
SI2-SSE
STAMLA

Scalable Tree Algorithms
for Machine Learning Applications

PI: Vincent Reverdy & Robert J. Brunner - Award 1642411 - SI2 PI meeting - May 2018 - License: CC-BY

Abstract
The STAMLA project aims at designing efficient tree data structures
and related algorithms for high performance machine learning appli-
cations. It finds its origins in computational astrophysics research
where data structures and memory access patterns have become one
the main bottleneck of simulation codes. Tree-based algorithms in-
clude, amongst many other examples, decision trees and Monte-Carlo
tree search. This last one played a central role in the recent advances
in artificial intelligence around the game of Go.

Trees and graphs

While graphs are generally stored as adjacency lists or matrices,
rooted trees tend to be stored using explicit links between nodes.
However, given a set of constraints at compile-time, like the arity of
the tree, or its maximum depth, more efficient representations are
available. In particular, implicit representations relying on indexing
strategies demonstrate excellent cache-friendliness and vectorization
properties. The STAMLA project aims at generating such represen-
tations at compile-time given a set of constraints depending on the
application domain. Toward this goal, software architecture plays a
central role to make optimizations as generic possible and impact as
many application domains as possible.

Example of optimization: kd-trees
Preliminary results have already been obtained on the optimization
of kd-trees. A kd-tree is a type of space-partitioning tree to speed-up
the search of elements within a space of a given dimension. They
are widely used in high performance computational sciences, in ge-
olocation applications and in clustering techniques. Although the
algorithms are well known and many implementations already exist,
better results have been obtained within the STAMLA project us-
ing advanced memory allocation techniques. By optimizing memory
allocation, reusing already-allocated memory, and simplifying access
patterns, significant speed-ups can be achieved as illustrated on the
benchmark results below. As an extension of this work, a distributed
version is now currently being implemented.

vector of
pointers

list vector array optimized
vector

paging
system

implicit
tree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(s

ec
on

ds
)

1.0× 3.2× 3.4× 5.8× 7.1× 11.5× 18.6×

Optimization of tree construction

The bit library
The STAMLA project is closely related to the development of The
Bit Library, a C++ library aiming at facilitating the design, im-
plementation, and maintenance of high performance bit manipu-
lation algorithms. After several years of work, the library is un-
der formal review by the ISO C++ Standards Committee to be-
come a part of the next version of the language and its standard
library. As such, these new bit manipulation tools will be avail-
able on any computer system equipped with a recent compiler. The
STAMLA project makes use of the library and in particular of bit iter-
ators to speed up hashing and indexing techniques for implicit trees.
The figure below illustrates speed-ups that have been obtained on
several basic bit manipulation algorithms when using The Bit Li-
brary compared to the use of standard out-of-the-box approaches.

10-11

10-10

10-9

10-8

10-7

T
im

e
 (

se
co

n
d
s)

86× 1906× 522× 153× 31× 3359× 113×

C
o
u
n
t

S
e
a
rc

h

C
o
p
y

Fi
ll

R
e
v
e
rs

e

S
o
rt

A
cc

u
m

u
la

te

GCC/STD C++ Library

Our Approach

The conceptification of trees
The C++20 language will introduce new programming approaches,
and in particular concept-based programming. The related tools,
already available as experimental features in compilers, allow to
constrain types and facilitate generic programming. The STAMLA
project explores these new approaches, in particular to rigorously de-
fine and constrain tree types, ranging from binary rooted trees, to
tries, and including suffix trees, trees for Monte-Carlo tree search, and
Abstract Syntax Trees. The idea is to provide a robust and generic
software architecture to provide users with means to implement any
tree data structure given behavioral and performance requirements.
Concept-based programming allow to clearly identify customization
points to provide advanced users with ways to finely tune memory
access patterns.

Current work and future directions
Current work focuses on finishing the standardization of The Bit Li-
brary, on the conceptification of trees, and on real-world applications
as a way to test the library. The Bit Library has been approved by
the C++ Library Evolution Working Group last year, and the final
wording is currently being refined. As a consequence it should be a
part of the Library Fundamentals v3 Technical Specification that will
be released in 2019. The conceptification of trees is also on the way
to achieve at the same time genericity, performance, and ease-of-use.
Current work focuses on memory layouts aspects and especially on
the design of customization points to allow users to choose between
storing or re-computing node information. Finally, on the application
side, manipulation of symbolic equations in physics has been taken
as a real-world use case of decision trees, abstract syntax trees, and
Monte-Carlo tree search. This example will allow to benchmark many
aspects of the trees that are being developed within the STAMLA
project.


