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Abstract. P versus NP is considered as one of the most important open problems in computer3
science. This consists in knowing the answer of the following question: Is P equal to NP? This4
question was first mentioned in a letter written by John Nash to the National Security Agency in5
1955. A precise statement of the P versus NP problem was introduced independently in 1971 by6
Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have7
failed. Another major complexity class is Sharp-P. Whether P = Sharp-P is another fundamental8
question that it is as important as it is unresolved. If any single Sharp-P-complete problem can be9
solved in polynomial time, then every NP problem has a polynomial time algorithm. The problem10
Sharp-MONOTONE-2SAT is known to be Sharp-P-complete. We prove Sharp-MONOTONE-2SAT11
is in P. In this way, we demonstrate the P versus NP problem.12
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1. Introduction. The P versus NP problem is a major unsolved problem in16

computer science [5]. This is considered by many to be the most important open17

problem in the field [5]. It is one of the seven Millennium Prize Problems selected18

by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct19

solution [5]. It was essentially mentioned in 1955 from a letter written by John Nash20

to the United States National Security Agency [1]. However, the precise statement of21

the P = NP problem was introduced in 1971 by Stephen Cook in a seminal paper22

[5].23

In 1936, Turing developed his theoretical computational model [18]. The de-24

terministic and nondeterministic Turing machines have become in two of the most25

important definitions related to this theoretical model for computation [18]. A deter-26

ministic Turing machine has only one next action for each step defined in its program27

or transition function [18]. A nondeterministic Turing machine could contain more28

than one action defined for each step of its program, where this one is no longer a29

function, but a relation [18].30

Another relevant advance in the last century has been the definition of a com-31

plexity class. A language over an alphabet is any set of strings made up of symbols32

from that alphabet [6]. A complexity class is a set of problems, which are represented33

as a language, grouped by measures such as the running time, memory, etc [6].34

The set of languages decided by deterministic Turing machines within time f is35

an important complexity class denoted TIME(f(n)) [14]. In addition, the complexity36

class NTIME(f(n)) consists in those languages that can be decided within time f37

by nondeterministic Turing machines [14]. The most important complexity classes38

are P and NP . The class P is the union of all languages in TIME(nk) for every39

possible positive constant k [14]. At the same time, NP consists in all languages in40

NTIME(nk) for every possible positive constant k [14].41

The biggest open question in theoretical computer science concerns the relation-42

ship between these classes: Is P equal to NP? In 2012, a poll of 151 researchers43

showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer44

is yes, 5 (3%) believed the question may be independent of the currently accepted45
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axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know46

or do not care or don’t want the answer to be yes nor the problem to be resolved [9].47

It is fully expected that P 6= NP [14]. Indeed, if P = NP then there are stunning48

practical consequences [14]. For that reason, P = NP is considered as a very unlikely49

event [14]. Certainly, P versus NP is one of the greatest open problems in science and50

a correct solution for this incognita will have a great impact not only for computer51

science, but for many other fields as well [1].52

2. Theory. Let Σ be a finite alphabet with at least two elements, and let Σ∗53

be the set of finite strings over Σ [3]. A Turing machine M has an associated input54

alphabet Σ [3]. For each string w in Σ∗ there is a computation associated with M55

on input w [3]. We say that M accepts w if this computation terminates in the56

accepting state, that is M(w) = “yes” [3]. Note that M fails to accept w either if this57

computation ends in the rejecting state, that is M(w) = “no”, or if the computation58

fails to terminate [3].59

The language accepted by a Turing machine M , denoted L(M), has an associated60

alphabet Σ and is defined by:61

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.62

We denote by tM (w) the number of steps in the computation of M on input w [3].63

For n ∈ N we denote by TM (n) the worst case run time of M ; that is:64

TM (n) = max{tM (w) : w ∈ Σn}65

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in66

polynomial time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In67

other words, this means the language L(M) can be accepted by the Turing machine68

M in polynomial time. Therefore, P is the complexity class of languages that can69

be accepted in polynomial time by deterministic Turing machines [6]. A verifier for a70

language L is a deterministic Turing machine M , where:71

L = {w : M(w, c) = “yes” for some string c}.72

We measure the time of a verifier only in terms of the length of w, so a polynomial73

time verifier runs in polynomial time in the length of w [3]. A verifier uses additional74

information, represented by the symbol c, to verify that a string w is a member of L.75

This information is called certificate. NP is also the complexity class of languages76

defined by polynomial time verifiers [14].77

There is a close relation between the polynomial time verifiers and another im-78

portant class: The complexity class Sharp-P (denoted as #P ). Let {0, 1}∗ be the79

infinite set of binary strings, a function f : {0, 1}∗ → N is in #P if there exists a80

polynomial time verifier M such that for every x ∈ {0, 1}∗,81

f(x) = |{y : M(x, y) = “yes”}|82

where | . . . | denotes the cardinality set function [3].83

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some de-84

terministic Turing machine M , on every input w, halts in polynomial time with just85

f(w) on its tape [18]. Let {0, 1}∗ be the infinite set of binary strings, we say that a86

language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆ {0, 1}∗, writ-87

ten L1 ≤p L2, if there is a polynomial time computable function f : {0, 1}∗ → {0, 1}∗88

such that for all x ∈ {0, 1}∗:89

x ∈ L1 if and only if f(x) ∈ L2.90
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An important complexity class is NP–complete [11]. A language L ⊆ {0, 1}∗ is91

