P VERSUS NP

FRANK VEGA*

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? This question was first mentioned in a letter written by John Nash to the National Security Agency in 1955. A precise statement of the P versus NP problem was introduced independently in 1971 by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity class is Sharp-P. Whether $\mathrm{P}=$ Sharp- P is another fundamental question that it is as important as it is unresolved. If any single Sharp-P-complete problem can be solved in polynomial time, then every NP problem has a polynomial time algorithm. The problem Sharp-MONOTONE-2SAT is known to be Sharp-P-complete. We prove Sharp-MONOTONE-2SAT is in P . In this way, we demonstrate the P versus NP problem.

Key words. Complexity Classes, Completeness, Polynomial Time, Counting Solutions, Number Theory

AMS subject classifications. 68Q15, 68Q17, 68R01

1. Introduction. The P versus $N P$ problem is a major unsolved problem in computer science [5]. This is considered by many to be the most important open problem in the field [5]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $\$ 1,000,000$ prize for the first correct solution [5]. It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency [1]. However, the precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [5].

In 1936, Turing developed his theoretical computational model [18]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [18]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [18]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [18].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [6]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [6].

The set of languages decided by deterministic Turing machines within time f is an important complexity class denoted $\operatorname{TIME}(f(n))$ [14]. In addition, the complexity class NTIME $(f(n))$ consists in those languages that can be decided within time f by nondeterministic Turing machines [14]. The most important complexity classes are P and $N P$. The class P is the union of all languages in $\operatorname{TIME}\left(n^{k}\right)$ for every possible positive constant k [14]. At the same time, $N P$ consists in all languages in NTIME $\left(n^{k}\right)$ for every possible positive constant k [14].

The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to $N P$? In 2012 , a poll of 151 researchers showed that $126(83 \%)$ believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted

[^0]axioms and therefore impossible to prove or disprove, 8 (5\%) said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [9]. It is fully expected that $P \neq N P$ [14]. Indeed, if $P=N P$ then there are stunning practical consequences [14]. For that reason, $P=N P$ is considered as a very unlikely event [14]. Certainly, P versus $N P$ is one of the greatest open problems in science and a correct solution for this incognita will have a great impact not only for computer science, but for many other fields as well [1].
2. Theory. Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over Σ [3]. A Turing machine M has an associated input alphabet $\Sigma[3]$. For each string w in Σ^{*} there is a computation associated with M on input $w[3]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=$ "yes" [3]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=$ "no", or if the computation fails to terminate [3].

The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by:

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=\text { "yes" }\right\} .
$$

We denote by $t_{M}(w)$ the number of steps in the computation of M on input $w[3]$. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is:

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length n [3]. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k[3]$. In other words, this means the language $L(M)$ can be accepted by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be accepted in polynomial time by deterministic Turing machines [6]. A verifier for a language L is a deterministic Turing machine M, where:

$$
L=\{w: M(w, c)=\text { "yes" for some string } c\} .
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of $w[3]$. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. $N P$ is also the complexity class of languages defined by polynomial time verifiers [14].

There is a close relation between the polynomial time verifiers and another important class: The complexity class Sharp- P (denoted as $\# P)$. Let $\{0,1\}^{*}$ be the infinite set of binary strings, a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\# P$ if there exists a polynomial time verifier M such that for every $x \in\{0,1\}^{*}$,

$$
f(x)=|\{y: M(x, y)=" y e s "\}|
$$

where $|\ldots|$ denotes the cardinality set function [3].
A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape [18]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [11]. A language $L \subseteq\{0,1\}^{*}$ is $N P$-complete if

- $L \in N P$, and
- $L^{\prime} \leq{ }_{p} L$ for every $L^{\prime} \in N P$.

If L is a language such that $L^{\prime} \leq_{p} L$ for some $L^{\prime} \in N P$-complete, then L is $N P$-hard [6]. Moreover, if $L \in N P$, then $L \in N P$-complete [6]. A principal $N P$-complete problem is $S A T$ [8]. An instance of $S A T$ is a Boolean formula ϕ which is composed of

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow($ implication $), \Leftrightarrow($ if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. The problem $S A T$ asks whether a given Boolean formula is satisfiable [8]. We define a $C N F$ Boolean formula using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$. Another relevant $N P$-complete language is $3 C N F$ satisfiability, or $3 S A T$ [6]. In $3 S A T$, it is asked whether a given Boolean formula ϕ in $3 C N F$ is satisfiable.

