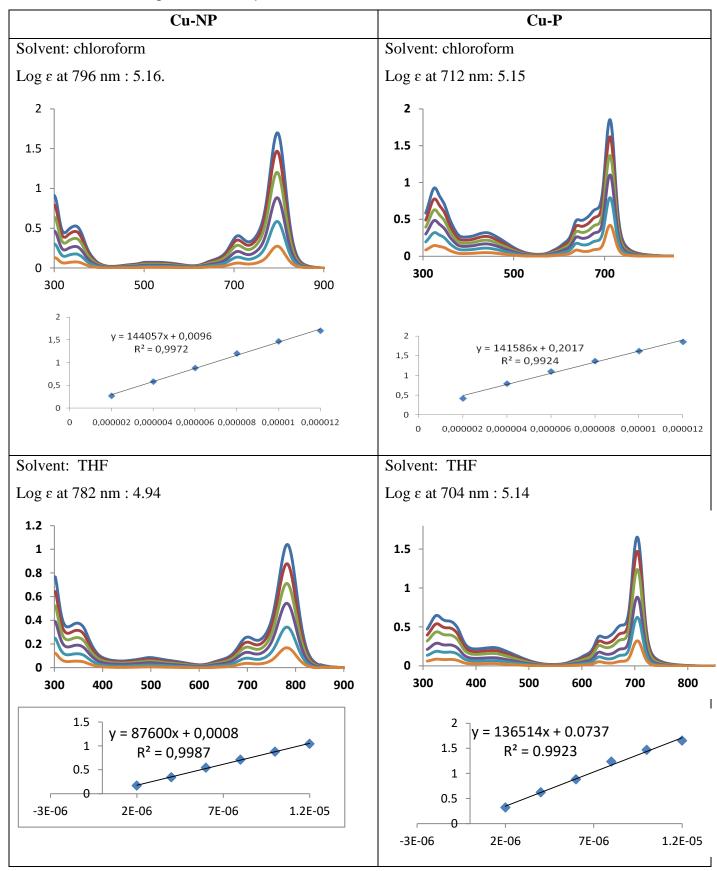
Supplementary Information

for

Effect of the Substitution Pattern (Peripheral vs Non-peripheral) on the Spectroscopic, Electrochemical, and Magnetic Properties of Octahexylsulfanyl Copper Phthalocyanines

Tulin Ateş Turkmen^a, Lihan Zeng^b, Yan Cui^b, İsmail Fidan,^c Fabienne Dumoulin^c*, Catherine Hirel^c, Yunus Zorlu^c, Vefa Ahsen^c, Alexander A. Chernonosov,^d Yurii Chumakov^{a,e}, Karl M. Kadish^b*, Ayşe Gül Gürek^c* and Sibel Tokdemir Öztürk^a*


 ^a Gebze Technical University, Department of Physics, 41400 Gebze, Kocaeli, Turkey
^b Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
^c Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
^d Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia

^e Institute of Applied Physics of the Academy of Sciences of Moldova, Academiei str. 5, Chisinau, Moldavia

Content

	Page
Table S1. UV-Vis spectra (2 to 12 μ M)	S 3
Figure S1. Observed P-XRD profiles for Cu-P and Cu-NP.	S4
Figure S2. View of optimized geometry of Cu-P (top) and Cu-NP (bottom) in the	
gas phase	S5
Figure S3. 3D plots of the HOMO and LUMO for X-ray structure of Cu-NP.	S 6
Figure S4. 3D plots of the HOMO and LUMO for model of Cu-P.	S 7
Figure S5. 3D plots of the HOMO and LUMO for model of Cu-NP	S 8
Figure S6. FT-IR spectra of Cu-P and Cu-NP	S 9
Figure S7. MALDI-MS spectra of Cu-P and Cu-NP	S 10
HRMS experimental details and mass accuracy	S 11
Figure S8. MALDI-TOF HRMS spectrum of Cu-P	S12
Figure S9. MALDI-TOF HRMS spectrum of Cu-NP	S 13
Experimental details and results of the elemental analyses	S14
Figure S10. Scan of the report of the elemental analysis results.	S14
Table S2. Crystal data and refinement parameters for Cu-NP	S15
Table S3. Selected bond lengths and angles for Cu-NP.	S 16
Table S4. Angles between the normals of opposite isoindole units	S17
Figure S11. Crystal structures of non-peripherally octa hexylsulfanyl-substituted	
phthalocyanines Cu-NP, JUPBON, AJUVIK-01, AJUVIK-1A and AJUVIK-1B	S17
Figure S12. Total spin density plots for X-ray structure of Cu-NP and Cu-P.	S 18

