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• Tox21/ToxCast:  Examining thousands 
of  chemicals using high throughput 
screening assays to identify in vitro 
concentrations that perturb 
biological pathways (Schmidt, 2009)

• In Wetmore et al. (2012), High 
throughput toxicokinetic in vitro
methods are used to approximately 
convert in vitro bioactive 
concentrations (µM) into daily doses 
needed to produce similar levels in a 
human (mg/kg BW/day)

• These doses can then be directly 
compared with exposure rates, 
where available e.g. Judson et al., (2011)
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In Vitro Bioactivity, In Vivo 
Toxicokinetics, and Exposure

• Studies like Wetmore et al. (2012), addressed 
the need for toxicokinetic data
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data for providing context to HTS data

In Vitro Bioactivity, In Vitro 
Toxicokinetics, and Exposure
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Goals for High Throughput 
Exposure

• Incorporate multiple models into consensus predictions 
for 1000s of chemicals

• Evaluate/calibrate predictions with available 
measurement data across many chemical classes

• Empirically estimate uncertainty in predictions
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Systematic Empirical 
Evaluation of Models
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Noisy data and the danger of over-fitting

Over-fitting

Linear
function

Y

X

High Throughput Descriptors 
for Exposure

Yes / No 
Use Descriptors

Physico-chemical 
Properties
(EPI Suite)

• The average relative AIC 
(smaller is better) for models 
made with different numbers 
of parameters for explaining 
1500 different combinations of 
chemical exposures

Environmental Science & Technology, in press
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Not All Descriptors Are Useful
• The average relative AIC 

(smaller is better) for models 
made with different numbers 
of parameters for explaining 
1500 different combinations of 
chemical exposures

• The predictors involved in the 
optimal model with higher 
frequencies are represented 
by darker circles, and those 
with lower frequencies by 
lighter circles

• As a sanity check, two random 
variables generated from 
binomial distribution with 
probability 50% and 10% of 
obtaining 1, are not selected 
as optimal descriptors in the 
five factor model

13Environmental Science & Technology, in press
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Predicting NHANES exposure rates

R2 ≈ 0.5 indicates 
that we can predict 
50% of the 
chemical to 
chemical variability 
in mean NHANES 
exposure rates

Same five 
predictors work for 
all NHANES 
demographic 
groups analyzed –
stratified by age, 
sex, and body-
mass index

Environmental Science & Technology, in press
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Number of Chemicals

Heuristic Description

Inferred NHANES 
Chemical Exposures

(106)

Full Chemical 
Library ( 7784)

ACToR “Consumer use & 
Chemical/Industrial Process 

use”

Chemical substances in consumer products (e.g., toys, personal 
care products, clothes, furniture, and home-care products) that 
are also used in industrial manufacturing processes. Does not 
include food or pharmaceuticals.

37 683

ACToR “Chemical/Industrial 
Process use with no 

Consumer use”

Chemical substances and products in industrial manufacturing 
processes that are not used in consumer products. Does not 
include food or pharmaceuticals

14 282

ACToR UseDB “Pesticide 
Inert use”

Secondary (i.e., non-active) ingredients in a pesticide which 
serve a purpose other than repelling pests. Pesticide use of 
these ingredients is known due to more stringent reporting 
standards for pesticide ingredients, but many of these 
chemicals appear to be also used in consumer products

16 816

ACToR “Pesticide Active use” Active ingredients in products designed to prevent, destroy, 
repel, or reduce pests (e.g., insect repellants, weed killers, and 
disinfectants).

76 877

TSCA IUR 2006 Total 
Production Volume

Sum total (kg/year) of production of the chemical from all sites 
that produced the chemical in quantities of 25,000 pounds or 
more per year. If information for a chemical is not available, it 
is assumed to be produced at <25,000 pounds per year.