NP–complete if92

• L ∈ NP , and93

• L′ ≤p L for every L′ ∈ NP .94

If L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L95

is NP–hard [6]. Moreover, if L ∈ NP , then L ∈ NP–complete [6]. A principal96

NP–complete problem is SAT [8]. An instance of SAT is a Boolean formula φ which97

is composed of98

1. Boolean variables: x1, x2, . . . , xn;99

2. Boolean connectives: Any Boolean function with one or two inputs and one100

output, such as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only101

if);102

3. and parentheses.103

A truth assignment for a Boolean formula φ is a set of values for the variables in104

φ. A satisfying truth assignment is a truth assignment that causes φ to be evaluated105

as true. A formula with a satisfying truth assignment is a satisfiable formula. The106

problem SAT asks whether a given Boolean formula is satisfiable [8]. We define a107

CNF Boolean formula using the following terms. A literal in a Boolean formula is108

an occurrence of a variable or its negation [6]. A Boolean formula is in conjunctive109

normal form, or CNF , if it is expressed as an AND of clauses, each of which is the110

OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal form or111

3CNF , if each clause has exactly three distinct literals [6].112

For example, the Boolean formula:113

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)114

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the115

three literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF116

satisfiability, or 3SAT [6]. In 3SAT , it is asked whether a given Boolean formula φ117

in 3CNF is satisfiable.118

In computational complexity theory, #P–complete is another complexity class. A119

problem is #P–complete if and only if it is in #P , and every problem in #P can be120

reduced to it by a polynomial time counting reduction [3]. A Boolean formula φ is121

in 2CNF if each clause contains exactly two literals [14]. A Boolean formula φ in122

2CNF is MONOTONE if no clause in φ contains a negated variable [14]. Counting123

the number of satisfying truth assignments in a MONOTONE 2CNF formula is a124

well-known #P–complete problem (denoted as #MONOTONE 2SAT) [19].125

3. Results. In number theory, an integer q is called a quadratic residue modulo126

n if it is congruent to a perfect square modulo n [10]; i.e., if there exists an integer x127

such that:128

x2 ≡ q(mod n).129

Otherwise, q is called a quadratic nonresidue modulo n [10]. When in the context130

is clear the terminology “quadratic residue” and “quadratic nonresidue”, then it is131

dropped the adjective “quadratic” [10]. We use the shorthand notations q R p and132

q N p, to indicated that q is a quadratic residue or nonresidue, respectively. [10].133

Theorem 3.1. #MONOTONE 2SAT ∈ P .134

Proof. Let φ be a Boolean formula in 2CNF of n variables and m clauses. Let135

p1, . . . , p2×m be the first 2 × m odd primes such that they have 2 as a quadratic136

nonresidue. Then, we assign for each literal inside of every clause in the Boolean137
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formula φ a unique of these prime numbers. We shall say a number z satisfies φ if the138

assignment (z R (p1,a× p1,b× . . .× p1,s), z R (p2,c× p2,d× . . .× p2,r), . . . , z R (pn,e×139

pn,f × . . .× pn,t)) satisfies φ such that each prime pi,j was assigned to the variable xi140

which is contained in the clause cj . This means in a satisfying truth assignment T141

the variable x1 is true if z R p1,j for every prime p1,j assigned to the literal x1 which142

is contained into a clause cj or x2 is false when z N p2,j′ for some prime p2,j′ assigned143

to the literal x2 that is contained into the clause cj′ and so forth. We can argument144

this condition by the following properties:145

1. A number z is a nonresidue modulo y when z is a nonresidue modulo for at146

least one prime power dividing y [10].147

2. A number z is a residue modulo y when z is a residue modulo for every prime148

power dividing y [10].149

Now, for each clause ck in φ we construct an expression of nonresidues that make150

the clause false for a possible candidate z. For example, in the clause ck = (xr ∨ xt)151

for 1 ≤ r, t ≤ n, then a solution of the simultaneous nonresidues z N pr,k and z N pt,k152

guarantee the clause will be false because xr would be false and xt would be false.153

However, we already know that when z N pr,k and z N pt,k, then (2× z) R pr,k and154

