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Need for risk prioritization: 
Too many chemicals
• Approx. 30,000 chemicals in wide commercial use1

• Approx. 700-1000 new chemicals on the market every year1

• Not feasible to do full in vivo tox studies on all of them2

• Need to triage: which chemicals should be prioritized for further 
testing?3

• Need low-cost, high-throughput methods of risk prioritization



High throughput risk prioritization

Risk can be described as function of hazard and exposure
• Exposure: HT model frameworks (e.g. ExpoCast)4

• Estimate how much of a dose you get

• Hazard: in vitro HTS bioactivity assays (e.g. ToxCast)5

• Dose-response data 

How to relate in vitro bioactivity to in vivo toxicity and risk?
In vitro-in vivo extrapolation (IVIVE)6 —
using reverse toxicokinetics approach7



Reverse toxicokinetics

Oral Equiv. Dose =

Fixed dose ×
ToxCast AC50

𝐶𝐶𝑠𝑠𝑠𝑠 from fixed dose

Assume first-order 
metabolism8

Work with steady-state plasma 
concentration (Css)8

(assumptions for long-term, 
ambient exposures)



HTTK: High-throughput TK models

• Open-source R package httk, available on CRAN9 (Pearce et al., J Stat 
Soft 2016)

• General TK models can be parameterized for many chemicals using HT 
in vitro assays8,10,11

• At present, 554 chemicals

• General TK models:
• 1-compartment
• 3-compartment
• PBTK (physiologically-based TK)
• 3-compartment steady-state



HTTK: High-throughput TK models
• Open-source R package httk, available on CRAN9 (Pearce et al., J 

Stat Soft 2016)
• General TK models can be parameterized for many chemicals using HT 

in vitro assays8,10,11

• At present, 554 chemicals

• General TK models:
• 1-compartment
• 3-compartment
• PBTK (physiologically-based TK)
• 3-compartment steady-state

• No tissue partitioning
• First order hepatic metabolism
• Passive renal clearance



HTTK parameters
Chemical-specific parameters
Fraction unbound in plasma (Fub) Measured in HT in vitro assays 

(Wetmore et al. 2012, 2014, 2015)Intrinsic clearance rate (CLint)
Tissue-plasma partition coefficients Predicted from phys-chem properties; 

not included in 3-compartment steady-
state model

Physiological parameters
Body weight

By default: “average” human values
Tissue volumes & blood flows
Glomerular filtration rate (GFR)
Hematocrit
Hepatocellularity



Simulating population variability:
Monte Carlo

Same dose
of a given 
chemical

Varying Css

5th 50th 95th

HTTK model parameters
representing each 

individual



Population variability in reverse TK

Css from fixed dose 

Css95 = 
conservative OED

5th 50th 95th



Range of OEDs for each chemical

ToxCast AC50 percentiles across assays

Range of OEDs for range of AC50s
Css distribution – 95th percentile



Activity-exposure ratio: 
compare OED to 
estimated exposure8,10,11

AER =
Oral Equiv. Dose

Estimated exposure

(figure adapted from Wetmore et al. 2012)

AER <=1 : Exposure may be high 
enough to cause bioactivity

AER >> 1: Exposure less likely to be 
high enough to cause bioactivity



HT risk prioritization for potentially sensitive life 
stages [US EPA 2006, “A Framework for Assessing Health Risks of Environmental 
Exposures to Children”]

• Is AER higher/lower for certain demographic groups?
• To use AER approach:

• Need exposure estimates by demographic group
• Need estimates of Css variability by demographic group



ExpoCast: Exposures inferred from NHANES 
urine biomonitoring data

Figure adapted from Wambaugh et al., Environ Sci Technol 2014
See also Wambaugh et al., Environ Sci Technol 2012 

For 10 demographic groups:
1. Total
2. Age 6-11
3. Age 12-19
4. Age 20-65
5. Age >65
6. BMI <= 30
7. BMI > 30
8. Males
9. Females
10. Reproductive-Age Females 