Table S1. UV-Vis spectra (2 to 12 µM)

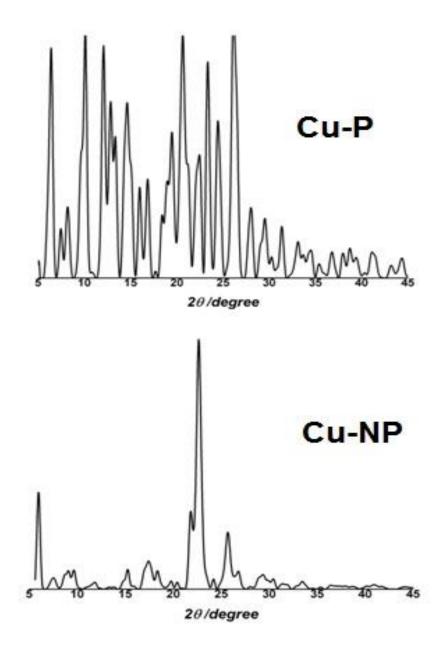
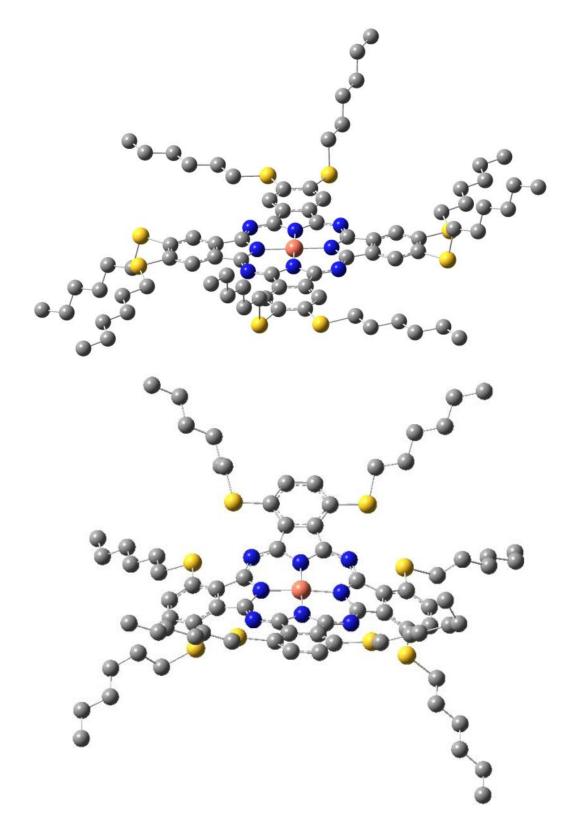



Figure S1. Observed P-XRD profiles for Cu-P and Cu-NP.

Figure S2. View of optimized geometry of **Cu-P** (top) and **Cu-NP** (bottom) in the gas phase. Atom colors: C (Grey), N (blue), Cu (orange), and S (yellow)

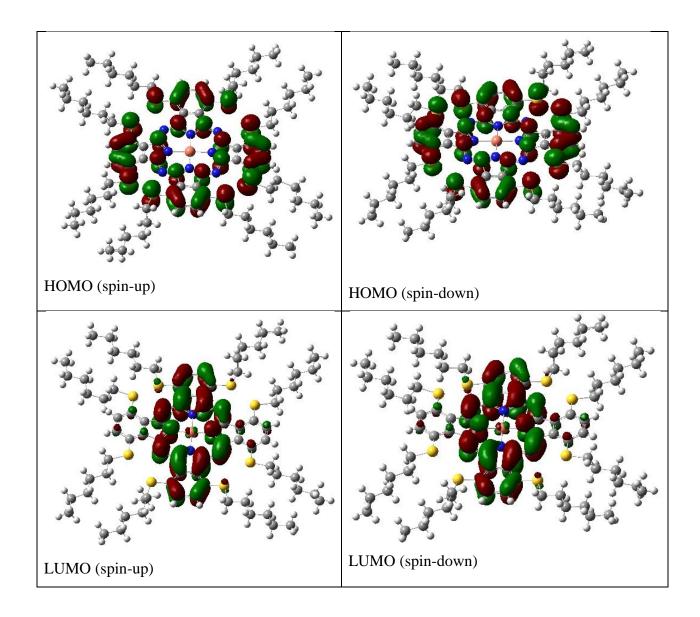


Figure S3. 3D plots of the HOMO and LUMO for X-ray structure of Cu-NP.