In computational complexity theory, $\# P$-complete is another complexity class. A problem is $\# P$-complete if and only if it is in $\# P$, and every problem in $\# P$ can be reduced to it by a polynomial time counting reduction [3]. A Boolean formula ϕ is in $2 C N F$ if each clause contains exactly two literals [14]. A Boolean formula ϕ in $2 C N F$ is $M O N O T O N E$ if no clause in ϕ contains a negated variable [14]. Counting the number of satisfying truth assignments in a MONOTONE $2 C N F$ formula is a well-known \#P-complete problem (denoted as \#MONOTONE 2SAT) [19].
3. Results. In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n [10]; i.e., if there exists an integer x such that:

$$
x^{2} \equiv q(\bmod n)
$$

Otherwise, q is called a quadratic nonresidue modulo n [10]. When in the context is clear the terminology "quadratic residue" and "quadratic nonresidue", then it is dropped the adjective "quadratic" [10]. We use the shorthand notations $q R p$ and $q N p$, to indicated that q is a quadratic residue or nonresidue, respectively. [10].

Theorem 3.1. \#MONOTONE $2 S A T \in P$.
Proof. Let ϕ be a Boolean formula in $2 C N F$ of n variables and m clauses. Let $p_{1}, \ldots, p_{2 \times m}$ be the first $2 \times m$ odd primes such that they have 2 as a quadratic nonresidue. Then, we assign for each literal inside of every clause in the Boolean
formula ϕ a unique of these prime numbers. We shall say a number z satisfies ϕ if the $\operatorname{assignment}\left(z R\left(p_{1, a} \times p_{1, b} \times \ldots \times p_{1, s}\right), z R\left(p_{2, c} \times p_{2, d} \times \ldots \times p_{2, r}\right), \ldots, z R\left(p_{n, e} \times\right.\right.$ $\left.p_{n, f} \times \ldots \times p_{n, t}\right)$) satisfies ϕ such that each prime $p_{i, j}$ was assigned to the variable x_{i} which is contained in the clause c_{j}. This means in a satisfying truth assignment T the variable x_{1} is true if $z R p_{1, j}$ for every prime $p_{1, j}$ assigned to the literal x_{1} which is contained into a clause c_{j} or x_{2} is false when $z N p_{2, j^{\prime}}$ for some prime $p_{2, j^{\prime}}$ assigned to the literal x_{2} that is contained into the clause $c_{j^{\prime}}$ and so forth. We can argument this condition by the following properties:

1. A number z is a nonresidue modulo y when z is a nonresidue modulo for at least one prime power dividing y [10].
2. A number z is a residue modulo y when z is a residue modulo for every prime power dividing y [10].
Now, for each clause c_{k} in ϕ we construct an expression of nonresidues that make the clause false for a possible candidate z. For example, in the clause $c_{k}=\left(x_{r} \vee x_{t}\right)$ for $1 \leq r, t \leq n$, then a solution of the simultaneous nonresidues $z N p_{r, k}$ and $z N p_{t, k}$ guarantee the clause will be false because x_{r} would be false and x_{t} would be false. However, we already know that when $z N p_{r, k}$ and $z N p_{t, k}$, then $(2 \times z) R p_{r, k}$ and $(2 \times z) R p_{t, k}$ because 2 is a nonresidue modulo every of these chosen primes and the multiplication of a nonresidue with a nonresidue is a residue [10]. In contraposition, the multiplication of a residue with a nonresidue is a nonresidue [10]. Since $p_{r, k}$ and $p_{t, k}$ are primes, then we can assure that $(2 \times z) R\left(p_{r, k} \times p_{t, k}\right)$ due to the mentioned property (2). Therefore, when $(2 \times z) R\left(p_{r, k} \times p_{t, k}\right)$, then we guarantee the clause c_{k} will be evaluated as false.