106 7784

High-throughput exposure 
heuristics

15Environmental Science & Technology, in press
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Predictors Do Not Vary 
Between Groups

• The vertical 
lines indicate 
the 95% 
credible interval 
across the 
1500 different 
exposure 
scenarios 
inferred from 
the NHANES 
urine data

• SHEDS-HT 
(Isaacs et al., 
2014) should 
help explain 
some 
remaining 
NHANES 
variability
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Calibrated Exposure Predictions 
for 7968 Chemicals

Upper 95%
Prediction

Median
Prediction

Environmental Science & Technology, in press
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• We focus on the median and upper 95% predictions because the lower 95% 
is below the NHANES limits of detection (LoD)

• Dotted lines indicate 25%, median, and 75% of the LoD distribution

Upper 95%
Prediction

Median
Prediction

NHANES
LoD

Calibrated Exposure Predictions 
for 7968 Chemicals

Environmental Science & Technology, in press
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• Chemicals currently monitored by NHANES are distributed throughput the 
predictions

• Chemicals with the first and ninth highest 95% limit are monitored by 
NHANES

NHANES
LoD

Calibrated Exposure Predictions 
for 7968 Chemicals

Environmental Science & Technology, in press



Office of Research and Development2020

• The grey stripes indicate the 4182 chemicals with no use indicated by ACToR
UseDB for any of the four use category heuristics

NHANES
LoD

Calibrated Exposure Predictions 
for 7968 Chemicals

Environmental Science & Technology, in press
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Better Models and Data Should 
Reduce Uncertainty

Uncertainty/Variability of NHANES Biomonitoring

~10% Far field (Industrial) Releases ~60% Indoor / Consumer Use

Consumer 
product database 
and two new 
near field models 
in 2014
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Systematic Empirical 
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SEEM Evolution – Human Exposure
Model and Predictors

• Existing complex fate and 
transport models have low 
correlation to measured 
exposures
• Near field factor most 
important

• Simple, readily available data
• Better correlation to 
measured exposures
• Similar predictions across 
demographics

1st
Ge

n

Calibration/Evaluation Data SEEM Conclusion

2nd
Ge

n

USEtox

RAIDAR

Near Field / Far Field

NHANES
Urine
Data

Production Volume

Use Categories
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Phys-Chem Properties

NHANES
Urine
Data

3rd
Ge

n

• Analysis yet to be done
SHEDS-HT

Literature 
Models

CPcat Database

NHANES
Urine
Data

CSS Rapid Exposure and Dosimetry Approach described in Wambaugh  et al. 
(2013) ExpoCast Framework Paper  
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In Vitro Bioactivity, In Vivo 
Toxicokinetics, and Exposure

• Studies like Wetmore et al. (2012),addressed 
the need for toxicokinetic data



Office of Research and Development2525 • As in Egeghy et al. (2012), there is a paucity of 
data for providing context to HTS data

In Vitro Bioactivity, In Vitro 
Toxicokinetics, and Exposure
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Oral dose in
(mg/kg/day)

Sum of hepatic 
and renal 
clearance

(mg/kg/day)

( ) 
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Cl
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Steady-State Plasma Concentration

 In vitro plasma protein 
binding and metabolic 
clearance assays allow 
approximate hepatic 
and renal clearances to 
be calculated

 At steady state this 
allows conversion from 
concentration to 
administered dose

 No oral absorption/ 
bioavailability included
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Add plasma (6 
donor pool for 
human) to one 

well

Add chemical Determine 
concentration in 

both wells 
(analytical 
chemistry)

Double-wells 
connected by semi-

permeable 
membrane on a 

Rapid Equilibrium 
Dialysis (RED) Plate

Incubate plates to 
allow wells with 

and without 
protein to come 
to equilibrium

... .
..
. ..

. .

2

1
,

well

well
pub C

CF =

1 2

RED Method: Waters et al. (2008)

 Data on ToxCast chemicals initially collected at Hamner 
Institutes 

 Published:
 Rotroff et al. (2010) - Pilot study using 38 Phase I ToxCast Chemicals
 Wetmore et al. (2012) - Remainder of easily analyzed Phase I chemicals
 Wetmore et al. (2013) Rat PK for 50 ToxCast/ToxRefDB compounds

Plasma Protein Binding
(Fraction Unbound in Plasma)
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Cryopreserved
Hepatocytes

(10 donor pool for 
human)

Add Chemical
(1 and 10 µM)

Remove Aliquots 
at 15, 30, 60, 120 

min

Analytical 
Chemistry

The rate of disappearance of 
parent compound (slope of 

line) is the hepatic clearance
(µL/min/106 hepatocytes)

We perform the assay at 1 
and 10 µM to check for 

saturation of metabolizing 
enzymes.

