Modeling Geographic Patterns in the Species Abundance Distribution

Dan McGlinn

and

Ethan White

Weecology Lab http://mcglinn.web.unc.edu

@danmcglinn

Species Abundance Distribution (SAD)

SAD is Foundational

Common Shape: Hollow Curve

White et al. (2012)

Universal explanation for shape

- Maximum Entropy Theory of Ecology (METE) Harte et al. (2008), Harte (2011)
- Predicts many distributions species-abundance, body-size, species-area, distance-decay
- State Variables

 Total number of species (S_0) Total number of individuals (N_0) Total energy of community (E_0)

Total area of a community (A_0)

• Predicts that a abundance follows a truncated log-series distribution

Why MaxEnt?

Infers the most likely state of system given constraints

Top-down approach to modeling

- Expected when processes cancel one another out
 - e.g., when there are many non-directional processes interacting

Haegeman and Loreau 2009

METE abundance distribution solution

Joint Distribution

Abundance & Metabolic Rate

Shannon's Entropy

Constraints

Average # of individuals Average total metabolism

$$R(n, \varepsilon \mid S_0, N_0, E_0)$$

$$I_{R} = -\sum_{n=1}^{N_{0}} \int_{\varepsilon=1}^{E_{0}} R(n, \varepsilon) \cdot \ln (R(n, \varepsilon)) \cdot d\varepsilon$$

$$\sum_{n=1}^{N_0} \int_{\varepsilon=1}^{E_0} n \cdot R(n,\varepsilon) \cdot d\varepsilon = \frac{N_0}{S_0}$$

$$\sum_{n=1}^{N_0} \int_{\varepsilon=1}^{E_0} n \cdot \varepsilon \cdot R(n,\varepsilon) \cdot d\varepsilon = \frac{E_0}{S_0}$$

Species-abundance distribution

$$\Phi(n|S_0, N_0) \approx \frac{1}{ln(\beta^{-1})} \cdot \frac{e^{-\beta n}}{n}$$

(Harte et al. 2008, 2009; Harte 2011)

Does METE capture global variation in SAD?

15745 sites 8802 species

Xiao Xiao

6 continents
 4 major taxa

(White, Thibault, Xiao, 2012)

The Next Challenge

• How can we predict patterns of abundance where we have no data?

• Can we model the state variables (S and N) across the continent to plug into METE?

Multiscale Modeling Framework

Observed $S_0 \& N_0 +$ Environment **Predicted** $\hat{S}_0 \& \hat{N}_0$ Maximum Entropy Theory of Ecology Predicted

Abundance Distribution

Multiscale Modeling Framework

Multiscale Modeling Framework

Explanatory Modeling Framework (e.g., stepwise regression)

$$\Phi(n|\hat{S}_0, \hat{N}_0) \approx \frac{1}{ln(\beta^{-1})} \cdot \frac{e^{-\beta n}}{n}$$

Forest Inventory Analysis (FIA)

Breeding Birdy Survey (BBS)

Christmas Bird Count (CBC)

North American Butterfly Count

Environmental Models

- Predictor variables
 - Elevation
 - Productivity proxy (NDVI)
 - WorldClim's 19 bioclim variables

- Coyle et al. (2013)

Backward Stepwise regression

Predictability of State Variables

Predictability of State Variables

Predicted S & N

Predicted Abundance

Predicted S & N

Predicted Abundance

Predicted S & N

Predicted Abundance

Summary of Results

• S and N can be difficult to predict

Summary of Results

• S and N can be difficult to predict

but still yield accurate SAD predictions

Summary of Results

• S and N can be difficult to predict

• but still yield accurate SAD predictions

 Large divergences were due to very large observed abundances

Take Home Message

• Multiscale modeling holds promise for predicting fine-scale community structure

Future Direction

• Simultaneous prediction of several aspects of internal community structure

Thank you!

- The volunteer data collectors
- The data providers
- NSF Career Award to E.P. White
- Utah State Ecology Center
- Weecology Lab