In this way, if we guarantee that for some number z we obtain $(2 \times z) N\left(p_{r, k} \times p_{t, k}\right)$ for every clause $c_{k}=\left(x_{r} \vee x_{t}\right)$ in ϕ, then z will correspond to a satisfying truth assignment for ϕ. However, when $(2 \times z) N\left(p_{r, k} \times p_{t, k}\right)$ for some clause $c_{k}=\left(x_{r} \vee x_{t}\right)$, then $(4 \times z) R\left(p_{r, k} \times p_{t, k}\right)$ because 2 is a nonresidue modulo every of these chosen primes and the multiplication of a nonresidue with a nonresidue is a residue [10]. Consequently, if we guarantee that for some number z we obtain $(4 \times z) R\left(p_{r, k} \times p_{t, k}\right)$ for every clause $c_{k}=\left(x_{r} \vee x_{t}\right)$ in ϕ, then z will correspond to a satisfying truth assignment for ϕ.

We can find all the values $q<\left(p_{r, k} \times p_{t, k}\right)$ such that $z \equiv q\left(\bmod \left(p_{r, k} \times p_{t, k}\right)\right)$ for every clause c_{k} where $q=\left(d^{2} \bmod \left(p_{r, k} \times p_{t, k}\right)\right), d<\left(p_{r, k} \times p_{t, k}\right)$ and q is divisible by 4 [10]. The number n_{k} is equal to the amount of all these previous different values q for a clause c_{k}. If we combine all of these congruences into m simultaneous congruences such that we always pick exactly one arbitrary congruence in the group of q values for every clause c_{k}, then we can apply the Chinese Remainder Theorem to obtain a single and unique solution $z<p_{1} \times p_{2} \times \ldots \times p_{2 \times m}$ which will certainly correspond to a satisfying truth assignment in $\phi[16]$. Therefore, the multiplication of $n_{1} \times n_{2} \times \ldots \times n_{m}$ (that is equal to the number of all possible combinations of m simultaneous congruences) will be equal to the amount of different satisfying truth assignments for ϕ.

Thus, \#MONOTONE $2 S A T \in P$. Certainly, we can find the first $2 \times m$ odd primes such that they have 2 as a quadratic nonresidue just checking for every odd prime p whether

$$
p \equiv 3(\bmod 8)
$$

or

$$
p \equiv 5(\bmod 8)
$$

as a consequence of the Euler's criterion [17]. Indeed, there are infinitely many primes
of the form $8 \times k+3$ or $8 \times k+5$ [17]. Moreover, the $n^{\text {th }}$ odd prime which has 2 as a quadratic nonresidue is polynomially bounded by $n \times \ln n$ [17]. In addition, we can make the primality test of a number in polynomial time [2].

Theorem 3.2. $P=N P$.
Proof. \#MONOTONE 2SAT is a well-known \#P-complete problem [19]. If any single $\# P$-complete problem can be solved in polynomial time, then $P=N P$ [14]. Therefore, as a consequence of Theorem 3.1, the answer of the P versus $N P$ problem will be $P=N P$.
4. Conclusion. No one has been able to find a polynomial time algorithm for any of more than 300 important known NP-complete problems [8]. Most complexity theorists already assume P is not equal to $N P$, but no one has found an accepted and valid proof yet [9]. There are several consequences if P is not equal to $N P$, such as many common problems cannot be solved efficiently [5]. However, a proof of $P=N P$ will have stunning practical consequences, because it leads to efficient methods for solving some of the important problems in $N P$ [5]. The consequences, both positive and negative, arise since various $N P$-complete problems are fundamental in many fields [5]. This result explicitly concludes with the answer of the P versus $N P$ problem: $P=N P$.

Cryptography, for example, relies on certain problems being difficult. A constructive and efficient solution to an $N P$-complete problem such as $3 S A T$ will break most existing cryptosystems including: Public-key cryptography [12], symmetric ciphers [13] and one-way functions used in cryptographic hashing [7]. These would need to be modified or replaced by information-theoretically secure solutions not inherently based on $P-N P$ equivalence.

