ∞ | 13 | 13 | 708 | 1857 | | | X_ether_aromatic_(Ph-O-Ph)_generic | 8 | | | | | | ATG_NRF2_ARE_CIS | bond:metal_group_III_other_Sn_generic | 8 | 8 | 8 | 635 | 1857 | | NVS_GPCR_hORL1 | bond:C(=O)N_carbamate_dithio | 94.6 | 7 | 9 | 45 | 1067 | | Tox21_ERa_BLA_Agonist_ratio | ring:hetero_[6_6]_O_benzopyrone_(1_4-) | 67.7 | 9 | 10 | 227 | 1858 | | ACEA_T47D_80hr_Positive | ring:hetero_[6_6]_O_benzopyrone_(1_4-) | 61.7 | 9 | 10 | 240 | 1815 | | NVS_ENZ_rCOMT | bond:COH_alcohol_aromatic_phenol | 50.4 | 11 | 115 | 13 | 1059 | | Tox21_PPARg_BLA_Agonist_ratio | bond:metal_group_III_other_Sn_generic | 50.0 | 6 | 8 | 111 | 1858 | | OT_ER_ERaERb_1440 | chain:aromaticAlkane_Ph-C6 | 43.7 | 9 | 11 | 181 | 1846 | | Tox21_AhR | bond:P=O_phosphate_thioate | 43.5 | 12 | 14 | 237 | 1858 | | Tox21_MitochondrialToxicity_viability | bond:metal_group_III_other_Sn_generic | 43.4 | 6 | 8 | 126 | 1858 | | APR_p53Act_24h_up | bond:C(=O)N_carbamate_dithio | 36.8 | 7 | 8 | 160 | 958 | | Tox21_MitochondrialToxicity_ratio | ring:hetero_[6_6]_O_benzopyrone_(1_4-) | 35.4 | 9 | 10 | 385 | 1858 | | OT_ER_ERaERb_0480 | chain:aromaticAlkane_Ph-C6 | 35.4 | 9 | 11 | 218 | 1853 | | Tox21_AhR | ring:hetero_[6_6]_O_benzopyrone_(1_4-) | 28.4 | 8 | 10 | 237 | 1858 | ### Chemotype Activity Profiling: e.g. Modeling *in vivo* activity subsets *Altamira beta version of ToxPrint Chemotypes ToxCast Phase I (291 total) Rat Carcinogenicity Study using ToxRefDB & Meteor:Derek workflow, *Volarath et al.* National Center for Computational Toxicology # Chemotype Activity Profiling: e.g. Data mining & QSAR models ## Building a public chemotype {CT} "knowledge- base" - 3. Compute relative {CT} enrichments for chemical sets of interest - Use categories (exposure), e.g. Flame Retardants - Activity subsets - Metabolically activated toxicants - Assay-assay associations to inform pathways 2. Precompute CT- Assay enrichments for data inventories of interest $\{CT-Assay\}_{ToxCast,Tox21}$ {CI}_{ToxCast} $\{CT\}_{Tox21}$ CT profiles for chemical inventories of interest 1. Precompute ToxCast (1860) Tox21 (8300) ### Building a public chemotype "knowledge- base" ### Acknowledgements: - → EPA NCCT ToxCast Team (K. Crofton, R. Thomas et al) Chris Grulke (DSSTox, Chemotypes) Richard Judson, Keith Houck (ToxCast) Matt Martin (ToxRefDB) - Tox21 Collaborative Team MMP study Ruili Huang, Menghang Xia NCATS - Flame Retardants Bhavesh Ahir, Tom Knudsen, Ray Tice (NTP), Nicole Kleinstrauer - External Collaborators ToxPrint Chemotypes Molecular Networks: Chihae Yang, Aleksey Tarkhov, Christof Schwab Altamira: Jim Rathman U.S. FDA: Kirk Arvidson, Patra Volarath This work was reviewed by EPA and approved for publication but does not necessarily reflect official Agency policy.