S12- SS
STAM A

The STAMLA project aims at designing efficient tree data structures
and related algorithms for high performance machine learning appli-
cations. It finds its origins in computational astrophysics research
where data structures and memory access patterns have become one
the main bottleneck of simulation codes. Tree-based algorithms in-
clude, amongst many other examples, decision trees and Monte-Carlo
tree search. This last one played a central role in the recent advances
in artificial intelligence around the game of Go.

Trees and graphs

Space-partitioning quadiree €mmm e > Space-partitioning quadtree
(tree representation)

(spatial representation)

Rooted tree
(breadth-first indexing)

' : A
[aaa] [aaB | [AAc] [AaD} [cca] [ccB | [ccc | [ccp }'[paa| [DaB] [Dac] [DAD}” /i
A PN N JR v RN RN K AN N RN K Do ATy

—— Parent/child link
---+ Next element link

—— Depth-first pre-order tree traversa
—— Nonirst children

While graphs are generally stored as adjacency lists or matrices,
rooted trees tend to be stored using explicit links between nodes.
However, given a set of constraints at compile-time, like the arity of
the tree, or its maximum depth, more efficient representations are
available. In particular, implicit representations relying on indexing
strategies demonstrate excellent cache-friendliness and vectorization
properties. The STAMLA project aims at generating such represen-
tations at compile-time given a set of constraints depending on the
application domain. Toward this goal, software architecture plays a
central role to make optimizations as generic possible and impact as
many application domains as possible.

Example of optimization: kd-trees

Preliminary results have already been obtained on the optimization
of kd-trees. A kd-tree is a type of space-partitioning tree to speed-up
the search of elements within a space of a given dimension. They
are widely used in high performance computational sciences, in ge-
olocation applications and in clustering techniques. Although the
algorithms are well known and many implementations already exist,
better results have been obtained within the STAMLA project us-
ing advanced memory allocation techniques. By optimizing memory
allocation, reusing already-allocated memory, and simplifying access
patterns, significant speed-ups can be achieved as illustrated on the
benchmark results below. As an extension of this work, a distributed
version is now currently being implemented.

Optimization of tree construction
0.7

1.0x 3.2X 3.4x 0.8 X 7.1% 11.5x% 18.6%

0.6

Time (seconds)
o < <
wo RN ot

o
N

P
—_

=
o

vector of list vector array optimized paging implicit
pointers vector system tree

Scalable Tree Algorithms AP
-~ for Machme Learning Apphcatlons

The bit library

The STAMLA project is closely related to the development of The
Bit Library, a C+-+ library aiming at facilitating the design, im-
plementation, and maintenance of high performance bit manipu-

lation algorithms. After several years of work, the library is un-
der formal review by the ISO C++ Standards Committee to be-
come a part of the next version of the language and its standard
library. As such, these new bit manipulation tools will be avail-
able on any computer system equipped with a recent compiler. The
STAMLA project makes use of the library and in particular of bit iter-
ators to speed up hashing and indexing techniques for implicit trees.
The figure below illustrates speed-ups that have been obtained on
several basic bit manipulation algorithms when using The Bit Li-
brary compared to the use of standard out-of-the-box approaches.

1077 N

86 X 1906 x H22 X 153 x 31 x 3359 x 113 x
1 GCC/STD C++ Library
1 Our Approach
108
m
©
(-
o
9
g 10

Q
£
|_

10710 i

L)

o s 5 g

S =) _ ~ £ >

(@) () (@) —_ Q (@] (@)

@) wn @) L o wn <

10t e

The conceptification of trees

The C++420 language will introduce new programming approaches,
and in particular concept-based programming. The related tools,
already available as experimental features in compilers, allow to
constrain types and facilitate generic programming. The STAMLA
project explores these new approaches, in particular to rigorously de-
fine and constrain tree types, ranging from binary rooted trees, to
tries, and including suffix trees, trees for Monte-Carlo tree search, and
Abstract Syntax Trees. The idea is to provide a robust and generic
software architecture to provide users with means to implement any
tree data structure given behavioral and performance requirements.
Concept-based programming allow to clearly identify customization
points to provide advanced users with ways to finely tune memory
access patterns.

Current work focuses on finishing the standardization of The Bit Li-
brary, on the conceptification of trees, and on real-world applications
as a way to test the library. The Bit Library has been approved by
the C++ Library Evolution Working Group last year, and the final
wording is currently being refined. As a consequence it should be a
part of the Library Fundamentals v3 Technical Specification that will
be released in 2019. The conceptification of trees is also on the way
to achieve at the same time genericity, performance, and ease-of-use.
Current work focuses on memory layouts aspects and especially on
the design of customization points to allow users to choose between
storing or re-computing node information. Finally, on the application
side, manipulation of symbolic equations in physics has been taken
as a real-world use case of decision trees, abstract syntax trees, and
Monte-Carlo tree search. This example will allow to benchmark many
aspects of the trees that are being developed within the STAMLA
project.

Pl: Vincent'Reverdy & Robert J. Brunner - Award 1642411 - SI12 Pl meeting - May 2018 - I__icense':-_EC-BY