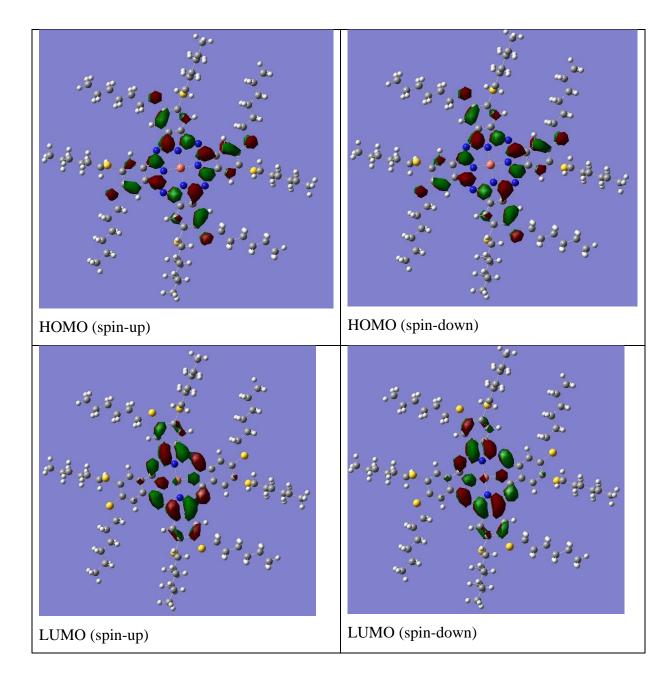


Figure S4. 3D plots of the HOMO and LUMO for model of Cu-P.

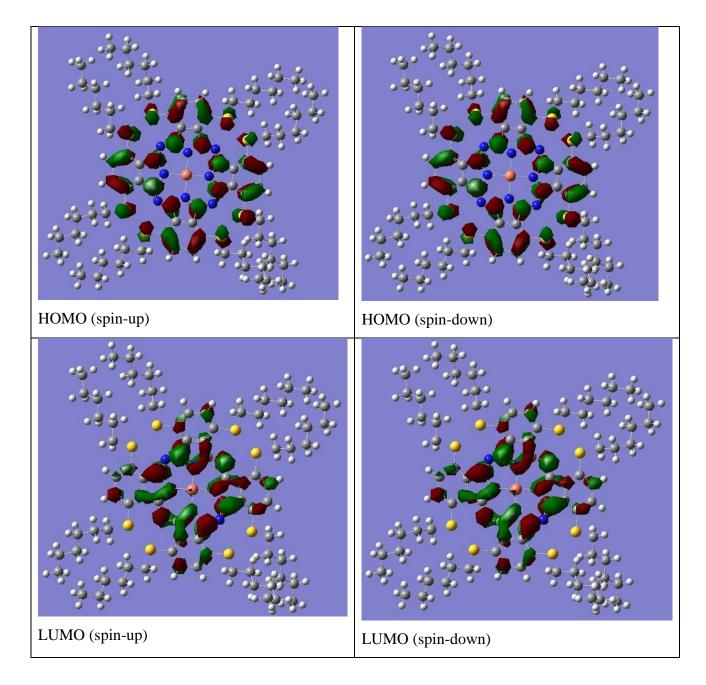


Figure S5. 3D plots of the HOMO and LUMO for model of Cu-NP.

