O W

-

o

10
11
12
13
14

40

42
43
44

P VERSUS NP

FRANK VEGA*

Abstract. P versus NP is considered as one of the most important open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? This
question was first mentioned in a letter written by John Nash to the National Security Agency in
1955. A precise statement of the P versus NP problem was introduced independently in 1971 by
Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity class is Sharp-P. Whether P = Sharp-P is another fundamental
question that it is as important as it is unresolved. If any single Sharp-P-complete problem can be
solved in polynomial time, then every NP problem has a polynomial time algorithm. The problem
Sharp-MONOTONE-2SAT is known to be Sharp-P-complete. We prove Sharp-MONOTONE-2SAT
is in P. In this way, we demonstrate the P versus NP problem.

Key words. Complexity Classes, Completeness, Polynomial Time, Counting Solutions, Number
Theory

AMS subject classifications. 68Q15, 68Q17, 68R01

1. Introduction. The P versus NP problem is a major unsolved problem in
computer science [5]. This is considered by many to be the most important open
problem in the field [5]. It is one of the seven Millennium Prize Problems selected
by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct
solution [5]. It was essentially mentioned in 1955 from a letter written by John Nash
to the United States National Security Agency [1]. However, the precise statement of
the P = NP problem was introduced in 1971 by Stephen Cook in a seminal paper
[5].

In 1936, Turing developed his theoretical computational model [18]. The de-
terministic and nondeterministic Turing machines have become in two of the most
important definitions related to this theoretical model for computation [18]. A deter-
ministic Turing machine has only one next action for each step defined in its program
or transition function [18]. A nondeterministic Turing machine could contain more
than one action defined for each step of its program, where this one is no longer a
function, but a relation [18].

Another relevant advance in the last century has been the definition of a com-
plexity class. A language over an alphabet is any set of strings made up of symbols
from that alphabet [6]. A complexity class is a set of problems, which are represented
as a language, grouped by measures such as the running time, memory, etc [6].

The set of languages decided by deterministic Turing machines within time f is
an important complexity class denoted TIM E(f(n)) [14]. In addition, the complexity
class NTIME(f(n)) consists in those languages that can be decided within time f
by nondeterministic Turing machines [14]. The most important complexity classes
are P and NP. The class P is the union of all languages in T1M E(n*) for every
possible positive constant k [14]. At the same time, NP consists in all languages in
NTIME(nk) for every possible positive constant k [14].

The biggest open question in theoretical computer science concerns the relation-
ship between these classes: Is P equal to NP? In 2012, a poll of 151 researchers
showed that 126 (83%) believed the answer to be no, 12 (9%) believed the answer
is yes, 5 (3%) believed the question may be independent of the currently accepted

*Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia (vega.frank@gmail.com).

1

This manuscript is for review purposes only.

mailto:vega.frank@gmail.com

63
64

66
67
68
69
70

71

79
80
81

82

83
84
85
86
87
88

89

90

2 FRANK VEGA

axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know
or do not care or don’t want the answer to be yes nor the problem to be resolved [9].
It is fully expected that P # NP [14]. Indeed, if P = NP then there are stunning
practical consequences [14]. For that reason, P = NP is considered as a very unlikely
event [14]. Certainly, P versus NP is one of the greatest open problems in science and
a correct solution for this incognita will have a great impact not only for computer
science, but for many other fields as well [1].

2. Theory. Let X be a finite alphabet with at least two elements, and let >*
be the set of finite strings over ¥ [3]. A Turing machine M has an associated input
alphabet ¥ [3]. For each string w in ¥* there is a computation associated with M
on input w [3]. We say that M accepts w if this computation terminates in the
accepting state, that is M (w) = “yes” [3]. Note that M fails to accept w either if this
computation ends in the rejecting state, that is M (w) = “no”, or if the computation
fails to terminate [3].

The language accepted by a Turing machine M, denoted L(M), has an associated

alphabet ¥ and is defined by:
L(M)={we ¥ : M(w) = “yes” }.

