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P VERSUS NP

FRANK VEGA*

Abstract. P versus NP is considered as one of the most important open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? This
question was first mentioned in a letter written by John Nash to the National Security Agency in
1955. A precise statement of the P versus NP problem was introduced independently in 1971 by
Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity class is Sharp-P. Whether P = Sharp-P is another fundamental
question that it is as important as it is unresolved. If any single Sharp-P-complete problem can be
solved in polynomial time, then every NP problem has a polynomial time algorithm. The problem
Sharp-MONOTONE-2SAT is known to be Sharp-P-complete. We prove Sharp-MONOTONE-2SAT
is in P. In this way, we demonstrate the P versus NP problem.

Key words. Complexity Classes, Completeness, Polynomial Time, Counting Solutions, Number
Theory
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1. Introduction. The P versus NP problem is a major unsolved problem in
computer science [5]. This is considered by many to be the most important open
problem in the field [5]. It is one of the seven Millennium Prize Problems selected
by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct
solution [5]. It was essentially mentioned in 1955 from a letter written by John Nash
to the United States National Security Agency [1]. However, the precise statement of
the P = NP problem was introduced in 1971 by Stephen Cook in a seminal paper
[5].

In 1936, Turing developed his theoretical computational model [18]. The de-
terministic and nondeterministic Turing machines have become in two of the most
important definitions related to this theoretical model for computation [18]. A deter-
ministic Turing machine has only one next action for each step defined in its program
or transition function [18]. A nondeterministic Turing machine could contain more
than one action defined for each step of its program, where this one is no longer a
function, but a relation [18].

Another relevant advance in the last century has been the definition of a com-
plexity class. A language over an alphabet is any set of strings made up of symbols
from that alphabet [6]. A complexity class is a set of problems, which are represented
as a language, grouped by measures such as the running time, memory, etc [6].

The set of languages decided by deterministic Turing machines within time f is
an important complexity class denoted TIM E(f(n)) [14]. In addition, the complexity
class NTIME(f(n)) consists in those languages that can be decided within time f
by nondeterministic Turing machines [14]. The most important complexity classes
are P and NP. The class P is the union of all languages in T1M E(n*) for every
possible positive constant k [14]. At the same time, NP consists in all languages in
NTIME(nk) for every possible positive constant k [14].

The biggest open question in theoretical computer science concerns the relation-
ship between these classes: Is P equal to NP? In 2012, a poll of 151 researchers
showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer
is yes, 5 (3%) believed the question may be independent of the currently accepted
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axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know
or do not care or don’t want the answer to be yes nor the problem to be resolved [9].
It is fully expected that P # NP [14]. Indeed, if P = NP then there are stunning
practical consequences [14]. For that reason, P = NP is considered as a very unlikely
event [14]. Certainly, P versus NP is one of the greatest open problems in science and
a correct solution for this incognita will have a great impact not only for computer
science, but for many other fields as well [1].

2. Theory. Let X be a finite alphabet with at least two elements, and let >*
be the set of finite strings over ¥ [3]. A Turing machine M has an associated input
alphabet ¥ [3]. For each string w in ¥* there is a computation associated with M
on input w [3]. We say that M accepts w if this computation terminates in the
accepting state, that is M (w) = “yes” [3]. Note that M fails to accept w either if this
computation ends in the rejecting state, that is M (w) = “no”, or if the computation
fails to terminate [3].

The language accepted by a Turing machine M, denoted L(M), has an associated

alphabet ¥ and is defined by:
L(M)={we ¥ : M(w) = “yes” }.

We denote by ta(w) the number of steps in the computation of M on input w [3].
For n € N we denote by Ths(n) the worst case run time of M; that is:

Tr(n) = max{ty(w) :we X"}

where X" is the set of all strings over ¥ of length n [3]. We say that M runs in
polynomial time if there is a constant k such that for all n, Ths(n) < n* + & [3]. In
other words, this means the language L(M) can be accepted by the Turing machine
M in polynomial time. Therefore, P is the complexity class of languages that can
be accepted in polynomial time by deterministic Turing machines [6]. A verifier for a
language L is a deterministic Turing machine M, where:

L={w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [3]. A verifier uses additional
information, represented by the symbol ¢, to verify that a string w is a member of L.
This information is called certificate. NP is also the complexity class of languages
defined by polynomial time verifiers [14].

There is a close relation between the polynomial time verifiers and another im-
portant class: The complexity class Sharp-P (denoted as #P). Let {0,1}* be the
infinite set of binary strings, a function f : {0,1}* — N is in #P if there exists a
polynomial time verifier M such that for every x € {0, 1}*,

flx) =y : M(z,y) = “yes” }|

where | ...| denotes the cardinality set function [3].

