Supporting Information

Comparison of Uranium(VI) and Thorium(IV) Silicates Synthesized via Mixed Fluxes Techniques

Haijian Li^{†,‡}, Philip Kegler[†], Vladislav V. Klepov[§], Martina Klinkenberg[†], Dirk Bosbach[†], Evgeny V. Alekseev^{†,‡,*}

[†]Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

[‡]Institut für Kristallographie, RWTH Aachen University, 52066 Aachen, Germany

[§]Samara National Research University, 443086 Samara, Russia

*contact E-Mail: <u>e.alekseev@fz-juelich.de</u>

Supporting information

Figure S1. Polyhedral and nodal representations of the SBUs extracted from all reported uranyl silicate compounds.

Figure S2. Crystals of $K_{14}(UO_2)_3Si_{10}O_{30}$ (left), and $K_2(UO_2)Si_2O_6$ (right).

Figure S3. Experimental (red) and calculated (black) PXRD patterns of K₁₄(UO₂)₃Si₁₀O₃₀.

Figure S4. EDS analysis for $K_{14}(UO_2)_3Si_{10}O_{30}$.

Table S1. Atom ratios of $K_{14}(UO_2)_3Si_{10}O_{30}$. (U is keep as 3)

Figure S5. EDS analysis for K₂(UO₂)Si₂O₆.

Table S2. Atom ratios of $K_2(UO_2)Si_2O_6$. (U is keep as 1)

Figure S6. EDS analysis for K₂ThSi₂O₇

Table S3. Atom ratio of K₂ThSi₂O₇. (Th is keep as 1)

Figure S7. EDS analysis for K₂ThSi₃O₉

Table S4. Atom ratios of K₂ThSi₃O₉. (Th is keep as 1)

Table S5. EDS results of K₂ThSi₂O₇ at 900 °C with increasing K₂CO₃ contents.

Figure S8. The Si–O–Si angle of open-branched chain $Si_{10}O_{30}$ (a) and unbranched chain Si_2O_6 (b) are labeled. Note that a Si–O–Si angle in $K_2(UO_2)Si_2O_6$ is 180°.

Figure S9. (a) Polyhedral presentation of the structure of $K_2Ca_4((UO_2)(Si_2O_7)_2)^1$ with a onedimensional chain structure. (b,d) Structure of the 2D slab consisting of UO₆ polyhedra connected by Si₂O₇ disilicates along the *c*-axis and corresponding to anion topology present in Na₉F₂(UO₂)(UO₂)₂(Si₂O₇)₂.² (c,e) Structure of the K₈(UO₂)₂(Si₂O₇)₂ slab along the *c*-axis and corresponding to anion topology present in K₈(K₅F)U₆Si₈O₄₀.³

Figure S10. (a) Polyhedral presentation of the structure of K_2 ThSi₂O₇ (*C*2/*c*) along the b axis. (b) Polyhedral presentation of the structure of K_2 ZrSi₂O₇⁴ (*P*112₁/*b*) along the c axis. (c) Polyhedral presentation of the structure of Na₂ZrSi₂O₇⁵ (*P*-1) along the c axis. Yellow: Th octahedra in K_2 ThSi₂O₇ and Zr octahedra in K_2 ZrSi₂O₇ and Na₂ZrSi₂O₇. Green: SiO₄ tetrahedra. Blue: Na atoms. Mauve: K atoms.

Figure S11. Th–O–Si and Si–O–Si angles in the system of A_2^+ ThSi₃O₉ (A^+ = K, Rb, and Cs) wadeite structures.

Table S6.Coordination environments of thorium in the reported thorium oxo-anion phases and corresponding to the ionic potential of anions.

Table S7. Determined Raman shift (cm⁻¹) and proposed band assignments for $K_2(UO_2)Si_2O_6$ and $K_{14}(UO_2)_3Si_{10}O_{30}$, respectively.

Table S8. Determined Raman shift (cm⁻¹) and proposed band assignments for K_2 ThSi₃O₉ and K_2 ThSi₂O₇, respectively.

Figure S1. Polyhedral and nodal representations of the SBUs extracted from all reported uranyl silicate compounds.

Figure S2. Crystals of $K_{14}(UO_2)_3Si_{10}O_{30}$ (left) and $K_2(UO_2)Si_2O_6$ (right).

Figure S3. Experimental (red) and calculated (black) PXRD patterns of $K_{14}(UO_2)_3Si_{10}O_{30}$.