10 µM

1 µM
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Cryopreserved hepatocyte Method: Shibata et al. (2002)
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Steady-State Model is Linear
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rate dose oral

Cl
Cl

Css  Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get concentrations 
for other doses

Slope = Css for 1 mg/kg/day

Wetmore et al. (2012)
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Steady-State In Vitro-In Vivo 
Extrapolation (IVIVE)
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Steady-state Concentration (µM) = in vitro AC500

Prediction

 Swap the axes
 Can divide bioactive concentration by Css for for a 1 mg/kg/day dose to get oral equivalent dose

Slope = mg/kg/day per Css
1 mg/kg/da

Wetmore et al. (2012)
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High Throughput Toxicokinetics 
(HTTK)

High 
Throughput 

In Vitro 
Bioactive 

Concentration

Simulated 
Human
In Vivo
Doses Populations 

that are More  
Sensitive

HTTK
in vitro

data

Monte Carlo
Simulation of Biological

Variability

Combination of 
higher exposure 
and sensitivities 

Images from Thinkstock

Approach described in Wetmore 
et al. (2012) Bioactivity, 

Dosimetry, and Exposure Paper  
CSS Rapid Exposure and Dosimetry
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Monte Carlo (MC) Approach 
to Variability
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Steady-state Concentration (µM) = in vitro AC500

Median
Predicted Css

 The higher the predicted Css, the lower the oral equivalent dose, so the upper 95% predicted Css
from the MC has a lower oral equivalent dose

Lower 95%
Predicted Css

Upper 95%
Predicted Css

Steady-State In Vitro-In Vivo 
Extrapolation (IVIVE)
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High Throughput Risk 
Prioritization

ToxCast Bioactivity 
Converted to 
mg/kg/day with HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

Prioritization as in 
Wetmore et al. 

(2012) Bioactivity, 
Dosimetry, and 

Exposure Paper  
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23
9 

Ch
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al

s
88

Collected Summer 2014

Wetmore et al., (2012)

Intrinsic hepatic clearance 
and plasma protein 

binding data

To be published in 2014

18
1

• ToxCast HTTK testing:

 Measuring metabolism by human 
hepatocytes

 Improved assays for measuring 
binding of chemicals to human plasma 
protein

 Obtain data on ToxCast chemicals not 
investigated by the Hamner Institute 
studies

 Reinvestigate chemicals that proved 
difficult in previous efforts

• This data will eventually allow determination of human oral 
equivalent doses (mg/kg BW/day) for most ToxCast 
chemicals.

New HTTK Data
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High Throughput Physiologically-
based Toxicokinetics (HTPBTK)

• Some tissues (e.g., arterial blood) are simple 
compartments, while others (e.g., kidney) are 
compound compartments consisting of separate 
blood and tissue sections.

• Some specific tissues (lung, kidney, gut, and 
liver) are modeled explicitly, others (e.g., fat, 
brain, bones) are lumped into the “Rest of Body” 
compartment.

• Chemical enters the body primarily through oral 
absorption, but we don’t know absorption rate 
and bioavailability (assume “fast”, i.e. 1/h and 
100%)

• The only ways chemicals “leaves” the body are 
through metabolism (change into a metabolite) 
in the liver or excretion by glomerular filtration 
into the proximal tubules of the kidney (which 
filter into the lumen of the kidney). 

36



Office of Research and Development37

 Tissue-specific 
partitioning 
estimated      
(Schmitt, 2008) 
using:

 Physicochemic
al properties 
(logP, pKa) 
predicted 
from structure 
(EPI Suite)

 Measured 
fraction 
unbound in 
plasma (fub)

Predicted Partition Coefficients

Partitioning figure is from Peyret (2010),
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Evaluating HTPBTK Predictions 
from In Vitro Data

38

 HTPBTK predictions for 
the peak plasma 
concentration (Cmax)

 in vivo measurements 
from the literature for 
various treatments (dose 
and route) of rat

 Cmax predictions and in 
vivo data are correlated    
(R2 ~ 0.65)
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Conclusions

• By evaluating performance of high throughput exposure models 
against monitoring data we develop a calibration and estimate of 
uncertainty that we can apply to thousands of chemicals (ExpoCast)

• Currently analyzing the output of the first generation (2014) of 
mechanistic high throughput near field (e.g., consumer use) models 
parameterized from minimal chemical-specific information

• Already know that this information alone can explain roughly half of 
the chemical-to-chemical variance in exposure inferred from 
biomonitoring data

• Also need HTTK data to convert in vitro bioactivity (e.g., ToxCast) to 
exposures for comparison with ExpoCast

• Can use this data to build HTPBTK models, and need to develop high 
throughput dermal exposure approach
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