We denote by ta(w) the number of steps in the computation of M on input w [3].
For n € N we denote by Ths(n) the worst case run time of M; that is:

Tr(n) = max{ty(w) :we X"}

where X" is the set of all strings over ¥ of length n [3]. We say that M runs in
polynomial time if there is a constant k such that for all n, Ths(n) < n* + & [3]. In
other words, this means the language L(M) can be accepted by the Turing machine
M in polynomial time. Therefore, P is the complexity class of languages that can
be accepted in polynomial time by deterministic Turing machines [6]. A verifier for a
language L is a deterministic Turing machine M, where:

L={w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial
time verifier runs in polynomial time in the length of w [3]. A verifier uses additional
information, represented by the symbol ¢, to verify that a string w is a member of L.
This information is called certificate. NP is also the complexity class of languages
defined by polynomial time verifiers [14].

There is a close relation between the polynomial time verifiers and another im-
portant class: The complexity class Sharp-P (denoted as #P). Let {0,1}* be the
infinite set of binary strings, a function f : {0,1}* — N is in #P if there exists a
polynomial time verifier M such that for every x € {0, 1}*,

flx) =y : M(z,y) = “yes” }|

where | ...| denotes the cardinality set function [3].

A function f : ¥* — ¥* is a polynomial time computable function if some de-
terministic Turing machine M, on every input w, halts in polynomial time with just
f(w) on its tape [18]. Let {0,1}* be the infinite set of binary strings, we say that a
language L1 C {0,1}* is polynomial time reducible to a language Lo C {0,1}*, writ-
ten Ly <, Lo, if there is a polynomial time computable function f : {0,1}* — {0,1}*
such that for all z € {0,1}*:

x € Ly if and only if f(x) € Lo.

This manuscript is for review purposes only.

94

114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133

135
136
137

P VS NP 3

An important complexity class is NP-complete [11]. A language L C {0,1}* is
NP—-complete if

e L€ NP, and

o L' <, L forevery L’ e NP.

If L is a language such that L' <, L for some L’ € NP-complete, then L
is NP-hard [6]. Moreover, if L € NP, then L € NP-complete [6]. A principal
NP-complete problem is SAT [8]. An instance of SAT is a Boolean formula ¢ which
is composed of

1. Boolean variables: x1,xs,...,ZTn;

2. Boolean connectives: Any Boolean function with one or two inputs and one
output, such as A(AND), V(OR), —(NOT), =(implication), < (if and only
if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in
¢. A satisfying truth assignment is a truth assignment that causes ¢ to be evaluated
as true. A formula with a satisfying truth assignment is a satisfiable formula. The
problem SAT asks whether a given Boolean formula is satisfiable [8]. We define a
CNF Boolean formula using the following terms. A literal in a Boolean formula is
an occurrence of a variable or its negation [6]. A Boolean formula is in conjunctive
normal form, or CNF, if it is expressed as an AND of clauses, each of which is the
OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal form or
3CNF, if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

(l‘lv — 11V — xg) A (1‘3 V xo V I4) AN (—/ 1V — 3V — I4)

is in 3CNF. The first of its three clauses is (z1V — 21V — x3), which contains the
three literals x1, — z1, and — x5. Another relevant NP—complete language is 3SCNF
satisfiability, or 3SAT [6]. In 3SAT, it is asked whether a given Boolean formula ¢
in 3CNF is satisfiable.

In computational complexity theory, #P-complete is another complexity class. A
problem is #P-complete if and only if it is in #P, and every problem in #P can be
reduced to it by a polynomial time counting reduction [3]. A Boolean formula ¢ is
in 2CNF if each clause contains exactly two literals [14]. A Boolean formula ¢ in
2CNF is MONOTONE if no clause in ¢ contains a negated variable [14]. Counting
the number of satisfying truth assignments in a MONOTONE 2CNF formula is a
well-known #P-complete problem (denoted as #ZMONOTONE 2SAT) [19].