Figure S4. EDS analysis for $K_{14}(UO_2)_3Si_{10}O_{30}$

Table S1. Atom ratio of $K_{14}(UO_2)_3Si_{10}O_{30}$. (U is keep as 3)

	U	Si	K	
Point1	3	12.93	13.97	
Point2	3	12.47	13.00	
Point3	3	12.60	14.06	
Average	3	12.67	13.68	

Figure S5. EDS analysis for K₂(UO₂)Si₂O₆

Table S2. Atom	ratio of K ₂ (UO ₂)Si	$_{2}O_{6}$. (U is keep as 1)
----------------	--	--------------------------------

	U	Si	K	
Point1	1	2.07	2.04	
Point2	1	2.92	1.88	
Average	1	2.49	1.96	

Figure S6. EDS analysis for $K_2ThSi_2O_7$

Table S3. Atom ratio of K₂ThSi₂O₇. (Th is keep as 1)

	Th	Si	K	
Point1	1	2.05	2.01	
Point2	1	2.42	1.88	
Average	1	2.23	1.95	

Figure S7. EDS analysis for K₂ThSi₃O₉

Table S4. Atom ratio	of K_2 ThSi ₃ O ₉ .	(Th is keep as 1)
----------------------	---	-------------------

	Th	Si	K	
Point1	1	3.61	1.75	
Point2	1	3.37	1.85	
Average	1	3.49	1.80	

Elements		Si (At%)	Th (At%)	K (At%)	O (At%)	Si/Th	K/Th
Original ratio	Spot 1	20.3	7.60	14.8	57.3	2.7	1.9
150% K ₂ CO ₃	Spot 2	19.4	14.3	12.5	53.9	1.4	0.9
	Spot 1	20.0	8.2	15.1	56.7	2.5	1.8
200% K ₂ CO ₃	Spot 2	14.8	12.4	9.9	63.0	1.2	0.8
	Spot 1	18.6	7.1	16.2	58.1	2.6	2.3
250% K ₂ CO ₃	Spot 2	18.9	11.9	16.2	53.0	1.6	1.4
	Spot 1	19.3	18.6	17.0	45.0	1.0	0.9
200% K ₂ CO ₃ after washing	Spot 2	14.3	16.1	11.6	58.0	0.9	0.7
	Spot 1	22.7	9.2	18.9	49.2	2.5	2.0
	Spot 2	19.2	12.0	15.7	53.1	1.6	1.3

Table S5. EDS results of $K_2 Th Si_2 O_7$ at 900 °C with increasing $K_2 CO_3$ contents.

Figure S8. The Si–O–Si angle of open-branched chain $Si_{10}O_{30}$ (a) and unbranched chain Si_2O_6 (b) are labeled. Note that a Si–O–Si angle in $K_2(UO_2)Si_2O_6$ is 180°.

Figure S9. (a) Polyhedral presentation of the structure of $K_2Ca_4((UO_2)(Si_2O_7)_2)^1$ with a one-dimensional chain structure. (b,d) Structure of the 2D slab consisting of UO₆ polyhedra connected by Si₂O₇ disilicates along the *c*-axis and corresponding to anion topology present in Na₉F₂(UO₂)(UO₂)₂(Si₂O₇)₂.² (c,e) Structure of the K₈(UO₂)₂(Si₂O₇)₂ slab along the *c*-axis and corresponding to anion topology present in K₈(K₅F)U₆Si₈O₄₀.³

Figure S10. (a) Polyhedral presentation of the structure of K_2 ThSi₂O₇ (*C*2/*c*) along the b axis. (b) Polyhedral presentation of the structure of K_2 ZrSi₂O₇⁴ (*P*112₁/*b*) along the c axis. (c) Polyhedral presentation of the structure of Na₂ZrSi₂O₇⁵ (*P*-1) along the c axis. Yellow: Th octahedra in K₂ThSi₂O₇ and Zr octahedra in K₂ZrSi₂O₇ and Na₂ZrSi₂O₇. Green: SiO₄ tetrahedra. Blue: Na atoms. Mauve: K atoms.

Figure S11. Th–O–Si and Si–O–Si angles in the system of A_2^+ ThSi₃O₉ (A^+ = K, Rb, and Cs) wadeite structures. The average values of Th–O–Si and Si–O–Si angles for K₂ThSi₃O₉ are given in the graph.

