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A A PROOF OF THE EXISTENCE OF A STATIONARY STATE

Consider the n-player public goods game, and consider a group of n players where the number of Ck
players is given by Ik (0 ≤ k ≤ n). By definition I0 + · · ·+ In = n holds. The aim of this section is to
prove the existence of at least one stationary state.

For that purpose, I recursively define the sequence of integers, {Jm}m=0,1,···, by
J0 = 0

Jm =

Jm−1∑
k=0

Ik (m ≥ 1).
(S1)

It is easy to prove (by using mathematical induction) that each integer Jm is well-defined and upper-bounded
by n.

Next I will prove by mathematical induction that the sequence {Jm}m=0,1,··· is non-decreasing. First,
J1 − J0 = I0 ≥ 0 holds. Second, assume that Jm − Jm−1 ≥ 0 holds for m ≥ 1. Then I obtain

Jm+1 − Jm =
Jm∑
k=0

Ik −
Jm−1∑
k=0

Ik ≥ 0 (S2)

because I’s are non-negative integers. This completes the proof.

Because the sequence {Jm}m=0,1,··· is a non-decreasing sequence of integers upper-bounded by n, there
exists the smallest m∗ ≥ 1 satisfying Jm∗ = Jm∗−1. Set k∗ = Jm∗ . Then I have

k∗ =
k∗∑
k=0

Ik. (S3)

Next I will prove that Ik∗ = 0 holds. I consider two separate cases. First, suppose that m∗=1. From
the definition of m∗, J1 = J0 holds. But from the definition J1 = I0 and J0 = 0 hold. Therefore I0 = 0
follows. From the definition of k∗, I have k∗ = J1 = 0. Therefore Ik∗ = I0 = 0 follows. Second, suppose
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that m∗ ≥ 2 holds. From the definition of m∗ I have

0 = Jm∗ − Jm∗−1 =

Jm∗−1∑
k=0

Ik −
Jm∗−2∑
k=0

Ik. (S4)

However, from the minimality of m∗, I have Jm∗−1 > Jm∗−2. Therefore IJm∗−1
= Ik∗ = 0 holds. End of

the proof.

Now I am ready for proving the original claim. Consider a state where players with strategies from C0 to
Ck∗ adopt thought C and all the others adopt thought D. The total number of players adopting thought C
at this state is calculated as

∑k∗

k=0 Ik, but from eq.(S3) it is equal to k∗. Because thresholds of those who
currently have thought D are strictly greater than k∗, they do not want to change their current thought. For
those who currently adopt C, there are k∗ − 1 others players with thought C. Therefore players from C0

to Ck∗−1 do not want to change their thought. Because Ik∗ = 0 holds, Ck∗ strategists are absent from the
group. Therefore the proposed state is a stationary state. This ends the proof.

B STOCHASTIC EVOLUTIONARY DYNAMICS

I consider the Fermi process described in the main text for a finite population of sizeM . Generally speaking,
it is a Markov process, the state space of which is all possible partition of M , that is

{(M0, · · · ,Mn) |M0 + · · ·+Mn =M, Mk ∈ {0, 1, · · · ,M} (for all k)}, (S5)

where Mk corresponds to the number of Ck players in the population

I first review some known results for n = 2. Suppose M ≥ 2, and consider a single mutant strategy τ
invading a population of resident strategy σ, where σ, τ ∈ {0, 1, 2}. In what follows I will calculate the
fixation probability of the mutant, which is denoted by πσ→τ .

For that purpose, imagine that there are i mutants and M − i residents in the population. Their average
payoffs are calculated, respectively, as

wτ (i) =
1

M − 1
{(i− 1)aτ,τ + (M − i)aτ,σ}

wσ(i) =
1

M − 1
{iaσ,τ + (M − i− 1)aσ,σ} .

(S6)

According to a general argument about the fixation probability of a single mutant (Nowak et al. 2004), the
fixation probability is calculated as

πσ→τ = 1

/
M−1∑
j=0

j∏
i=1

exp [−s{wτ (i)− wσ(i)}] , (S7)
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where I employ the convention,
∏0
i=1 · = 1. Applying eq.(S7) to the payoffs (S6) yields

πσ→τ = 1

/
M−1∑
j=0

j∏
i=1

exp

[
− s

M − 1
(u1i+ u0)

]

= 1

/
M−1∑
j=0

exp

[
− s

2(M − 1)
{u1j(j + 1) + 2u0j}

]
,

(S8)

where (
u1
u0

)
=

(
1 −1 −1 1
−1 M 0 −M + 1

)
aτ,τ
aτ,σ
aσ,τ
aσ,σ

 . (S9)

Similarly, I consider the case of n = 3. Suppose M ≥ 3 and consider mutants τ and residents σ, where
σ, τ ∈ {0, 1, 2, 3}. When there are i mutants and (M − i) residents, their average payoffs are

wτ (i) =
1

(M − 1)(M − 2)
{(i− 1)(i− 2)aτ,ττ + 2(i− 1)(M − i)aτ,τσ + (M − i)(M − i− 1)aτ,σσ}

wσ(i) =
1

(M − 1)(M − 2)
{i(i− 1)aσ,ττ + 2i(M − i− 1)aσ,τσ + (M − i− 1)(M − i− 2)aσ,σσ} ,

(S10)

respectively. Applying eq.(S7) to the payoffs (S10) yields

πσ→τ = 1

/
M−1∑
j=0

j∏
i=1

exp

[
− s

(M − 1)(M − 2)
(v2i

2 + v1i+ v0)

