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Thickness of WSe2 flake as analyzed by AFM  

 

Figure S1. (a) AFM analysis on WSe2 flake. (b) Extracted profile from the AFM analysis, which 
exhibits the thickness of 62. 1 nm.  
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ID-VG characteristics after rinsing process and during 6 cycles with different glucose 
concentrations 
 

 
 
Figure S2. a) ID-VG characteristics of the WSe2 BioFET in GOx-immobilized state, glucose-sensed state 
(10 mM), and rinsed state. (b) ID-VG characteristics of the WSe2 BioFETs in the repeated rinsing and 
applying glucose steps with different concentrations (1, 5, 10 mM) 
 
Figure S2a shows the ID–VG characteristics of the WSe2 BioFET in the GOx-immobilized state (black 
dotted line), glucose-sensed state (red line), and rinsed state (blue line). The current values in the GOx-
immobilized state (state #1) and rinsed state were almost the same, indicating that glucose was fully 
removed through the rinsing step. It also appears that the created surface defects hold the chemical 
linker APTES well even after rinsing glucose, thereby returning the device to state #1.With 
confirmation of thorough removal of glucose, we repeated the cycles of rinsing and applying glucose. 
The whole ID-VG curves of the WSe2 BioFETs in different concentrations (1, 5, 10 mM) are presented in 
Figure S2b, where the sensitivity values were extracted and shown in Figure 4c.  
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Performance comparison with other biosensors.  

Type of biosensor  Channel 
Materials 

Detection 
molecules  Detection range Sensitivity Reusability Reference 

Electrochemical 
(CV and CA) 

Bi2O2CO3 
 nanoplates Cholesterol 0.05 - 7.4 mM 139.5 μAmM−1cm−2 No mention [S1] 

Electrochemical 
(CV and CA) 

ZnO  
nanotubes Cholesterol 1 μM - 13 mM 79.4 μAmM−1cm−2 No mention [S2] 

Electrochemical 
(CV and CA) Au-PAni Glucose 1 μM - 20 mM 29.27 ± 0.73 

μAmM−1cm−2 No mention [S3] 

Fluorescent CdSe/ZnS Glucose 0.045 - 10 mM Fluorescence intensity 
 48000 No mention [S4] 

Fluorescent MoS2 DNA 0.5 - 130 nM Fluorescence intensity 
25 - 250 No mention [S5] 

FET rGO/C-PPy 
nanotubes Glucose 1 nm - 100 mM 0.45 A/A  No mention [S6] 

FET Si  
nanowires PSA 0.023 - 500 ng/mL 70 mV/pH No mention [S7] 

FET In2O3 
nanoribbons 

Glucose 0.1 μM - 1 mM 3 A/A No mention [S8] 

FET MoS2 pH pH 3 - 9 713 A/A No mention [S9] 

FET MoS2 Doxorubicin 0.1 nM - 50 μM 1757.1 A/A Reusable [S10] 

FET WSe2 Glucose 1 - 10 mM 2.87 × 105 A/A Reusable This work 

 

Table S1. The performance comparison table in terms of biosensor type, channel material, detection 
molecule, sensitivity, and reusability.  
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