3. Results. In number theory, an integer ¢ is called a quadratic residue modulo
n if it is congruent to a perfect square modulo n [10]; i.e., if there exists an integer z
such that:
x? = g(mod n).
Otherwise, ¢ is called a quadratic nonresidue modulo n [10]. When in the context
is clear the terminology “quadratic residue” and “quadratic nonresidue”, then it is

dropped the adjective “quadratic” [10]. We use the shorthand notations ¢ R p and
g N p, to indicated that ¢ is a quadratic residue or nonresidue, respectively. [10].

THEOREM 3.1. #MONOTONE 2SAT € P.

Proof. Let ¢ be a Boolean formula in 2CNF' of n variables and m clauses. Let
P1,---,P2xm be the first 2 x m odd primes such that they have 2 as a quadratic
nonresidue. Then, we assign for each literal inside of every clause in the Boolean

This manuscript is for review purposes only.

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184
185

186

4 FRANK VEGA

formula ¢ a unique of these prime numbers. We shall say a number z satisfies ¢ if the
assignment (2 R (p1,o XP1p X ... X P1,s),2 R (P2,c X P2,a X ... XD2y),..., 2 R (Pne X
Dn,f X ... X Ppnt)) satisfies ¢ such that each prime p; ; was assigned to the variable x;
which is contained in the clause ¢;. This means in a satisfying truth assignment T’
the variable z; is true if z R p; ; for every prime p; ; assigned to the literal z; which
is contained into a clause c; or 3 is false when z IV py ;- for some prime p, ;- assigned
to the literal xp that is contained into the clause ¢;; and so forth. We can argument
this condition by the following properties:
1. A number z is a nonresidue modulo y when z is a nonresidue modulo for at
least one prime power dividing y [10].
2. A number z is a residue modulo y when z is a residue modulo for every prime
power dividing y [10].

Now, for each clause ¢; in ¢ we construct an expression of nonresidues that make
the clause false for a possible candidate z. For example, in the clause ¢, = (z, V x¢)
for 1 < r,t < n, then a solution of the simultaneous nonresidues z N p,.;, and z N p;
guarantee the clause will be false because z, would be false and z; would be false.
However, we already know that when z N p,; and z N px, then (2 x 2) R p,; and
(2 x 2) R py 1, because 2 is a nonresidue modulo every of these chosen primes and the
multiplication of a nonresidue with a nonresidue is a residue [10]. In contraposition,
the multiplication of a residue with a nonresidue is a nonresidue [10]. Since p,; and
Pk are primes, then we can assure that (2 x z) R (prr X pr,x) due to the mentioned
property (2). Therefore, when (2 X z) R (prx X P.i), then we guarantee the clause ¢y
will be evaluated as false.

In this way, if we guarantee that for some number z we obtain (2xz) N (pr.r Xpt 1)
for every clause ¢, = (x, V a¢) in ¢, then z will correspond to a satisfying truth
assignment for ¢. However, when (2x z) N (p,x X pr) for some clause ¢ = (z, V),
then (4 x z) R (prk X pik) because 2 is a nonresidue modulo every of these chosen
primes and the multiplication of a nonresidue with a nonresidue is a residue [10].
Consequently, if we guarantee that for some number z we obtain (4 X z2) R (prx X Dt k)
for every clause ¢, = (z, V @) in ¢, then z will correspond to a satisfying truth
assignment for ¢.

We can find all the values ¢ < (py i X pik) such that z = g(mod (p,x X prx)) for
every clause ¢, where ¢ = (d? mod (prr X ptx))s d < (Prx X pex) and g is divisible
by 4 [10]. The number ny is equal to the amount of all these previous different
values ¢ for a clause c;. If we combine all of these congruences into m simultaneous
congruences such that we always pick exactly one arbitrary congruence in the group
of ¢ values for every clause cg, then we can apply the Chinese Remainder Theorem
to obtain a single and unique solution z < p; X pa X ... X paxm Wwhich will certainly
correspond to a satisfying truth assignment in ¢ [16]. Therefore, the multiplication
of ny X ng X ... X n, (that is equal to the number of all possible combinations of m
simultaneous congruences) will be equal to the amount of different satisfying truth
assignments for ¢.