There are enormous consequences that will follow from rendering tractable many currently mathematically intractable problems. For instance, many problems in operations research are $N P$-complete, such as some types of integer programming and the traveling salesman problem [11]. Efficient solutions to these problems have enormous implications for logistics [5]. Many other important problems, such as some problems in protein structure prediction, are also $N P$-complete, so this will spur considerable advances in biology [4].

But such changes may pale in significance compared to the revolution an efficient method for solving $N P$-complete problems will cause in mathematics itself. Stephen Cook says: "...it would transform mathematics by allowing a computer to find a formal proof of any theorem which has a proof of a reasonable length, since formal proofs can easily be recognized in polynomial time." [5].

Indeed, with this proof of $P=N P$ we could solve not merely one Millennium Problem but all seven of them [1]. This observation is based on once we fix a formal system such as the first-order logic plus the axioms of $Z F$ set theory, then we can find a demonstration in time polynomial in n when a given statement has a proof with at most n symbols long in that system [1]. This is assuming that the other six Clay conjectures have $Z F$ proofs that are not too large such as it was the Perelman's case [15].

Besides, a $P=N P$ proof reveals the existence of an interesting relationship between humans and machines [1]. For example, suppose we want to program a computer to create new Mozart-quality symphonies and Shakespeare-quality plays. When $P=N P$, this could be reduced to the easier problem of writing a computer program to recognize great works of art [1].

REFERENCES

[1] S. AAronson, $P \stackrel{?}{=} N P$, Electronic Colloquium on Computational Complexity, Report No. 4, (2017).
[2] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Mathematics, 160 (2004), pp. 781-793, https://doi.org/http://doi.org/10.4007/annals.2004.160.781.
[3] S. Arora and B. Barak, Computational complexity: a modern approach, Cambridge University Press, 2009.
[4] B. Berger and T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete, Journal of Computational Biology, 5 (1998), pp. 27-40, https://doi.org/ https://doi.org/10.1145/279069.279080.
[5] S. A. Cook, The P versus NP Problem, April 2000. At http://www.claymath.org/sites/ default/files/pvsnp.pdf.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, The MIT Press, 3 ed., 2009.
[7] D. De, A. Kumarasubramanian, and R. Venkatesan, Inversion Attacks on Secure Hash Functions Using sat Solvers, in International Conference on Theory and Applications of Satisfiability Testing, Springer, 2007, pp. 377-382, https://doi.org/https://doi.org/10. 1007/978-3-540-72788-0_36.
[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: W. H. Freeman and Company, 1 ed., 1979.
[9] W. I. GASARCh, Guest column: The second $P \stackrel{?}{=}$ NP poll, ACM SIGACT News, 43 (2012), pp. 53-77.
[10] C. F. Gauss and A. A. Clarke, Disquisitiones Arithemeticae, New York: Springer, 2 ed., 1986.
[11] O. Goldreich, $P, N P$, and NP-Completeness: The basics of computational complexity, Cambridge University Press, 2010.
[12] S. Horie and O. Watanabe, Hard instance generation for SAT, Algorithms and Computation, (1997), pp. 22-31, https://doi.org/https://doi.org/10.1007/3-540-63890-3_4.
[13] F. Massacci and L. Marraro, Logical Cryptanalysis as a SAT Problem, Journal of Automated Reasoning, 24 (2000), pp. 165-203, https://doi.org/https://doi.org/10.1023/A: 1006326723002.
[14] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[15] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, November 2002. At http://www.arxiv.org/abs/math.DG/0211159.
[16] K. H. Rosen, Elementary Number Theory and its Applications, Addison-Wesley, 3 ed., 1993.
[17] J. H. Silverman, A Friendly Introduction to Number Theory, Pearson Education, Inc., 4 ed., 2012.
[18] M. SiPsER, Introduction to the Theory of Computation, vol. 2, Thomson Course Technology Boston, 2006.
[19] L. G. VALIANT, The complexity of enumeration and reliability problems, SIAM Journal on Computing, (1979), pp. 410-421, https://doi.org/http://dx.doi.org/10.1137/0208032.

[^0]: *Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia (vega.frank@gmail.com).

