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1. NEURAL NETWORK ARCHITECTURE DETAILS

The proposed network architecture is depicted in Fig. S1. The
architecture is composed of 4 different types of blocks, each
highlighted in a different color for distinction. A hierarchy of
feature representations with a varying numebr of channels is
obtained through successive convolution and pooling layers.
The spatial supports of all the convolutional filters are 3 × 3.
Each convolution layer is followed by a Batch Normalization
(BN) layer [1], and an element-wise ReLU non-linearity [2]. The
number of features in the representation is increased from 32
up to 512, and then reduced back to 32 for the final pixel-wise
prediction step. Let x be the input grayscale image, and fk be
the kth out of N convolutional filters, the kth output feature map
of a convolution layer is given by

yk = fk ~ x, (S1)

where ~ denote 2D convolution. Let µB and σB denote the
empirical mean and standard deviation of the feature maps over
a mini-batch B = {x1, ..., xM}, where M refers to the number of
samples in the mini-batch. Let βk and γk be the learned mean
and standard deviation for the kth feature map, the kth output of
the BN layer is given by

zk = γk ×
yk − µBk

σBk
+ βk, (S2)

The final feature representation is given by ok = ReLU (zk) =
max (zk, 0). The width of each block (Fig. S1) is proportional to
the number of channels in the representation.
Max-Pooling (2× 2) refers to a spatial down-sampling operation
[3], acting on each feature map in the input volume separately.

For each input feature map of size K × K, the output of the
Max-Pooling (2× 2) block is a feature map of size K

2 ×
K
2 , where

each element corresponds to the maximal value in the matching
distinct 2× 2 region in the input feature map.
Up-sampling (2× 2) refers to a spatial up-sampling operation,
acting on each feature map in the input volume separately. For
each input feature map of size K × K, the output of the Up-
sampling (2× 2) block is a feature map of size 2K× 2K, where
each element is replicated to a 2× 2 region, to recover the spatial
span. Finally, the Conv (1× 1) block outputs a single image,
which is a weighted sum of the channels of it’s input.

2. TRAINING DATA PREPARATION

We demonstrated training on both simulated and experimen-
tal examples. In each case, the training dataset was prepared
slightly differently as a result of the number of available exam-
ples.

A. Simulated training examples
For the generation of simulated training examples, we used the
ImageJ [4, 5] ThunderSTORM [6] plugin. The parameters for the
simulated data generator were approximately matched to the ex-
perimental data to be evaluated. Specifically, for a given imaging
setup, the camera specifications included setting the pixel size
[nm], photo-electrons per A/D count, quantum efficiency, base
level [A/D] counts, and the EM gain for an EMCCD camera,

or the readout noise
[

electrons
pixel

]
for a CMOS camera. The experi-

mental sample parameters included setting the PSF model (e.g.
Integrated Gaussian), the range of FWHM of the PSF [nm], inten-

sity range of the emitters [photons], expected density
[

emitters
µm2

]
,
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Fig. S1. fully convolutional architecture details. The number below each Feature Representation block refers to the number of
convolutional filters in the respective convolutional layer.

and the mean background photons per pixel [photons]. In case
of a linear drift, the drift distance [nm] and the drift angle [deg.]
could be also incorporated into the simulation, to train a more
precise and unbiased estimator.
For each experiment, we matched the experimental parame-
ters, and simulated twenty 64× 64 images with randomly po-
sitioned emitters. Afterwards, the simulated images and the
list of simulated positions were loaded in MATLAB. From each
simulated image we extracted 500 random 26× 26 regions, and
their respective ground truth xy positions. Next, each region
was up-sampled by a factor of 8 using a simple nearest-neighbor
interpolation, and the appropriate positions were projected on
the high-resolution grid, yielding an image with spikes. The
result is a set of 10K pairs of upsampled low-resolution regions
(208× 28 pixels), alongside images with spikes at the ground
truth positions used as training examples. The 10K regions were
split into a 7K training set, and 3K validation set to prevent
over-fitting.