A function f : ¥* — ¥* is a polynomial time computable function if some de-
terministic Turing machine M, on every input w, halts in polynomial time with just
f(w) on its tape [18]. Let {0,1}* be the infinite set of binary strings, we say that a
language L1 C {0,1}* is polynomial time reducible to a language Lo C {0,1}*, writ-
ten Ly <, Lo, if there is a polynomial time computable function f : {0,1}* — {0,1}*
such that for all z € {0,1}*:

x € Ly if and only if f(x) € Lo.
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P VS NP 3

An important complexity class is NP-complete [11]. A language L C {0,1}* is
NP—-complete if

e L€ NP, and

o L' <, L forevery L’ e NP.

If L is a language such that L' <, L for some L’ € NP-complete, then L
is NP-hard [6]. Moreover, if L € NP, then L € NP-complete [6]. A principal
NP-complete problem is SAT [8]. An instance of SAT is a Boolean formula ¢ which
is composed of

1. Boolean variables: x1,xs,...,ZTn;

2. Boolean connectives: Any Boolean function with one or two inputs and one
output, such as A(AND), V(OR), —(NOT), =(implication), < (if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in
¢. A satisfying truth assignment is a truth assignment that causes ¢ to be evaluated
as true. A formula with a satisfying truth assignment is a satisfiable formula. The
problem SAT asks whether a given Boolean formula is satisfiable [8]. We define a
CNF Boolean formula using the following terms. A literal in a Boolean formula is
an occurrence of a variable or its negation [6]. A Boolean formula is in conjunctive
normal form, or CNF, if it is expressed as an AND of clauses, each of which is the
OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal form or
3CNF, if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

(l‘lv — 11V — xg) A (1‘3 V xo V I4) AN (—/ 1V — 3V — I4)

is in 3CNF. The first of its three clauses is (z1V — 21V — x3), which contains the
three literals x1, — z1, and — x5. Another relevant NP—complete language is 3SCNF
satisfiability, or 3SAT [6]. In 3SAT, it is asked whether a given Boolean formula ¢
in 3CNF is satisfiable.

In computational complexity theory, #P-complete is another complexity class. A
problem is #P-complete if and only if it is in #P, and every problem in #P can be
reduced to it by a polynomial time counting reduction [3]. A Boolean formula ¢ is
in 2CNF if each clause contains exactly two literals [14]. A Boolean formula ¢ in
2CNF is MONOTONE if no clause in ¢ contains a negated variable [14]. Counting
the number of satisfying truth assignments in a MONOTONE 2CNF formula is a
well-known #P-complete problem (denoted as #ZMONOTONE 2SAT) [19].

3. Results. In number theory, an integer ¢ is called a quadratic residue modulo
n if it is congruent to a perfect square modulo n [10]; i.e., if there exists an integer z
such that:
x? = g(mod n).
Otherwise, ¢ is called a quadratic nonresidue modulo n [10]. When in the context
is clear the terminology “quadratic residue” and “quadratic nonresidue”, then it is

dropped the adjective “quadratic” [10]. We use the shorthand notations ¢ R p and
g N p, to indicated that ¢ is a quadratic residue or nonresidue, respectively. [10].

THEOREM 3.1. #MONOTONE 2SAT € P.

Proof. Let ¢ be a Boolean formula in 2CNF' of n variables and m clauses. Let
P1,---,P2xm be the first 2 x m odd primes such that they have 2 as a quadratic
nonresidue. Then, we assign for each literal inside of every clause in the Boolean
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formula ¢ a unique of these prime numbers. We shall say a number z satisfies ¢ if the
assignment (2 R (p1,o XP1p X ... X P1,s),2 R (P2,c X P2,a X ... XD2y),..., 2 R (Pne X
Dn,f X ... X Ppnt)) satisfies ¢ such that each prime p; ; was assigned to the variable x;
which is contained in the clause ¢;. This means in a satisfying truth assignment T’
the variable z; is true if z R p; ; for every prime p; ; assigned to the literal z; which
is contained into a clause c; or 3 is false when z IV py ;- for some prime p, ;- assigned
to the literal xp that is contained into the clause ¢;; and so forth. We can argument
this condition by the following properties:
1. A number z is a nonresidue modulo y when z is a nonresidue modulo for at
least one prime power dividing y [10].
2. A number z is a residue modulo y when z is a residue modulo for every prime
power dividing y [10].

Now, for each clause ¢; in ¢ we construct an expression of nonresidues that make
the clause false for a possible candidate z. For example, in the clause ¢, = (z, V x¢)
for 1 < r,t < n, then a solution of the simultaneous nonresidues z N p,.;, and z N p;
guarantee the clause will be false because z, would be false and z; would be false.
However, we already know that when z N p,; and z N px, then (2 x 2) R p,; and
(2 x 2) R py 1, because 2 is a nonresidue modulo every of these chosen primes and the
multiplication of a nonresidue with a nonresidue is a residue [10]. In contraposition,
the multiplication of a residue with a nonresidue is a nonresidue [10]. Since p,; and
Pk are primes, then we can assure that (2 x z) R (prr X pr,x) due to the mentioned
property (2). Therefore, when (2 X z) R (prx X P.i), then we guarantee the clause ¢y
will be evaluated as false.