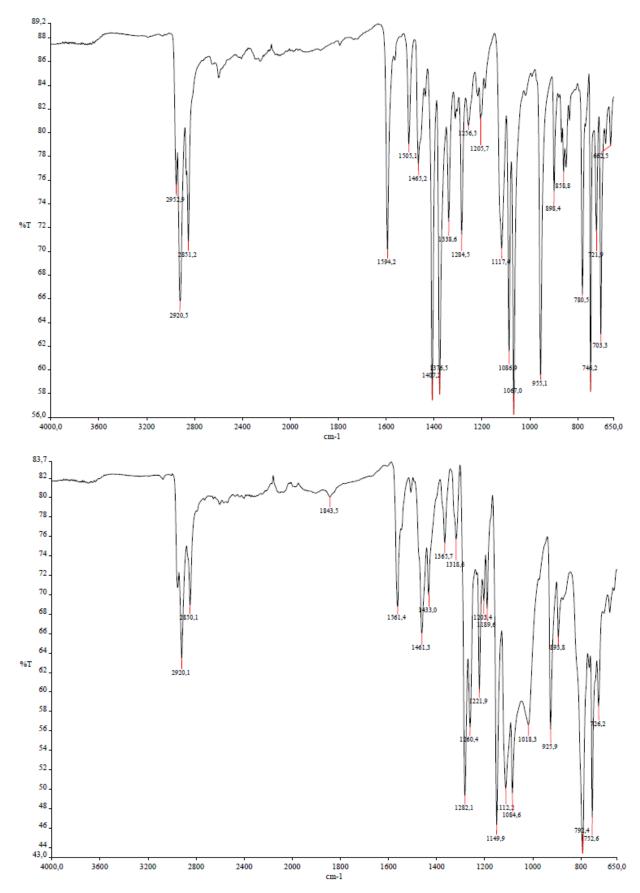


Figure S6. FT-IR spectra of Cu-P (top) and Cu-NP (bottom).

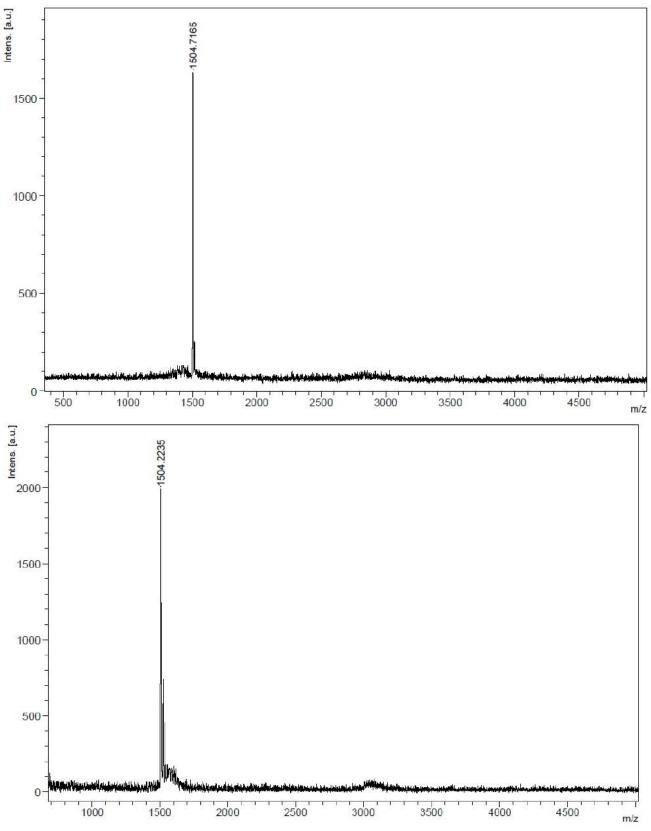
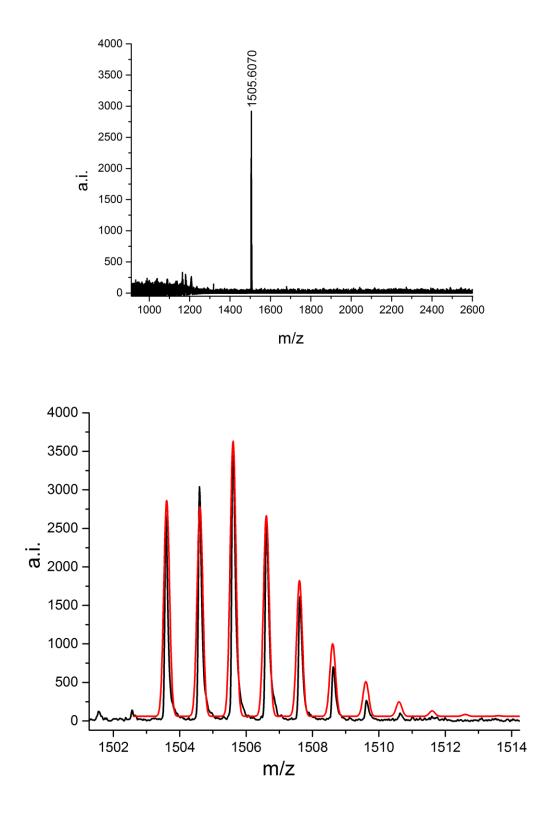
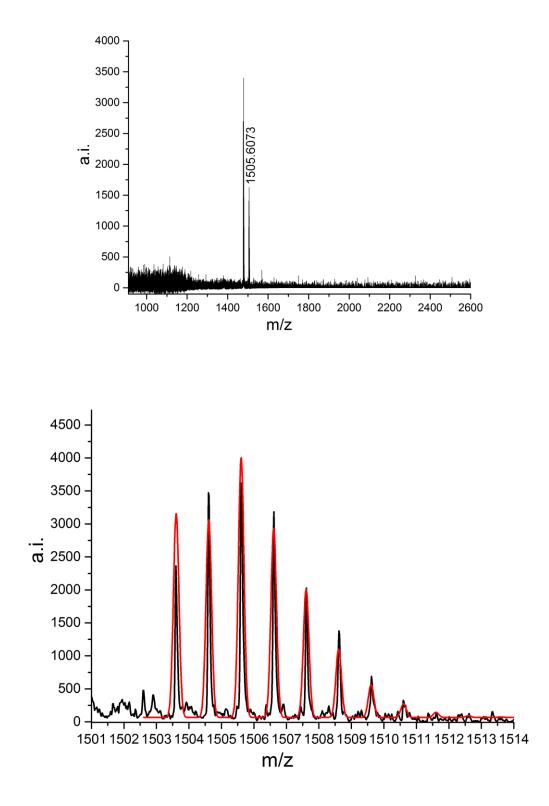