(2× z) R pt,k because 2 is a nonresidue modulo every of these chosen primes and the155

multiplication of a nonresidue with a nonresidue is a residue [10]. In contraposition,156

the multiplication of a residue with a nonresidue is a nonresidue [10]. Since pr,k and157

pt,k are primes, then we can assure that (2× z) R (pr,k × pt,k) due to the mentioned158

property (2). Therefore, when (2× z) R (pr,k× pt,k), then we guarantee the clause ck159

will be evaluated as false.160

In this way, if we guarantee that for some number z we obtain (2×z) N (pr,k×pt,k)161

for every clause ck = (xr ∨ xt) in φ, then z will correspond to a satisfying truth162

assignment for φ. However, when (2×z) N (pr,k×pt,k) for some clause ck = (xr∨xt),163

then (4 × z) R (pr,k × pt,k) because 2 is a nonresidue modulo every of these chosen164

primes and the multiplication of a nonresidue with a nonresidue is a residue [10].165

Consequently, if we guarantee that for some number z we obtain (4×z) R (pr,k×pt,k)166

for every clause ck = (xr ∨ xt) in φ, then z will correspond to a satisfying truth167

assignment for φ.168

We can find all the values q < (pr,k × pt,k) such that z ≡ q(mod (pr,k × pt,k)) for169

every clause ck where q = (d2 mod (pr,k × pt,k)), d < (pr,k × pt,k) and q is divisible170

by 4 [10]. The number nk is equal to the amount of all these previous different171

values q for a clause ck. If we combine all of these congruences into m simultaneous172

congruences such that we always pick exactly one arbitrary congruence in the group173

of q values for every clause ck, then we can apply the Chinese Remainder Theorem174

to obtain a single and unique solution z < p1 × p2 × . . . × p2×m which will certainly175

correspond to a satisfying truth assignment in φ [16]. Therefore, the multiplication176

of n1 × n2 × . . .× nm (that is equal to the number of all possible combinations of m177

simultaneous congruences) will be equal to the amount of different satisfying truth178

assignments for φ.179

Thus, #MONOTONE 2SAT ∈ P . Certainly, we can find the first 2 × m odd180

primes such that they have 2 as a quadratic nonresidue just checking for every odd181

prime p whether182

p ≡ 3(mod 8)183

or184

p ≡ 5(mod 8)185

as a consequence of the Euler’s criterion [17]. Indeed, there are infinitely many primes186
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of the form 8× k + 3 or 8× k + 5 [17]. Moreover, the nth odd prime which has 2 as187

a quadratic nonresidue is polynomially bounded by n× lnn [17]. In addition, we can188

make the primality test of a number in polynomial time [2].189

Theorem 3.2. P = NP .190

Proof. #MONOTONE 2SAT is a well-known #P–complete problem [19]. If any191

single #P–complete problem can be solved in polynomial time, then P = NP [14].192

Therefore, as a consequence of Theorem 3.1, the answer of the P versus NP problem193

will be P = NP .194

4. Conclusion. No one has been able to find a polynomial time algorithm for195

any of more than 300 important known NP–complete problems [8]. Most complexity196

theorists already assume P is not equal to NP , but no one has found an accepted197

and valid proof yet [9]. There are several consequences if P is not equal to NP ,198

such as many common problems cannot be solved efficiently [5]. However, a proof199

of P = NP will have stunning practical consequences, because it leads to efficient200

methods for solving some of the important problems in NP [5]. The consequences,201

both positive and negative, arise since various NP–complete problems are fundamental202

in many fields [5]. This result explicitly concludes with the answer of the P versus203

NP problem: P = NP .204

Cryptography, for example, relies on certain problems being difficult. A construc-205

tive and efficient solution to an NP–complete problem such as 3SAT will break most206

existing cryptosystems including: Public-key cryptography [12], symmetric ciphers207

[13] and one-way functions used in cryptographic hashing [7]. These would need to208

be modified or replaced by information-theoretically secure solutions not inherently209

based on P–NP equivalence.210

There are enormous consequences that will follow from rendering tractable many211

currently mathematically intractable problems. For instance, many problems in oper-212

ations research are NP–complete, such as some types of integer programming and the213

traveling salesman problem [11]. Efficient solutions to these problems have enormous214

implications for logistics [5]. Many other important problems, such as some problems215

in protein structure prediction, are also NP–complete, so this will spur considerable216

advances in biology [4].217

But such changes may pale in significance compared to the revolution an efficient218

method for solving NP–complete problems will cause in mathematics itself. Stephen219

Cook says: “...it would transform mathematics by allowing a computer to find a220

formal proof of any theorem which has a proof of a reasonable length, since formal221

proofs can easily be recognized in polynomial time.” [5].222

Indeed, with this proof of P = NP we could solve not merely one Millennium223

Problem but all seven of them [1]. This observation is based on once we fix a formal224

system such as the first-order logic plus the axioms of ZF set theory, then we can find225

a demonstration in time polynomial in n when a given statement has a proof with226

at most n symbols long in that system [1]. This is assuming that the other six Clay227

conjectures have ZF proofs that are not too large such as it was the Perelman’s case228

[15].229

Besides, a P = NP proof reveals the existence of an interesting relationship230

between humans and machines [1]. For example, suppose we want to program a231

computer to create new Mozart-quality symphonies and Shakespeare-quality plays.232

When P = NP , this could be reduced to the easier problem of writing a computer233

program to recognize great works of art [1].234
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