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Following the notations similar to the main texts, we have a total number of  individuals in the study population, enrolled from  families with  members from the -th family. The family-based genetic random filed (FGRF) method uses a conditional auto-regressive model. The matrix form the model is given by Eq. (3) in the main texts:

where  is the phenotype vector of all individuals from all families in a sequential order; ;  is a  block diagonal matrix in which the -th block is a   matrix with the  element as ; ;  is a  matrix for pairwise genetic similarities among  individuals.  
Modeling Within-family Correlation
In Eq. (A1),  is a matrix, each element of which is proportional to the correlation between the phenotypes of two individuals (e.g. and ). We further assume the phenotypic correlation among family members can be attributed to a mixture of components through the following decomposition:  
;
where  is a block matrix in which the -th block is a   matrix with the  element as the kinship coefficient between the -th and the -th members of family ;  and  are also block matrix representing phenotypic correlation due to shared environmental factors among family members, where the -th block of   is a   matrix with all elements as 1, featuring a compound symmetric structure, and the -th block of   is a   matrix with the  element as 1 for parent-offspring pairs and as 0 otherwise. It is worthwhile to note that that the generalized estimating equations (GEE) were used for statistical inference, and  is a working correlation matrix partially robust to its choice in terms of type-I error control.  The statistical inference asymptotically remains valid even when the working correlation matrix is incorrectly specified. 
Estimation of Nuisance Parameters  and  
The estimating equations with respect to  and  are:
   
where  equals  for quantitative phenotypes and  for binary phenotypes. The estimators  and  are calculated iteratively. Given initial values of , we estimate  by the Fisher’s Scoring Algorithm; given the estimated , we update  by solving linear equations , . The iteration stops when convergence is reached. 
Asymptotic Distribution of score statistic  for the FGRF-O
In this section, we derive statistical inference for the FGRF-O modeled by Eq. (A1). Let  be the  matrix for -locus genotypes of  individuals, and the minor allele frequency of each variant was centered at 0. We further denote ,  and . It follows that the score statistic 

To derive the asymptotic distribution of the above test statistic, we write out the first order Taylor expansion of :

We further denote as in Eq. (A3) and . The first order Taylor expansion of  is 

 Plugging the Eq. (A5) to Eq. (A4), 

It is easy to see that   Therefore


It follows that 

where ,  and . The null distribution of  is given by the property of quadratic form. 

where the s are i.i.d. Chi-square distributions with degree of freedom one; s are the eigen values of   
Asymptotic Distribution of score statistic  for the FGRF-W and  for the FGRF-B
In this section, we derive statistical inference for the FGRF-W and the FGRF-B modeled by Eq. (8) of the main text. Similar to the above section, we define score functions for within-family and between-family summary statistics:

Following the same Taylor expansion steps in Eq. (A4) and Eq. (A5), we have

We further denote


It then follows:

For the FGRF-W

Therefore, 

where ,  and .
For the FGRF-B,
We denote  as the  genotype matrix. Without loss of generality, we further assume the minor allele frequency of each variant is centered at 0 within each family (See Eq. (7) of the main text). The between-family similarity matrix  = , where . It follows:

where c is a constant. By the result derived above,

where ,  and . The null distribution of  is given by the property of quadratic form. 

where the s are i.i.d. Chi-square distributions with degree of freedom one; s are the eigen-values of    
Small-sample Adjustment 
We also propose an analytical small-sample adjustment for the empirical variance estimator, 

The adjustment was originally proposed by Guo, et al. (2005) for a different purpose.1 In our study, we observe that the score type tests are conservative in rare-variants analysis because the empirical variance estimators  and  rely on the i.i.d and mean 0 assumption of s and s. The variance estimates can be unstable when rare variants only exist in a small number of families, because  and  with or without the rare variants can be highly distinct. When the sample means of s and s deviate from 0,  and  can be over-estimated. The use of sample variance estimator  and  can improve the conservative type-I error. 







REFERENCES

1. Guo, X., Pan, W., Connett, J.E., Hannan, P.J., and French, S.A. (2005). Small-sample performance of the robust score test and its modifications in generalized estimating equations. Stat Med 24, 3479-3495.