Thus, ZMONOTONE 2SAT € P. Certainly, we can find the first 2 x m odd
primes such that they have 2 as a quadratic nonresidue just checking for every odd
prime p whether

p = 3(mod 8)

or

p = 5(mod 8)

as a consequence of the Euler’s criterion [17]. Indeed, there are infinitely many primes

This manuscript is for review purposes only.

187
188

189

190

191
192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

1

225
226
227
228
229
230

b

1

S

[\
o

232
233
234

b
b

P VS NP 5

of the form 8 x k + 3 or 8 x k + 5 [17]. Moreover, the n* odd prime which has 2 as
a quadratic nonresidue is polynomially bounded by n x Inn [17]. In addition, we can
make the primality test of a number in polynomial time [2].]

THEOREM 3.2. P = NP.

Proof. #MONOTONE 2SAT is a well-known #P-complete problem [19]. If any
single #P-complete problem can be solved in polynomial time, then P = NP [14].
Therefore, as a consequence of Theorem 3.1, the answer of the P versus NP problem
will be P = NP. d

4. Conclusion. No one has been able to find a polynomial time algorithm for
any of more than 300 important known NP-complete problems [8]. Most complexity
theorists already assume P is not equal to NP, but no one has found an accepted
and valid proof yet [9]. There are several consequences if P is not equal to NP,
such as many common problems cannot be solved efficiently [5]. However, a proof
of P = NP will have stunning practical consequences, because it leads to efficient
methods for solving some of the important problems in NP [5]. The consequences,
both positive and negative, arise since various NP—complete problems are fundamental
in many fields [5]. This result explicitly concludes with the answer of the P versus
NP problem: P = NP.

Cryptography, for example, relies on certain problems being difficult. A construc-
tive and efficient solution to an NP-complete problem such as 3SAT will break most
existing cryptosystems including: Public-key cryptography [12], symmetric ciphers
[13] and one-way functions used in cryptographic hashing [7]. These would need to
be modified or replaced by information-theoretically secure solutions not inherently
based on P-NP equivalence.

There are enormous consequences that will follow from rendering tractable many
currently mathematically intractable problems. For instance, many problems in oper-
ations research are NP—complete, such as some types of integer programming and the
traveling salesman problem [11]. Efficient solutions to these problems have enormous
implications for logistics [5]. Many other important problems, such as some problems
in protein structure prediction, are also NP—complete, so this will spur considerable
advances in biology [4].

But such changes may pale in significance compared to the revolution an efficient
method for solving NP—-complete problems will cause in mathematics itself. Stephen
Cook says: “...it would transform mathematics by allowing a computer to find a
formal proof of any theorem which has a proof of a reasonable length, since formal
proofs can easily be recognized in polynomial time.” [5].

Indeed, with this proof of P = NP we could solve not merely one Millennium
Problem but all seven of them [1]. This observation is based on once we fix a formal
system such as the first-order logic plus the axioms of ZF' set theory, then we can find
a demonstration in time polynomial in n when a given statement has a proof with
at most n symbols long in that system [1]. This is assuming that the other six Clay
conjectures have ZF proofs that are not too large such as it was the Perelman’s case
[15].

Besides, a P = NP proof reveals the existence of an interesting relationship
between humans and machines [1]. For example, suppose we want to program a
computer to create new Mozart-quality symphonies and Shakespeare-quality plays.
When P = NP, this could be reduced to the easier problem of writing a computer
program to recognize great works of art [1].

This manuscript is for review purposes only.

