SUPPLEMENTARY MATERIAL Two new anthraquinone derivatives and one new triarylbenzophenone analog from Selaginella tamariscina Rui Liu^{a,b}, Hui Zou^{b,c}, Zhen-Xing Zou^a, Fei Cheng^a, Xia Yu^b, Ping-Sheng Xu^a, Xiao-Min Li^a, Dai Li^a, Kang-Ping Xu^b* and Gui-Shan Tan^{a,b}* ^aXiangya Hospital of Central South University, Changsha 410008, China; ^bXiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; ^cSchool of Medicine, Hunan Normal University, Changsha 410013, China *Corresponding authors E-mail: tgs395@csu.edu.cn (Gui-Shan Tan); xukp376@aliyun.com (Kang-ping Xu) Abstract Two new anthraquinone derivatives, selaginones A (1) and B (2), and one new triarylbenzophenone analog, selagibenzophenone B (3), were isolated from Selaginella tamariscina (Beauv.) Spring. Their structures were established by 1D-, 2D-NMR and HR-ESI-MS data. Compounds 1 and 2 represent the uncommon examples of aryl substituted anthraquinone derivatives. Especially, compound 2 is a unique anthranone with exceptional structural feature, in which a p-hydroxyphenyl moiety is attached to the C-10 position. Compound 3 is the second naturally occurring triarylbenzophenone and showed moderate activity against SMCC-7721 and MHCC97-H cell line with IC₅₀ values of 39.8, 51.5 μ M respectively. **Keywords** Selaginella tamariscina; anthraquinone; aryl anthraquinone; selaginone A; selaginone B; selagibenzophenone B; hepatocellular carcinoma ## **List of Contents** - Table S1. 1 H-NMR (500 MHz) and 13 C-NMR (125 MHz) spectrum of compound **1** in CD₃OD and compound **2** in DMSO- d_6 . - Table S2. $^{1}\text{H-NMR}$ (400 MHz) and $^{13}\text{C-NMR}$ (100 MHz) spectrum of compound **3** in CD₃OD - Figure S1. The key HMBC correlations of compound 1. - Figure S2. The key HMBC correlations of compound 2. - Figure S3. The key HMBC correlations of compound 3. - Figure S4. The ¹H NMR (500 MHz, CD₃OD) spectrum of compound **1.** - Figure S5. The ¹H NMR (500 MHz, CD₃OD) spectrum ($\delta_{\rm H}$ 8.5-5.5) of compound 1. - Figure S6. The ¹³C NMR (125 MHz, CD₃OD) spectrum of compound 1. - Figure S7. The 13 C NMR (125 MHz, CD₃OD) spectrum ($\delta_{\rm C}$ 150-110) of compound **1.** - Figure S8. The COSY spectrum of compound 1. - Figure S9. The HSQC spectrum of compound 1. - Figure S10. The HMBC spectrum of compound 1. - Figure S11. The HMBC spectrum ($\delta_{\rm H}$ 8.5-5.5 and $\delta_{\rm C}$ 210-60) of compound 1. - Figure S12. The HR-ESI-MS sepctrum of compound 1. - Figure S13. The 1 H NMR (500 MHz, DMSO- d_{6}) spectrum of compound 2. - Figure S14. The ¹H NMR (500 MHz, DMSO- d_6) spectrum ($\delta_{\rm H}$ 8.5-5.5) of compound 2. - Figure S15. The 13 C NMR (125 MHz, DMSO- d_6) spectrum of compound 2. - Figure S16. The 13 C NMR (125 MHz, DMSO- d_6) spectrum (δ_C 150-110) of compound Figure S17. The COSY spectrum of compound 2. Figure S18. The HSQC spectrum of compound 2. Figure S19. The HMBC spectrum of compound 2. Figure S20. The HMBC spectrum ($\delta_{\rm H}$ 8.2-5.2 and $\delta_{\rm C}$ 210-0) of compound **2.** Figure S21. The HMBC spectrum ($\delta_{\rm H}$ 8.2-5.2 and $\delta_{\rm C}$ 190-100) of compound 2. Figure S22. The HR-ESI-MS sepctrum of compound 2. Figure S23. The ¹H NMR (500MHz, CD₃OD) spectrum of compound 3. Figure S24. The ¹H NMR (500MHz, CD₃OD) spectrum ($\delta_{\rm H}$ 8.2-6.0) of compound **3.** Figure S25. The ¹³C NMR (125MHz, CD₃OD) spectrum of compound 3. Figure S26. The 13 C NMR (125MHz, CD₃OD) spectrum ($\delta_{\rm C}$ 150-110) of compound 3. Figure S27. The COSY spectrum of compound 3. Figure S28. The HSQC spectrum of compound 3. Figure S29. The HMBC spectrum of compound 3. Figure S30. The HR-ESI-MS septrrum of compound 3. Table S1. 