
ucf-cs.github.io/tlds/

TLDS: Transactional Lockless Data Structures

Computer Software Engineering
Scalable & Secure Systems Lab

Damian Dechev

Dynamic Transactional Transformation

 We have developed a framework that transforms non-blocking
data structures into wait-free transactional containers.

 This framework is open source: http://ucf-cs.github.io/tlds/

 We use semantic conflict-detection to allow commutative
operations to execute without aborting, which improves upon
STM.

 Results:

Abstract

Traditionally, non-blocking
data structures provide
linearizable operations, but
these operations are not
composable. Transactional
data structures can perform
a sequence of operations that
appears to execute
atomically, which facilitates
modular design and software
reuse. TLDS encompasses:

 A scalable methodology for
transforming non-blocking
data structures into
transactional containers

 A library of transactional
data structures

 A tool to validate their
correctness

Library

 We provide a library of
verified transactional data
structures.

 Programmers can integrate
our data structures to easily
create fully-fledged parallel
programs.

Conventional Transactional Code

void ThreadWork() {
 mutex.lock();
 if(skiplist.find(3))
 skiplist.insert(5, 100);
 mutex.unlock();
}

Transactional Code Using TLDS

void ThreadWork() {
 ExecuteTransaction(TxFunction);
}

void TxFunction() {
 if(CallOp(skiplist, Find, 3))
 CallOp(skiplist, Insert, 5, 100);
}

Correctness Tool

 We present TxC-ADT, the
first tool that can check the
correctness of transactional
data structures.

 TxC-ADT recasts the
standard definitions of
transactional correctness in
terms of an abstract data
type.

 TxC-ADT verifies
correctness conditions
including serializability,
strict serializability, opacity,
and causal consistency.

Impact

By providing the source code
of our work, in addition to
publishing our results, we
enable developers to take
advantage of our existing
verified data structures. We
also provide a framework
that can be used to create
additional containers.

Our approach will advance
the state of the art in our
field, which will impact the
design and implementation
of parallel programs. The
impact on software in
scientific and commercial
applications will spur further
research work, and increase
market productivity.

Overview

We present our work on transforming non-blocking containers into
transactional ones, and verifying those transactional containers.

http://ucf-cs.github.io/Tervel/