Figure S7. MALDI-MS spectra of Cu-P (top, matrix: 2,5-dihydroxybenzoic acid) and Cu-NP (bottom, matrix: dithranol).


HRMS experimental details and mass accuracy

High-resolution MALDI spectra for **Cu-NP** and **Cu-P** were obtained in matrix free conditions. Sample was dissolved in THF and one μ L was spotted on the MTP 384 polished steel plate. Sample was allowed to air dry before the target was loaded into the mass spectrometer. Mass spectra were obtained in positive reflectron ion mode using Autoflex Speed MALDI-TOF mass spectrometer (Bruker Daltonics, Bremen, Germany) with an acceleration voltage of 19 kV (Ion source 1), 16.75 kV (Ion source 2), 8.75 kV (Lens), 21 kV (Reflector 1), 9.7 kV (Reflector 2) and laser frequency of 1 Hz. The reflector multiplayer was set at 16. The laser power was set at 40% to 100% of the maximum. Signals from 500 shots were accumulated for each spectrum. For external calibration the standard peptide mixture "Peptide Mix II" (Bruker Daltonics) was used.


HRMS (MALDI-TOF) m/z [M]+ calculated for $C_{80}H_{112}CuN_8S_8$ 1505.6074; found 1505.6070 (mass accuracy 0.27 ppm) for **Cu-P** and found 1505.6073 (mass accuracy 0.07 ppm) for **Cu-NP**.

For **Cu-P**, the resolution of the spectrum is about 13500 FWHM. The mass accuracy is 0.27 ppm:1505.6074 (calculated)-1505.6070 (found) = 0.0004 Da 0.0004/1505.6074*1000000 = 0.27 ppm

For **Cu-NP**, the resolution of the spectrum is about 13500 FWHM The mass accuracy is 0.07 ppm: 1505.6074 (calculated)-1505.6073 (found) = 0.0001 Da 0,0001/1505.6074*1000000 = 0.07 ppm

Figure S8. MALDI-TOF high-resolution mass spectrum of **Cu-P**. Top: full spectrum, bottom: superposition of the theoretical (red) and experimental (black) isotopic patterns. The observed molecular ion is $[M]^+$. Mass accuracy 0.27 ppm.

