
SI2-SSI (2018): Collaborative Research: A Software Infrastructure for MPI Performance Engineering:
Integrating MVAPICH and TAU via the MPI Tools Interface

H. Subramoni, P. Kousha, A. Ruhela, S. Chakraborty, and D.K. Panda S. Shende, A. D. Malony, A. Maheo, and S. Ramesh
The Ohio State University University of Oregon

http://mvapich.cse.ohio-state.edu http://tau.uoregon.edu

Research Challenges Proposed Approach

This work was supported by the NSF under the ACI-1450440 & ACI-
1450471 grants. This work used the Extreme Science and Discovery
Environment (XSEDE) which is supported by National Science
Foundation grant number ACI-1053575. This work used allocation grants
TG-ASC090010 & TG-NCR130002.

Creating an MPI programming infrastructure that can
integrate performance analysis capabilities more
directly, through the MPI Tools Information Interface,
monitor Performance metrics during run time, and
deliver greater optimization opportunities for scientific
applications.

TAU Plugin Infrastructure Design

Autotuning Plugin for SNAP

Future Work & Research Dissemination
● Further enhancing the MPI_T support in MVAPICH2 and co-

designing TAU to take advantage of it
○ We are exploring the potential of the MPI Tools Information

Interface to support scenarios that require extremely fine-grained
tuning, such as:
■ Tuning low-level network protocols at a fine granularity

● Continue to study the benefits of utilizing CVARs exposed by
MVAPICH2 at application level on large supercomputing systems

● Study challenges in providing an interactive performance
engineering functionality for end users

● Release MVAPICH2 and TAU with enhanced support

Policy Engine for MPI_T Plugins Recommendation Plugin for MiniAMR

● Recommendation module and control policies are realized using a
generic plugin architecture inside TAU

● Plugin design allows custom policy modules to be implemented and
loaded as needed

● Plugins are written in C/C++ and implemented as shared library
modules

● Plugins register callbacks to salient user-defined events in TAU
● Using the environment variables TAU_PLUGINS and

TAU_PLUGINS_PATH, multiple plugins can be loaded in order

● Plugin events currently
supported are:

○ FUNCTION
REGISTRATION

○ ATOMIC EVENT
REGISTRATION

○ ATOMIC EVENT
TRIGGER

○ INTERRUPT TRIGGER

○ END OF EXECUTION

● Plugins can register
callbacks for more than one
event

● Plugin registers a callback for the INTERRUPT TRIGGER event that
is triggered when TAU has been configured to collect PVARs at
regular intervals by setting TAU_TRACK_MPI_T_PVARS
○ Plugin has access to PVARs that represent the quantity of unused

MVAPICH2 Virtual Buffer (VBUF) resources
○ Plugin sets MVAPICH2 CVARs to enable pool control when it

detects that the quantity of unused VBUFs has breached a user-
defined threshold

TAU Autotuning plugin design for freeing unused VBUFs

Large scale study with SNAP particle transport application that
benefits from a higher Eager threshold and freeing of unused

VBUFs

Run Number of
Processes

Eager Threshold
(Bytes)

Runtime (secs) Total VBUF
Memory
(Bytes)

Default 1024 MVAPICH2 Default 47.3 3,322,067

Eager 1024 20,000 42.2 3,787,050

TAU autotuning
plugin

1024 20,000 42.9 2,063,421

● Increasing the Eager threshold improves the point-to-point
performance at the cost of increased VBUF memory usage inside
MVAPICH2

● VBUF memory usage increases as larger VBUFs may need to be
allocated to store Eager messages in transit

● Plugin infrastructure can be utilized to generate performance
recommendations as metadata on ParaProf

● Recommendation plugin registers a callback for the END OF
PROFILING event that is triggered when TAU has finished profiling
○ Plugin has access to all the profiling data collected

Recommending usage of SHArP hardware offloading of
MPI_Allreduce for MiniAMR

● MVAPICH2 supports hardware offloading of MPI_Allreduce using
Mellanox’ SHArP protocol (disabled by default)

● MiniAMR uses MPI_Allreduce for small message size (8 Bytes)
○ Prime candidate to benefit from hardware offloading of collectives

● Recommendation plugin combines profiling and message size
information gathered by TAU from the PMPI interface to recommend
the user to enable MPIR_CVAR_ENABLE_SHARP

Run Number of Processes Runtime (secs)

Default 224 648

SHArP enabled 224 618

● The core tuning / recommendation logic for most plugins would likely
to consist of simple condition checks using PVARs and setting of
CVARs

● We would like to take advantage of this common structure by:
○ Defining a policy engine (generic autotuning plugin) with PVARs

and CVARs templated out
○ Providing a simple JSON-based rule script that plugin writers use to

fill in the template parameters for PVARs, CVARs, and custom
thresholds used in tuning

● We use JSON for describing the rule
itself:
○ Input: PVARs to be tested for a

specific condition
○ Output: CVARs

● In essence, the rule is describing a
recursive “if-condition” check with user
supplying the operands and operations

● The policy engine reads the rule and
computes the actual autotuning /
recommendation logic that the rule
represents

● Benefits of a policy engine:
○ Code redundancy is avoided
○ Users need not write

Motivation for a policy engine

Rule design for the policy engine

Enhanced MPI_T Support in MVAPICH2 and Utilizing it in TAU
● MVAPICH2 has multiple optimized designs for collective operations.
● Choosing the algorithm that deliver the best performance for a given

application is complicated and depends on several factors like message
size, size of the job, availability of advanced hardware features etc.

● PVARs to measure various aspects of collective algorithm usage like
bytes/messages sent/received have been added for all available
algorithms for:
○ Alltoall, Alltoallv, Gather, Gatherv, Scatter, Scatterv, Allgather,

Allgatherv, Broadcast, Reduce, Allreduce, Reduce_Scatter, and Barrier

● Introduced support for new MPI_T based CVARs to MVAPICH2
○ MPIR_CVAR_USE_BLOCKING - Enables mvapich2 to use

interrupt driven mode of communication progress
○ MPIR_CVAR_USE_SHARED_MEM - Enables the use of shared

memory for intra-node communication
○ MPIR_CVAR_STRIPING_THRESHOLD - Specifies the message

size above which MVAPICH2 begins to stripe the message across
multiple rails (if present)

○ MPIR_CVAR_USE_COALESCE - Enables coalescing multiple
small messages into a single message to increase throughput

○ MPIR_CVAR_RNDV_PROTOCOL - Specifies rendezvous protocol
to be used by MVAPICH2

	Slide Number 1