Table S6 Coordination environments of thorium in the re	ported thorium oxo-anion phases and
rubic bol dooraniation chyntonnichts of thoritain in the re	ported morrain oxo amon phases and

	(Coord	linatic	n num	ber (C	CN) of	Th		Avorago		Radius of Anions		Ionic	Average
Compounds	6	7	8	9	10	11	12	Total	of CN	Anions	(Å)	Valence	potential (IP)	of IP
Th-B-O			1	1	2		1	5	9.8	B +3	0.27	3	0.111	0.111
										Si +4	0.40	4	0.1	
Th- Si/Ge -O	4	2	4	1		1		12	7.5	Ge +4	0.53	4	0.075	0.088
			1.0					•		P +5	0.38	5	0.132	
Th- P/As-O	2	2	18	10	3	I		36	8.36	As +5	0.46	5	0.109	0.120
Th										Cr+6	0.44	6	0.136	
	2	2	18	14	1	1	1	38	8.44	Mo +6	0.59	6	0.102	0.113
Cr/Mo/w-O										W +6	0.60	6	0.10	
Th-S/Se/Te -										S +6	0.29	6	0.207	
0			8	24	3			35	8.86	Se +6	0.42	6	0.143	0.152
-										Te+6	0.56	6	0.107	

corresponding to the ionic potential of anions.

	14(2)3~-10~-30	Assignments	Ref.
276, 338	329	$\nu_2 \left(\mathrm{UO}_2 \right)^{2+}$	6,7
	368	$v_3 (SiO_4)^{4-}$	8
462	444, 460	$v_2 (SiO_4)^{4-}$	6
	584	$v_4 \left(\mathrm{SiO}_4 \right)^{4-}$	6
643	656	$\nu_4 \left({{ m SiO}_4} ight)^{4-}$	9
	680	v ₂ (Si–O–Si)	6
717, 730, 749	730, 738	$\nu_1 \left(UO_2 \right)^{2+}$	6
765		v_1 (U-O bonds)	6
882	821, 845, 863	$\nu_1 \left(UO_2 \right)^{2+}$	6,10
932, 999	924	$v_1 (SiO_4)^{4-}$	6,11
	1068	$v_3 (SiO_4)^{4-}$	9

Table S7. Determined Raman shift (cm $^{-1}$) and proposed band assignments for $K_2(UO_2)Si_2O_6$ and $K_{14}(UO_2)_3Si_{10}O_{30}$,respectively.

* v_1 – symmetric stretching vibrations; v_2 – symmetric bending vibrations; v_3 – antisymmetric stretching vibrations;

 v_4 – out of plane bending vibrations.

K ₂ ThSi ₃ O ₉	$K_2 Th Si_2 O_7$	Assignments	Ref.
	359	$v_3 (SiO_4)^{4-}$	8
387	374	$v_2 (SiO_4)^{4-}$	12
427	409	$v_2 (SiO_4)^{4-}$	13
496	483	$v_2 \left(SiO_4 \right)^{4-}$	13
508	505	$v_2 (SiO_4)^{4-}$	13
524	542	$v_2 (SiO_4)^{4-}$	13
	570	$v_2 \left(SiO_4 \right)^{4-}$	13
623		$v_2 (SiO_4)^{4-}$	13
716	694	v ₂ (Si–O–Si)	1,13
740		$v_2 \left(SiO_4 \right)^{4-}$	13
	790	$v_2 (SiO_4)^{4-}$	13
858	834	v ₁ (Si–O)	12,14
	902	v ₁ (Si–O)	12,14
	911	v ₁ (Si–O)	12,14
923	923	v ₁ (Si–O)	12,14
	948	v ₁ (Si–O)	12,14
	967	v ₁ (Si–O)	12,14
	1007	v ₁ (Si–O)	12,14
1041	1044	v ₁ (Si–O)	12,14

Table S8. Determined Raman shift (cm⁻¹) and proposed band assignments for K_2 ThSi₃O₉ and K_2 ThSi₂O₇, respectively.

* v_1 – symmetric stretching vibrations; v_2 – symmetric bending vibrations; v_3 – antisymmetric stretching vibrations;

 v_4 – out-of-plane bending vibrations.