1 H (500 MHz) and 13 C (125 MHz) NMR data of compound **1** in CD₃OD and compound **2** in DMSO- d_6 | Position | Compound 1 | | Compound 2 | | |----------|------------------------------------|-----------------------|-------------------------------|-----------------------| | • | $\delta_{\rm H} (J \text{ in Hz})$ | δ_{C} | $\delta_{\rm H}$ (J in Hz) | δ_{C} | | 1 | | 145.2 | | 141.7 | | 2 | | 140.2 | | 137.3 | |-------|--------------|-------|---------------|-------| | 3 | 7.90 d (8.0) | 131.4 | 7.62 d (7.8) | 125.2 | | 4 | 7.60 d (8.0) | 138.6 | 7.38 d (7.8) | 134.6 | | 5 | 7.85 d (8.5) | 130.4 | 7.26 d (8.5) | 129.7 | | 6 | 7.07 d (8.5) | 123.5 | 6.94 d (8.5) | 121.4 | | 7 | | 167.8 | | 156.4 | | 8 | 7.45 s | 113.9 | 7.35 s | 111.2 | | 9 | | 187.4 | | 187.3 | | 10 | | 184.8 | 5.50 s | 45.2 | | 1a | | 134.7 | | 130.4 | | 4a | | 133.5 | | 143.8 | | 5a | | 126.1 | | 135.8 | | 8a | | 137.2 | | 132.5 | | 1′ | | 135.1 | | 129.6 | | 2'/6' | 7.10 d (7.5) | 130.4 | 6.78 m | 130.0 | | 3′/5′ | 6.83 d (7.5) | 115.8 | 6.75 m | 115.1 | | 4′ | | 157.6 | | 156.8 | | 1" | 5.96 s | 66.4 | 5.96 d (16.0) | 64.8 | | | | | 5.87 d (16.0) | | | 2" | | 167.9 | | 165.5 | | 3" | | 121.8 | | 119.4 | | 4"/8" | 8.02 d (8.0) | 132.9 | 7.91 d (8.0) | 131.5 | | 5"/7" | 6.89 d (8.0) | 116.4 | 6.89 d (8.0) | 115.6 | | 6" | | 164.2 | | 163.2 | | | | | | | _ | 1''' | 134.4 | |------------|-------| | 2'''(6''') | 128.0 | | 3'''(5''') | 115.0 | | 4''' | 155.4 | Table S2. 1 H (400 MHz) and 13 C (100 MHz) NMR data of compound 3 in CD₃OD | Position | Compound 3 | | |--------------|------------------------------------|-----------------------| | - | $\delta_{\rm H} (J \text{ in Hz})$ | δ_{C} | | 1 | | 162.2 | | 2/6 | 6.61 d (8.6) | 114.5 | | 3/5 | 7.42 d (8.6) | 132.0 | | 4 | | 130.2 | | 7 | | 199.2 | | 8/12 | 7.51 s | 126.2 | |-------------|--------------|-------| | 9/11 | | 141.0 | | 10 | | 141.6 | | 13 | | 136.2 | | 14/18/20/24 | 7.11 d (8.4) | 130.0 | | 15/17/21/23 | 6.65 d (8.4) | 114.4 | | 16/22 | | 156.4 | | 19/25 | | 131.8 | | 26/30 | 7.58 d (8.4) | 127.8 | | 27/29 | 6.91 d (8.4) | 115.4 | | 28 | | 157.3 | | 31 | | 131.4 | | | | | Figure S1. The Key HMBC correlations of compound ${\bf 1.}$ Figure S2. The Key HMBC correlations of compound 2. Figure S3. The Key HMBC correlations of compound 3. Figure S4. The ¹H NMR (500MHz, CD₃OD) spectrum of compound **1.** Figure S5. The ¹H NMR (500MHz, CD₃OD) spectrum of compound **1.** Figure S6. The ¹³C NMR (125MHz, CD₃OD) spectrum of compound **1.** Figure S7. The ¹³C NMR (125MHz, CD₃OD) spectrum of compound **1.** Figure S8. The COSY spectrum of compound 1. Figure S9. The HSQC spectrum of compound 1. Figure S10. The HMBC spectrum of compound 1. Figure S11. The HMBC spectrum of compound 1. Figure S12. The HR-ESIMS sepctrum of compound 1. Figure S13. The ${}^{1}\text{H}$ NMR (500MHz, DMSO- d_{6}) spectrum of compound 2. Figure S14. The 1 H NMR (500MHz, DMSO- d_{6}) spectrum of compound 2. Figure S15. The 13 C NMR (125MHz, DMSO- d_6) spectrum of compound **2.** Figure S16. The 13 C NMR (125MHz, DMSO- d_6) spectrum of compound **2.** Figure S17. The COSY spectrum of compound 2. Figure S18. The HSQC spectrum of compound 2. Figure S19. The HMBC spectrum of compound 2. Figure S20. The HMBC spectrum of compound 2. Figure S21. The HMBC spectrum of compound 2. Figure S22. The HR-ESI-MS sepctrum of compound **2**. Figure S23. The ¹H NMR (500MHz, CD₃OD) spectrum of compound **3.** Figure S24. The ¹H NMR (500MHz, CD₃OD) spectrum of compound **3.** Figure S25. The 13 C NMR (125MHz, CD₃OD) spectrum of compound **3.** Figure S26. The ¹³C NMR (125MHz, CD₃OD) spectrum of compound **3.** Figure S27. The COSY spectrum of compound 3. Figure S28. The HSQC spectrum of compound 3. Figure S29. The HMBC spectrum of compound 3. Figure S30. The HR-ESI-MS sepctrum of compound **3**.