B. Experimental training examples

For the generation of experimental training examples, we ac-
quired a dataset of 100 sparse frames of quantum dots. Next, the
emitters in each frame were localized using ThunderSTORM in
single-emitter fitting mode. We did not acquire dense frames,
to ensure the emitters’ ground truth positions could be recov-
ered with high-precision. The resulting list of positions and the
acquired experimental images were loaded in MATLAB, to be
divided into two distinct datasets - for training and for testing.
To ensure only reasonably bright emitters are incorporated in
both the training and testing phases, emitters with an intensity
below 1000 photons were excluded from the experimental im-
ages, and replaced with random noise. From each experimental
image (1200× 1200, with a pixel size of 110 nm), we extracted all
distinct 26× 26 regions that contained at least a single emitter,
accompanied by the localized positions obtained from Thunder-

STORM. The result was 1560 distinct regions, without overlaps,
to avoid contamination of the training set. The regions were
split into 1200 regions for training, and 360 regions for testing.
To generate a challenging higher density datasets, we combined
8 randomly chosen regions at a time. To diversify the combi-
nations, each region was first randomly rotated by an angle
θ ∈

{
00, 900, 1800, 2700}. Similarly to the simulated examples,

the combined regions were upsampled by a factor of 8 using
nearest neighbor interpolation, and accompanied by images
containing spikes at the respective ground truth positions. The
result was a training set composed of 10K combinations of 1200
regions, and a test set composed of 3K combinations of different
360 regions.

C. Normalization
To ensure invariance of the learned estimator to the absolute
photon counts of emitters intensity and background, we scale
each upsampled region intensity to the range [0, 1]. The final
examples are normalized by the mean and averaged standard de-
viation (per-upsampled region) of the dataset without additional
data augmentation.

3. RESOLUTION QUANTIFICATION

We quantified the resolution of Deep-STORM for different den-
sity (Fig. 3) and SNR (Fig. S2) conditions, by recovering simu-
lated blinking emitters along a grid of horizontal stripe pairs,
with a gradually decreasing gap distance. The simulation pixel
size was 100 nm. The PSF model was Integrated-Gaussian

with a FWHM of ∼ 275 nm. The density was 3
[

emitters
µm2

]
, and

the intensity of the emitters was 1000 photons with a varying

mean background of {10, 50, 100, 150, 200}
[

photons
pixel

]
, and no ad-

ditional readout noise. For a low background of 10
[

photons
pixel

]
,

Deep-STORM was able to resolve lines with a 19 nm gap show-
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Fig. S2. Resolution and signal-to-noise. (a) Diffraction-limited image of horizontal lines, scale bar 500 nm. (b) Simulated single-
frames of emitters with various numbers of background photons per pixel, 1000 signal photons per emitter, and a density of 3
emitters per square micron. (c) The ground truth positions of simulated emitters. (d) Deep-STORM reconstructed images. (e) Sum
along the horizontal axis of the reconstruction intensities.
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(a) (b) (c) (d)Diffraction Limited Ground Truth FALCON Deep-STORM

(e) Ground Truth FALCON Deep-STORM (f) Ground Truth FALCON Deep-STORM
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e

Fig. S3. Simulated microtubules (Comparison to FALCON). (a) Sum of the acquisition stack. Scale bar is 1 µm. (b) Ground truth.
(c) Reconstruction by FALCON (d) Reconstruction by Deep-STORM. (e)-(f) Magnified views of two selected regions. Scale bars are
0.5 µm.

ing a resolution close to the recovery pixel size (12.5 nm). In

addition, for a very high background of 200
[

photons
pixel

]
, Deep-

STORM was able to achieve a resolution of at least 31 nm.

(a) Ground Truth
(b) FALCON Deep-STORM

Fig. S4. Reconstruction accuracy (Comparison to FALCON).
(a) Ground truth image of simulated microtubules. Scale bar
is 1 µm. (b) Merged reconstruction with the ground truth. Red
shows the ground truth, green corresponds to the recovery
result, and yellow marks their overlap. Note that FALCON
(left) does not follow the twisted shape in all places (white
triangles), while Deep-STORM (right) better recovers the un-
derlying structure.

4. COMPARISON TO FALCON

We tested Deep-STORM on super-resolution data, and bench-
marked against the fast multi-emitter fitting algorithm FALCON
[7]. First, we reconstructed a simulated microtubule dataset
available on the EPFL SMLM challenge website [8] (Fig. S3).