Figure S9. MALDI-TOF high-resolution mass spectrum of **Cu-NP**. Top: full spectrum, bottom: superposition of the theoretical (red) and experimental (black) isotopic patterns. The observed molecular ion is [M]+. Mass accuracy 0.07 ppm.

Experimental details and results of the elemental analyses

Elemental analyses were carried out on an ECS 4010 Costech Instruments Elemental Combustion System (CHNS).

Elemental analysis calc. for C₈₀H₁₁₂CuN₈S₈ (MW 1505.858): C, 63.81; H, 7.50; Cu, 4.22; N, 7.44; S, 17.03

dnm1 07 02 2018 12 38 47

np-sr-cupc tkr_07_02_2018_21

psr-cupc 07 02 2018 21 58

INT7 - 1

Found for **Cu-P**: C, 63.77; H, 7.56; N, 7.19; S, 17.14. Found for **Cu-NP**: C, 63.78; H, 7.51; N, 7.51; S, 17.04.

08.02.2018	15:32		Chromatogram	C:\EAS Clarity\Giresun N	ferkez Lab.\S	onuc\np-sr-c	upc_07_02_3	2018_21_3	3_85.PRM			
				Gire	sun Üniv	versites	si					
			Merk	kez Araştırma Labor	atuvarı Uy	gulama ve	Arastirm	a Merkez	i i			
Method	: C:\EAS Clarity\	Giresun Merkez Lab\NCHS			By		: T					
Description	: NCHS											
Created	: 29.09.2006 12	2:30			Mo	dified	: 0	8.02.2018	15:29			
GC Column	: SS 6x5 mm - 2	m - HayeSep Q 60/80			Lef	ft Furnace Te	emp : 1	020°C				
Detection	: TCD: L-3				Rig	ht Furnace 1	Temp : o	ff				
Flow Rate	: 100 ml/min				Ov	en Temperat	ture : 7	5°C				
Note	: Reaction tube: Packing: stand O2 loop: 5 ml -	ard for NCHS										
					Summary 1	Table						
	[Nitro	gen	Car	bon	Hydr	ogen	Sulp	hur
				Sample	Response	Weight [%]	Response	Weight 1%1	Response	Weight 1%1	Response	We

Figure S10. Scan of the report of the elemental analysis results. Calculated values for the BBOT standard are C, 72.53; H, 6.09; N, 6.51; S, 7.44. Found (first row of the table): C, 72.60; H, 6.16; N, 6.54; S, 7.52.

dnm1

psr-cupo

np-sr-cupc tk

134,369

119,999

148,298

3403.609

2454.540

2964,081

6.54

7,51

7.19

72.60

63.78

63.77

716.433

631,927

940,533

6.16

7.51

7.56

135.87

238,969

411,954

ight 61

7.52

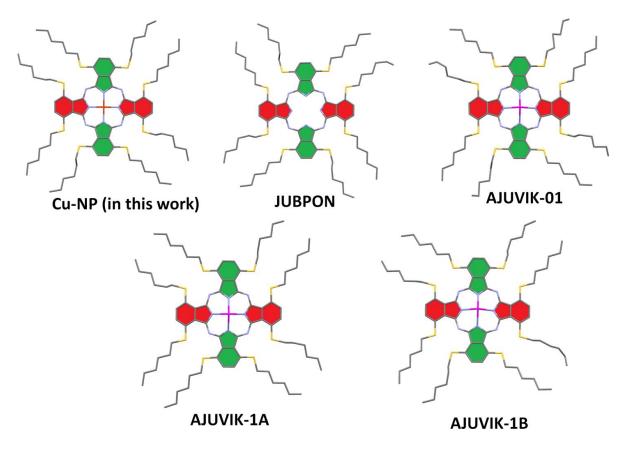
17.04

17.14

CCDC number	1470853
Empirical formula	$C_{80}H_{112}CuN_8S_8$
Formula weight (g.mol ⁻¹)	1505.79
Temperature (K)	173(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	<i>P</i> -1
a (Å)	12.4291(9)
<i>b</i> (Å)	17.3435(14)
c (Å)	19.8523(14)
α(°)	64.475(3)
β(°)	84.337(4)
γ(°)	84.143(4)
$V(\text{\AA}^3)$	3834.5(5)
Z	2
ρ_{calcd} (g.cm ⁻³)	1.304
μ (mm ⁻¹)	0.552
F(000)	1610
Crystal size (mm)	0.128 x 0.273 x 0.508
θ range for data collection (°)	2.94 - 25.68
h/k/l	-14/15, -17/21, -22/24
Reflections collected	61277

Table S2. Crystal data and refinement parameters for Cu-NP.