(ages 16-49)
106 compounds; 50 HTTK compounds



Goal: AERs by demographic group

Physiology Css
AERsToxCast AC50s across assays

Exposures by group



HTTK-Pop: Virtual population generator for HTTK

Physiological quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hematocrit
Hepatocellularity

Demographics and 
body measurements

Sex
Race/ethnicity
Age
Height
Weight

(+ residual marginal variability) Need population 
distribution with 
correlation structure



Source of demographic & body measures data: NHANES
NHANES quantities used in 
HTTK-Pop:
• Sex
• Race/ethnicity 
• Age
• Height
• Weight
• Hematocrit (age 1 and older)
• Serum creatinine (age 12 and 

older) (can be used to predict 
GFR)

Large, ongoing CDC survey of US 
population: demographic, body 
measures, medical exam, biomonitoring 
(health and exposure), ….

Designed to be representative of US 
population according to census data

Data sets publicly available (on the web)



HTTK-Pop: population generation

Sample from subset of NHANES respondents specified by:
• Age limits (default 0-79 years)
• Sex (default: NHANES proportions of males and females)
• Race/ethnicity (default: NHANES proportions)
• BMI categories (default includes all)
Predict physiological parameters using allometric scaling, literature 
regression equations; add residual marginal variability

Generated virtual populations matching the 10 demographic groups
• Each with 1000 individuals



WeightGFR
Liver 
mass

Weight

106 cells/g 
liver

GFR

Portal vein 
flow

Liver mass HTTK-Pop: 
five physiological parameters,
Ages 20-65

Portal vein 
flow

106 cells/g 
liver



Chemical-specific parameters:
assume distributions about in vitro measured values

Intrinsic clearance Fraction unbound in plasma

Assume 5% of population are 
poor metabolizers 
(Gaussian mixture distribution)

Assume Fub distribution censored 
below average LOD (0.01)

See: Wambaugh et al. Toxicol Sci 2015



Evaluate HTTK model to get Css distribution

Example:
Bisphenol-A
Ages 20-65
Dose 1 mg/kg/day

5th 50th 95th

× 554 HTTK chemicals
× 10 demographic groups



OEDs and inferred exposures for total population

AER



Subgroups:
AER difference from 
total population

Chemicals by 
increasing AER for 
Total population



AER

Exposure OED



Conclusions
• HTTK-Pop lets us simulate population physiology for various demographic 

groups, for use with HTTK models
• Prioritization based on AER for potentially sensitive groups

• IVIVE for different groups, to compare with inferred exposures

• AERs for subgroups differ from total population, up to 6-fold
• AER differences are driven by OED differences for some groups, exposure 

differences for others
• Oral equivalent dose changes up to 3-fold (for 95th percentile Css and 10th

percentile AC50)
• Exposure changes up to 5-fold (for upper bound of 95% CI on median)
• Ages > 65 and BMI > 30: lower AER across many chemicals
• Ages 6-11 and Ages 12-19: higher AER across many chemicals
• Other subgroups: AERs different for a few chemicals with big exposure differences



Caveats

• Steady-state assumption
• First-order hepatic-only metabolism assumption
• Toxcast AC50s assumed = in vivo bioactive/toxic plasma 

concentrations
• Assay endpoints represent perturbations that may or may not lead to adverse 

effect
• Plasma concentration vs. tissue concentration

• Median inferred exposures only



Future improvements?
• More realistic Fub distribution?

• Plasma protein concentration variability: age, gender, disease 
state…?12

• Albumin or AAG binding?13

• More realistic CLint distribution?
• Isozyme abundances and activity: varies with age, ethnicity (at 

least)14,15

• Isozyme-specific data & modeling10

• Isozyme-specific metabolism assays not HT
• In silico predictions of isozyme-specific metabolism? Not easy!

• Existing data is mostly for pharmaceuticals
• CYPS are complicated!



Thank you!
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