REFERENCE

(1) Liu, C. L.; Liu, H. K.; Chang, W. J.; Lii, K. H. K₂Ca₄[(UO₂)(Si₂O₇)₂]: A Uranyl Silicate with a One-Dimensional Chain Structure. *Inorg. Chem.* **2015**, *54*, 8165-8167.

(2) Chang, Y. C.; Chang, W. J.; Boudin, S.; Lii, K. H. High-temperature, High-pressure Hydrothermal Synthesis and Characterization of A Salt-inclusion Mixed-valence Uranium(V,VI) Silicate: [Na₉F₂][(U(V)O₂)(U(VI)O₂)₂(Si₂O₇)₂]. *Inorg. Chem.* **2013**, *52*, 7230-7235.

(3) Morrison, G.; Tran, T. T.; Halasyamani, P. S.; zur Loye, H. C. K₈(K₅F)U₆Si₈O₄₀: An Intergrowth Uranyl Silicate. *Inorg. Chem.* **2016**, *55*, 3215-7.

(4) Chernov, A. N.; Maksimov, B. A.; Ilyukhin, V. V.; Belov, N. V. Crystalline Structure of Monoclinic Modification of K, Zr-Diorthosilicate-K₂ZrSi₂O₇. *Doklady Akademii Nauk Sssr*. **1970**, *193*, 1293-1296.

(5) Voronkov, A. A.; Shumyatskaya, N. G.; Pyatenko, Y. A. Crystal Structure of A New Natural Modification of Na₂Zr(Si₂O₇). *J. Struct. Chem.* **1970**, *11*, 866–867.

(6) Frost, R. L.; Cejka, J.; Weier, M. L.; Martens, W. Molecular Structure of the Uranyl Silicates
- a Raman Spectroscopic Study. *J. Raman Spectrosc.* 2006, *37*, 538-551.

(7) Plesko, E. P.; Scheetz, B. E.; White, W. B. Infrared Vibrational Characterization and Synthesis of A Family of Hydrous Alkali Uranyl Silicates and Hydrous Uranyl Silicate Minerals. *Am. Mineral.* **1992**, *77*, 431-437.

(8) Amme, M.; Renker, B.; Schmid, B.; Feth, M. P.; Bertagnolli, H.; Dobelin, W. Raman Microspectrometric Identification of Corrosion Products Formed on UO₂ Nuclear Fuel During Leaching Experiments. *J. Nucl. Mater.* **2002**, *306*, 202-212.

(9) Chernorukov, N. G.; Kortikov, V. E. Na[HSiUO₆]·H₂O: Synthesis, Structure, and Properties. *Radiochemistry* **2000**, *42*, 229–232.

(10) Xiao, B.; Schlenz, H.; Dellen, J.; Bosbach, D.; Suleimanov, E. V.; Alekseev, E. V. From Two-Dimensional Layers to Three-Dimensional Frameworks: Expanding the Structural Diversity of Uranyl Compounds by Cation-Cation Interactions. *Crystal Growth & Design* **2015**, *15*, 3775-3784.

(11) Matkovskii, A. O.; Gevorkyan, S. V.; Povarennykh, A. S.; Sidorenko, G. A.; Tarashchan, A. N. On the Bond Characteristics of UO in Uranyl Minerals from IR Spectroscopic Data. *Miner Sb Lvovskogo Gos Univ im Franko* **1979**, *33*, 11–22.

(12) Wierzbicka-Wieczorek, M.; Tobbens, D. M.; Kolitsch, U.; Tillmanns, E. Simultaneous Presence of $(Si_3O_{10})^{8-}$ and $(Si_2O_7)^{6-}$ Groups in New Synthetic Mixed Sorosilicates: BaY₄(Si₂O₇)(Si₃O₁₀) and Isotypic Compounds, Studied by Single-crystal X-ray Diffraction, Raman Spectroscopy and DFT Calculations. *J. Solid State Chem.* **2013**, *207*, 94-104.

(13) Kahlenberga, V.; Kaindlb, R.; Többens, D. M. Z. Synthesis, Rietveld Analysis and Solid State Raman Spectroscopy of K₄SrSi₃O₉. *Anorg. Allg. Chem.* **2006**, *632*, 2037–2042.

(14) Kahlenberg, V.; Kaindl, R.; Sartory, B. On the existence of a second modification of K_4 SrSi₃O₉ - X-ray single crystal diffraction, Raman spectroscopical and high temperature studies. *Solid State Sci.* **2007**, *9*, 65-71.