Independent reflections	14515 [R(int) = 0.0634]
Coverage of independent reflections (%)	99.7
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	14515 / 76 / 882
Goodness-of-fit on F ²	1.045
Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0598, wR_2 = 0.1454$
<i>R</i> indices (all data)	$R_1 = 0.0818, wR_2 = 0.1596$
$(\Delta \rho)_{\text{max}}$ and $(\Delta \rho)_{\text{min}}$ (e.Å ⁻³)	1.601 and -1.209


Table S3. Selected bond lengths and angles for Cu-NP.

Bond Lengths (Å)					
Cu1-N1	1.967(2)	Cu1-N2	1.957(2)		
Cu1-N3	1.953(2)	Cu1-N4	1.959(2)		
C2-N7	1.336(4)	C3-N7	1.327(4)		
Bond Angles (Å)					
N3-Cu1-N2	90.08(10)	N3-Cu1-N4	90.29(10)		
N2-Cu1-N4	178.71(11)	N3-Cu1-N1	177.11(10)		
N2-Cu1-N1	89.64(10)	N4-Cu1-N1	90.05(10)		
C1-N1-Cu1	125.5(2)	C3-N2-Cu1	126.1(2)		
N7-C2-N1	127.1(3)	N7-C3-N2	127.6(3)		

Compound	Angle between	Angle between	
(CSD Ref.	green isoindole	red isoindole	Reference
Code)	units	units	
Cu-NP	12.18°	11.58°	this work
JUBPON	6.07°	15.19°	Zorlu, Y.; Kumru, U.; Isci, U.; Divrik, B.; Jeanneau, E.; Albrieux, F.; Dede, Y.; Ahsen, V.; Dumoulin, F. <i>Chem.</i> <i>Commun.</i> , 2015 , <i>5</i> , 6580-6583
AJUVIK01	14.19°	24.71°	Burnham, M.; Chambrier, M. I.; Hughes, D. L.; Isare, B.; Poynter, R. J.; Powell, A. K.; Cook, M. J. J. Porphyrins Phthalocyanines. 2006, 10, 1202-1211
AJUVIK-1A*	15.51°	22.49°	Burnham, P. M.; Cook, M. J.; Gerrard, L. A.; Heeney, M. J.; Hughes, D. L. <i>Chem. Commun.</i> 2003 , <i>16</i> , 2064-2065
AJUVIK-1B*	11.20°	15.14°	Burnham, P. M.; Cook, M. J.; Gerrard, L. A.; Heeney, M. J.; Hughes, D. L. <i>Chem. Commun.</i> 2003 , <i>16</i> , 2064-2065

Table S4. Angles between the normals of opposite isoindole units.

*represents the crystallographically independent molecule in the asymmetric unit.

Figure S11. Crystal structures of non-peripherally octa hexylsulfanyl-substituted phthalocyanines **Cu-NP**, JUPBON, AJUVIK-01, AJUVIK-1A and AJUVIK-1B (see Table S4 for related references). The opposite isoindole units are shown in green and red colors. AJUVIK-1A and AJUVIK-1B are the crystallographically independent molecules in the asymmetric unit.

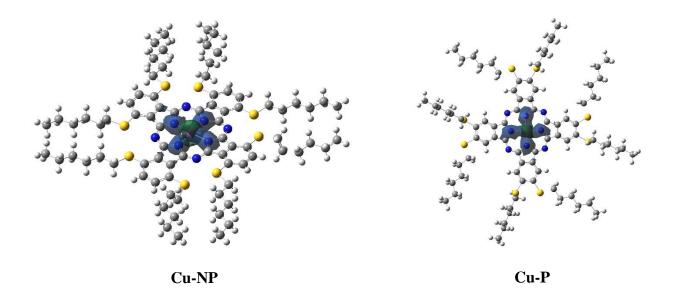


Figure S12. Total spin density plots for X-ray structure of Cu-NP and Cu-P.