Computing Densities for Stochastic Differential Equations
Harish S. Bhat, Applied Mathematics, University of California, Merced (hbhat@ucmerced.edu)

MOTIVATION
Consider stochastic differential equation (SDE)

dXi = f(Xy;0)dt + g(Xy;0) dWs.

Often we wish to estimate parameters 6 for f
(drift) and g (diffusion), using data x consisting
of observations of X; at times { jAt}é-V:O. By
Markov property, log likelthood 1s

N-1
logp(x|0) = Zlogp Tit1|x,0)+C.
7=0

Computing each Markovian piece p(zj11|z;,0)
1s critical for estimation/inference of 6.

DTQ (Density Tracking by Quadrature) = direct
approach to computing these Markovian pieces.

DERIVATION

Discretize SDE 1n time with fixed time step
h > 0. Obtain discrete-time Markov chain with
continuous state space. Chapman-Kolmogorov
equation for this Markov chain 1s

B i) = / G, y)F(y, t:) dy.

Transition kernel &G i1s normal PDF over x with
mean y + f(y)h and variance g°(y)h.

Discretization of the above integral—via
quadrature—yields DTQ. E.g., trapezoidal rule
on equispaced grid {mk}M__ .

Method reduces to iterated matrix multiplication:

ﬁ(z—l—l) gp()

Set to = 0 and h = (At)/F for integer F'. Start
with p(z,tp) = d(x — x;) so that p(x,t1) =
G(x, ;). Now step forward in time to compute

p(xjt1,tr) = p(xjy1|2j,0).

THEOREMS

e We have proven that ||[p — p||;1 goes to zero exponentially in h, as h — 0, provided that k o< h* for

p > 1/2. Here h and k are the temporal and spatial grid spacings, respectively.

e Earlier result, due to Bally and Talay, showed that ||[p — p||,: = O(h). Combining this with our

result shows convergence of p — pin L'.

e We have also proved Chernoff bound that explains how domain truncation affects accuracy.

e With no hand-tuning or additional constraints, obtain both nonnegativity and approximate normal-

1zation of computed densities.

IMPLEMENTATION
Suppose we have the SDE

(j)zi — ——;XQlit CZVLQ.

With initial condition Xy = 0, what is p(x, 1)?
Here 1s a naive R implementation:

integrandmat <- function(xvec,yvec,h,f,qg)
{
X=replicate(length(yvec),bxvec)
Y=t (replicate(length(xvec),yvec))
out = exp(-(X-Y-f(Y)*h)"2/(2*g(Y)"2*h))
out = out/(g(Y)*sgrt(2*pi*h))
return(out)

simulation parameters
T =1

s = 0.75

h = 0.02

init = 0

numsteps = ceiling(T/h)
k = h”s

yM = k*(pi/(k"2))
xvec = seq(-yM,yM, by=k)

drift and diffusion functions
f <- function(x) { return(-x) }
g <- function(x) { return(rep(l,length(x))) }

pdf after one time step with Dirac \delta(x-init) IC
A = integrandmat (xvec,xvec,h,f,qg)

phat = exp(-(xvec-init-f(init)*h)"2/(2*g(init)”"2*h))
phat = phat/sqgrt(2*pi*g(init)”"2*h)
phat = as.matrix(phat)

main iteration loop
for (i in c(2:numsteps)) phat = k*(A%$*%phat)

FOR MORE INFORMATION

RDTQ

Rdtg—available on CRAN—provides R pack-
age for DTQ:

mydrift = function(x) { -x }
mydiff = function(x) { rep(l,length(x)) }
test = rdtgq(h=0.1,k=0.01,bigm=250,1init=0,£fT=1,

drift=mydrift,diffusion=mydiff,method="sparse")

plot(test$Sxvec,testSpdf,type="1")

Rdtg accommodates inline C++ implementation
of f and g:

require(Rcpp)

sourceCpp(code = '#include <Rcpp.h>
using namespace Rcpp;
double drift(double& x)
{

return(-x);

}
double diff (double& x)

{

return(1.0);

}
typedef double (*funcPtr) (double& x);

// [[Rcpp::export]]
XPtr<funcPtr> driftXPtr()
{

return (XPtr<funcPtr>(new funcPtr(&drift)));

}
// [[Rcpp::export]]
XPtr<funcPtr> diffXPtr()
{
return (XPtr<funcPtr>(new funcPtr(&diff)));
)
k 0.01
M 250
test = rdtg(h=0.1,k,bigm=M,1init=0,£fT=1,
drift=driftXPtr(),diffusion=diffXPtr(),method="cpp")

e H. S. Bhat and R. W. M. A. Madushani (2018). Density tracking by quadrature for stochastic differ-

ential equations. arXiv:1610.09572 [stat.CO]

e install.packages (‘Rdtqg’); library (Rdtq) ; https://cran.r-project.org/package=Rdtq

e http://faculty.ucmerced.edu/hbhat/publications.html and https://github.com/hbhat4000/sdeinference

EXTENSIONS

Improved O(h?) discretization in time of orig-
inal SDE.

Lévy SDE: simple modification to G(x, y).

Improved quadrature: sparse grids.
Multidimensional versions.

Adjoint DTQ method for fast, accurate com-
putation of Vg log p(x | 8).

le+02 -
1e+01 -
method
1e+00 - —— FP
@
_§ —— DTQ-Naive

—— DTQ-Sparse

le-02 -
AN
—

—e

1e—-03 -

0.003 0010 0030 0.100
error

DTQ methods are nearly 100x faster than FP
(Fokker-Planck) solver for same level of error.
Here we compare three implementation of DTQ:

e DTQ-Naive: same method as in sitmple R code
to the left.

e DTQ-CPP: C++ implementation using Rcpp
and RcppArmadillo, “method=cpp” 1n Rdtq.

e DTQ-Sparse: sparse matrix implementation

using Matrix package in R, “method=sparse”
in Rdtq. Sparsity of G follows naturally from
tail decay of Gaussians.

ACKNOWLEDGMENTS

We are grateful for National Science Foundation

support via award DMS-1723272.