The optimal parameters for FALCON were set empirically
through a comprehensive trial and error process, such that spu-
rious detections are minimized, and the number of recovered
positions was roughly equal to the number of underlying emit-
ters. The resulting values were: wavelet decomposition level

of 6, threshold level of T = 0.05, δT = 1.1, sparsity of 2, up-
sampling factor for deconvolution of 8, upsampling factor for
refinement of 8, 500 iterations for step 1, 140 iterations for step 2,
20 iterations for step 3, 100 background iterations for step 1, 70
background iterations for step 2, 300 iterations for background
standard deviation σ, and δσ = 0.15.

We quantified the quality of the results based on the standard

normalized mean square error: NMSE (x̂, x) = ‖x̂−x‖2
2

‖x‖2
2
× 100%.

Deep-STORM showed improved NMSE of 37% compared to
61% for FALCON. Deep-STORM managed to resolve nearby
microtubule edges (Fig. S3) and recovered the underlying struc-
ture curvature slightly more accurately compared to FALCON
(highlighted in white arrows in Fig. S4).

Second, we tested the result of Deep-STORM on experimental
data obtained from Sage et al. [8], training solely on simulated
data with similar experimental conditions - namely, SNR and
emitter density. Deep-STORM recovery is more precise with less
spurious localizations occluding fine structures (Fig. S5).

5. PRECISION EVALUATION

To evaluate the precision of Deep-STORM, in a context similar
to localization microscopy, we simulated a blinking movie of
dense emitters positioned along a line with a width of 1 nm (red,
Fig. S6 (a)), and measured the FWHM of a Gaussian fitted to the
effective PSF ( Fig. S6). The simulation pixel size was 100 nm, the
PSF model was Integrated-Gaussian with a FWHM of ∼ 350 nm,

the density was 3
[

emitters
µm2

]
, and the intensity of the emitters was

1000 photons with a mean background of 10
[

photons
pixel

]
, with no

additional readout noise. The resulting FWHM of Deep-STORM
on a 12.5 nm grid was 24 nm (black triangles, Fig. S6 (b)), ∼ 14×
smaller than the size of the diffraction-limited PSF.
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Fig. S5. Experimentally measured microtubules (Comparison to FALCON). (a) Sum of the acquisition stack. Scale bar is 2 µm. (b)
Reconstruction by the FALCON. (c) Reconstruction by Deep-STORM. (d)-(e) Magnified views of two selected regions. Scale bars
are 0.5 µm. (f) The width projection of the highlighted yellow region. The attained FWHM (black triangles) for FALCON was 54 nm
and 67 nm for Deep-STORM. The black line shows the diffraction-limited projection.
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Fig. S6. Quantification of precision. (a) Deep-STORM recovery
with the ground truth (red) super-imposed. (b) Reconstruc-
tion summed along the linear axis (magenta), and fit with a
Gaussian (green) to estimate the precision. The FWHM (black
triangles) was 24 nm.

6. TRAINING ON SIMULATED VS. EXPERIMENTAL
DATA

To test the effect of training on simulated as opposed to exper-
imental examples, we trained and tested Deep-STORM on an
experimental QD dataset. The training examples were prepared
as explained in section 2. The resulting imaging conditions
were challenging: The emitter density of the regions was around

2
[

emitter
µm2

]
, there were ∼ 2500 mean signal photons per emitter,

and a total additive Gaussian noise with a standard deviation
of 20 photons. To quantify the results, we counted the total
number of emitters detected by both nets using a threshold of 1,
where each connected blob of pixels was counted as one emitter.
True positives refer to emitters predicted within a radius of 70
nm from a ground truth position. False positives refer to the
remaining predicted blobs. Reconstruction using a net trained
on experimental data resulted in 96% true positive rate with
only 1.6% false positive rate, compared to 87.8% true positive
rate with 8.7% false positive rate when reconstructing the same
data using a net trained on simulatd examples (Fig. S7). Note
that, because of the low number of different emitters present
in the experimental training set, the network tends to predict
wider "blobs" as opposed to 1-2 pixel predictions by the network
trained on simulated examples, with a more rich and diverse
training set. This could be mitigated by acquiring a larger num-
ber of experimental frames, or alternatively acquiring denser
frames and using a more sophisticated data post-processing
method accompanied by an improved multi-emitter fitting algo-
rithm.
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(a) (b) (c)

Simulated Training Experimental TrainingDiffraction Limited

Fig. S7. Simulated versus experimental training on QD data.
(a) Diffraction limited image of dense fields of QDs created
from sums of 8 sparse regions. Red crosses show the underly-
ing positions determined by Thunderstorm in sparse images.
(b) Deep-STORM reconstruction using a simulated training set
of overlapping Gaussians with a similar density, signal and
background. Yellow arrow highlights an unrecovered emitter.
(c) Deep-STORM reconstruction using an equivalent dataset
formed from experimental images. Scalebars are 500 nm.