235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

(1]
2]
(3]
4]

[19]

FRANK VEGA

REFERENCES

S. AARONSON, P z NP, Electronic Colloquium on Computational Complexity, Report No. 4,
(2017).

M. AGRAWAL, N. KAYAL, AND N. SAXENA, PRIMES is in P, Annals of Mathematics, 160
(2004), pp. 781-793, https://doi.org/http://doi.org/10.4007 /annals.2004.160.781.

S. ARORA AND B. BARAK, Computational complexity: a modern approach, Cambridge Univer-
sity Press, 2009.

B. BERGER AND T. LEIGHTON, Protein folding in the hydrophobic-hydrophilic (HP) model is
NP-complete, Journal of Computational Biology, 5 (1998), pp. 27-40, https://doi.org/
https://doi.org/10.1145/279069.279080.

S. A. Cook, The P wversus NP Problem, April 2000. At http://www.claymath.org/sites/
default /files/pvsnp.pdf.

T. H. CorMEN, C. E. LEISERSON, R. L. RIvEsT, AND C. STEIN, Introduction to Algorithms,
The MIT Press, 3 ed., 2009.

D. DE, A. KUMARASUBRAMANIAN, AND R. VENKATESAN, [nversion Attacks on Secure Hash
Functions Using sat Solvers, in International Conference on Theory and Applications
of Satisfiability Testing, Springer, 2007, pp. 377-382, https://doi.org/https://doi.org/10.
1007/978-3-540-72788-0-36.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, San Francisco: W. H. Freeman and Company, 1 ed., 1979.

W. I. GASARCH, Guest column: The second P Z NP poll, ACM SIGACT News, 43 (2012),
pp. 53-77.

C. F. Gauss AND A. A. CLARKE, Disquisitiones Arithemeticae, New York: Springer, 2 ed.,
1986.

O. GOLDREICH, P, NP, and NP-Completeness: The basics of computational complezity, Cam-
bridge University Press, 2010.

S. HoOrIE AND O. WATANABE, Hard instance generation for SAT, Algorithms and Computation,
(1997), pp. 22-31, https://doi.org/https://doi.org/10.1007/3-540-63890-3_4.

F. Massacct AND L. MARRARO, Logical Cryptanalysis as a SAT Problem, Journal of Au-
tomated Reasoning, 24 (2000), pp. 165-203, https://doi.org/https://doi.org/10.1023/A:
1006326723002.

C. H. PApADIMITRIOU, Computational complezity, Addison-Wesley, 1994.

G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications, November
2002. At http://www.arxiv.org/abs/math.DG/0211159.

K. H. ROSEN, Elementary Number Theory and its Applications, Addison-Wesley, 3 ed., 1993.

J. H. SILVERMAN, A Friendly Introduction to Number Theory, Pearson Education, Inc., 4 ed.,
2012.

M. SIPSER, Introduction to the Theory of Computation, vol. 2, Thomson Course Technology
Boston, 2006.

L. G. VALIANT, The complexity of enumeration and reliability problems, STAM Journal on
Computing, (1979), pp. 410421, https://doi.org/http://dx.doi.org/10.1137/0208032.

This manuscript is for review purposes only.

https://doi.org/http://doi.org/10.4007/annals.2004.160.781
https://doi.org/https://doi.org/10.1145/279069.279080
https://doi.org/https://doi.org/10.1145/279069.279080
https://doi.org/https://doi.org/10.1145/279069.279080
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://doi.org/https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/https://doi.org/10.1007/978-3-540-72788-0_36
https://doi.org/https://doi.org/10.1007/3-540-63890-3_4
https://doi.org/https://doi.org/10.1023/A:1006326723002
https://doi.org/https://doi.org/10.1023/A:1006326723002
https://doi.org/https://doi.org/10.1023/A:1006326723002
http://www.arxiv.org/abs/math.DG/0211159
https://doi.org/http://dx.doi.org/10.1137/0208032

	Introduction
	Theory
	Results
	Conclusion
	References