In this way, if we guarantee that for some number z we obtain (2xz) N (pr.r Xpt 1)
for every clause ¢, = (x, V a¢) in ¢, then z will correspond to a satisfying truth
assignment for ¢. However, when (2x z) N (p,x X pr ) for some clause ¢ = (z, V),
then (4 x z) R (prk X pik) because 2 is a nonresidue modulo every of these chosen
primes and the multiplication of a nonresidue with a nonresidue is a residue [10].
Consequently, if we guarantee that for some number z we obtain (4 X z2) R (prx X Dt k)
for every clause ¢, = (z, V @) in ¢, then z will correspond to a satisfying truth
assignment for ¢.

We can find all the values ¢ < (py i X pik) such that z = g(mod (p,x X prx)) for
every clause ¢, where ¢ = (d? mod (prr X ptx))s d < (Prx X pex) and g is divisible
by 4 [10]. The number ny is equal to the amount of all these previous different
values ¢ for a clause c;. If we combine all of these congruences into m simultaneous
congruences such that we always pick exactly one arbitrary congruence in the group
of ¢ values for every clause cg, then we can apply the Chinese Remainder Theorem
to obtain a single and unique solution z < p; X pa X ... X paxm Wwhich will certainly
correspond to a satisfying truth assignment in ¢ [16]. Therefore, the multiplication
of ny X ng X ... X n, (that is equal to the number of all possible combinations of m
simultaneous congruences) will be equal to the amount of different satisfying truth
assignments for ¢.

Thus, ZMONOTONE 2SAT € P. Certainly, we can find the first 2 x m odd
primes such that they have 2 as a quadratic nonresidue just checking for every odd
prime p whether

p = 3(mod 8)

or

p = 5(mod 8)

as a consequence of the Euler’s criterion [17]. Indeed, there are infinitely many primes
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of the form 8 x k + 3 or 8 x k + 5 [17]. Moreover, the n* odd prime which has 2 as
a quadratic nonresidue is polynomially bounded by n x Inn [17]. In addition, we can
make the primality test of a number in polynomial time [2]. ]

THEOREM 3.2. P = NP.

Proof. #MONOTONE 2SAT is a well-known #P-complete problem [19]. If any
single #P-complete problem can be solved in polynomial time, then P = NP [14].
Therefore, as a consequence of Theorem 3.1, the answer of the P versus NP problem
will be P = NP. d

4. Conclusion. No one has been able to find a polynomial time algorithm for
any of more than 300 important known NP-complete problems [8]. Most complexity
theorists already assume P is not equal to NP, but no one has found an accepted
and valid proof yet [9]. There are several consequences if P is not equal to NP,
such as many common problems cannot be solved efficiently [5]. However, a proof
of P = NP will have stunning practical consequences, because it leads to efficient
methods for solving some of the important problems in NP [5]. The consequences,
both positive and negative, arise since various NP—complete problems are fundamental
in many fields [5]. This result explicitly concludes with the answer of the P versus
NP problem: P = NP.

Cryptography, for example, relies on certain problems being difficult. A construc-
tive and efficient solution to an NP-complete problem such as 3SAT will break most
existing cryptosystems including: Public-key cryptography [12], symmetric ciphers
[13] and one-way functions used in cryptographic hashing [7]. These would need to
be modified or replaced by information-theoretically secure solutions not inherently
based on P-NP equivalence.

There are enormous consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in oper-
ations research are NP—complete, such as some types of integer programming and the
traveling salesman problem [11]. Efficient solutions to these problems have enormous
implications for logistics [5]. Many other important problems, such as some problems
in protein structure prediction, are also NP—complete, so this will spur considerable
advances in biology [4].

But such changes may pale in significance compared to the revolution an efficient
method for solving NP—-complete problems will cause in mathematics itself. Stephen
Cook says: “...it would transform mathematics by allowing a computer to find a
formal proof of any theorem which has a proof of a reasonable length, since formal
proofs can easily be recognized in polynomial time.” [5].

Indeed, with this proof of P = NP we could solve not merely one Millennium
Problem but all seven of them [1]. This observation is based on once we fix a formal
system such as the first-order logic plus the axioms of ZF' set theory, then we can find
a demonstration in time polynomial in n when a given statement has a proof with
at most n symbols long in that system [1]. This is assuming that the other six Clay
conjectures have ZF proofs that are not too large such as it was the Perelman’s case
[15].

Besides, a P = NP proof reveals the existence of an interesting relationship
between humans and machines [1]. For example, suppose we want to program a
computer to create new Mozart-quality symphonies and Shakespeare-quality plays.
When P = NP, this could be reduced to the easier problem of writing a computer
program to recognize great works of art [1].
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