7. ROBUSTNESS

We tested the robustness of Deep-STORM to a density mismatch
between the training data and the measured dataset, by evaluat-
ing the reconstruction of a high density dataset with networks
trained for lower densities. In addition, we also evaluated the
reconstruction of a low density dataset with networks trained
for higher densities (Fig. S8). A similar analysis was performed
for SNR mismatch between the training data and the measured
dataset (Fig. S9). Deep-STORM proved to be relatively robust

to a ∼ 2
[

emitters
µm2

]
density mismatch (Fig. S8 (e-f)). Moreover, in

case of SNR uncertainity and enough blinking data, we found
it preferable to train a net on an under-estimation of the back-
ground photons (Fig. S9 (c)), rather than to overshoot (Fig. S9
(d)), thereby preventing a high false positive rate.
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6. M. Ovesný, P. Křížek, J. Borkovec, Z. Švindrych, and
G. M. Hagen, “ThunderSTORM: A comprehensive ImageJ
plug-in for PALM and STORM data analysis and super-
resolution imaging,” Bioinformatics 30, 2389–2390 (2014).

7. J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier,
S. Holden, S. Manley, J. C. Ye, and M. Unser, “FALCON:
fast and unbiased reconstruction of high-density super-
resolution microscopy data,” Sci. Reports 4, 4577 (2015).

8. D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Man-
ley, and M. Unser, “Quantitative evaluation of software
packages for single-molecule localization microscopy,” Nat.
Methods 12, 717–724 (2015).



Supplementary Material 7

Low Density Training Set High Density Training Set
LD Data HD Data LD Data HD DataHigh

Tr
ai

ni
ng

 se
t d

en
ist

y

Data set density
Low

H
ig

h
Lo

w

D
ee

p-
ST

O
RM

 

Low Density Training Set [1 Emitter per µm2]

D
at

a D
en

ist
y 

[E
m

itt
er

s p
er

 m
m

2 ]

High Density Training Set [9 Emitter per µm2]

D
at

a D
en

ist
y 

[E
m

itt
er

s p
er

 m
m

2 ]

7

1

5

3

9

Gap Distance [nm]

G
ro

un
d 

Tr
ut

h

(a) (c)(b)

+

+ +

-

- -

(d)

7

1

5

3

9

(e)

(f)

1

0

In
te

ns
ity

 [a
.u

.]

1

0

1

0

1

0

1

0

1

0

In
te

ns
ity

 [a
.u

.]

1

0

1

0

1

0

1

0

144 69 56 44 38 31 19 6

Ground Truth
Deep-STORM

Fig. S8. Evaluation of resolution as a function of emitter density. (a) Deep-STORM exhibits the best performance when trained
on a dataset with similar density to the evaluation data. (b) Emitters were simulated on horizontal lines with decreasing widths
and gaps. Scalebar 500 nm. (c) Deep-STORM was evaluated on low density (LD) and high density (HD) data with a low-density
training set. (d) Deep-STORM using a high-density training set. (e) The projection of the ground truth (gray) and LD-trained Deep-
STORM reconstruction (black lines) with 5 densities. (f) Same as d, but with Deep-STORM trained on an HD dataset.
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Fig. S9. Evaluation of resolution as a function of the signal-to-noise ratio. (a) Deep-STORM exhibits the best performance when
trained on a dataset with similar density to the evaluation data, but is also robust to higher backgrounds than the training data set.
(b) Emitters were simulated on horizontal lines with decreasing widths and gaps. Scalebar 500 nm. (c) Deep-STORM was evaluated
on low background (BG) and high BG data with a low BG training set. (d) Deep-STORM using a high-BG training set. (e) The
projection of the ground truth (gray) and low-BG-trained Deep-STORM reconstruction (black lines) with 5 background levels. (f)
Same as d, but with Deep-STORM trained on a high-background dataset.
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