]

= 1

/
M−1∑
j=0

exp

[
− s

6(M − 1)(M − 2)
{v2j(j + 1)(2j + 1) + 3v1j(j + 1) + 6v0j}

]
,

(S11)

where

v2v1
v0

 =

 1 −2 1 −1 2 −1
−3 2M + 2 −2M + 1 1 −2M + 2 2M − 3
2 −2M M2 −M 0 0 −M2 + 3M − 2




aτ,ττ
aτ,τσ
aτ,σσ
aσ,ττ
aσ,τσ
aσ,σσ

 . (S12)

C ADIABATIC LIMIT AND STRONG SELECTION FOR THE TWO-PERSON GAME

When I consider the adiabatic limit, µ→ 0, I need to calculate fixation probabilities for all combinations
of resident and mutant strategies. According to Eq. (S8), when selection is strong (s→∞) the fixation
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probability is determined solely by the sign of fσ→τ (j) ≡ u1j(j + 1) + 2u0j as follows;

πσ→τ =

{
0 if at least one of fσ→τ (0), · · · , fσ→τ (M − 1) is negative
1/K otherwise; K is the number of zeros among {fσ→τ (0), · · · , fσ→τ (M − 1)}

(S13)

(see eq.(S9) for the definitions of u1 and u0). Remember that fσ→τ (0) = 0 always holds.

I will consider six separate cases below. Remember that I assume 1 < r < 2.

When (σ, τ) = (1, 0)
A calculation shows

f1→0(j) = c(r − 1)(1− p)j{2M − (j + 3)}. (S14)

Therefore I have

π1→0 =


1/M if p = 1

1/2 if p 6= 1,M = 2

1 if p 6= 1,M ≥ 3.

(S15)

When (σ, τ) = (2, 0)
A calculation shows

f2→0(j) = −c{2(r − 1) + (2− r)M}j, (S16)

which is negative for all j ≥ 1. Therefore π2→0 = 0.

When (σ, τ) = (0, 1)
A calculation shows

f0→1(j) = −c(r − 1)(1− p)j(j − 1). (S17)

Therefore I have

π0→1 =


1/M if p = 1

1/2 if p 6= 1,M = 2

0 if p 6= 1,M ≥ 3.

(S18)

When (σ, τ) = (2, 1)
A calculation shows

f2→1(j) = c(r − 1)pj(j − 1), (S19)

Therefore I have

π2→1 =

{
1/M if p = 0

1/2 if p 6= 0.
(S20)
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When (σ, τ) = (0, 2)
A calculation shows

f0→2(j) = c{2(r − 1) + (2− r)M}j, (S21)

which is always positive for j ≥ 1. Therefore I have π0→2 = 1.

When (σ, τ) = (1, 2)
A calculation shows

f1→2(j) = −c(r − 1)pj{2M − (j + 3)}. (S22)

Therefore I have

π1→2 =


1/M if p = 0

1/2 if p 6= 0,M = 2

0 if p 6= 0,M ≥ 3.

(S23)

Given these fixation probabilities, I can calculate the stationary distribution of the Fermi process over
monomorphic states, namely the relative fraction of time the process spends at all-C0, all-C1 and all-C2

states, which I denote by (q0, q1, q2). Because M = 2 is somewhat a degenerate case, I will consider
M ≥ 3 in the following. Because a rare mutation produces one of the two strategies that are not present in
the currently monomorphic population, the transition matrix between these three states is given byρ0→0 ρ1→0 ρ2→0

ρ0→1 ρ1→1 ρ2→1

ρ0→2 ρ1→2 ρ2→2


=

1−
(
1
2π0→1 +

1
2π0→2

)
1
2π1→0

1
2π2→0

1
2π0→1 1−

(
1
2π1→0 +

1
2π1→2

)
1
2π2→1

1
2π0→2

1
2π1→2 1−

(
1
2π2→0 +

1
2π2→1

)
 ,

(S24)

where ρσ→τ represents the transition probability that a resident population of strategy Cσ is taken over
strategy Cτ when one random mutant of unknown identity arises in the resident population. The stationary
distribution is given as a right eigenvector of this transition matrix;q0q1

q2

 =

ρ0→0 ρ1→0 ρ2→0

ρ0→1 ρ1→1 ρ2→1

ρ0→2 ρ1→2 ρ2→2

q0q1
q2

 . (S25)

I consider three separate cases below.

When p = 0
The transition matrix is ρ0→0 ρ1→0 ρ2→0

ρ0→1 ρ1→1 ρ2→1

ρ0→2 ρ1→2 ρ2→2

 =

1
2

1
2 0

0 1
2 −

1
2M

1
2M

1
2

1
2M 1− 1

2M

 , (S26)
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and the stationary distribution is (q0, q1, q2) = 1
M+3(1, 1,M + 1).

When 0 < p < 1
The transition matrix is ρ0→0 ρ1→0 ρ2→0

ρ0→1 ρ1→1 ρ2→1

ρ0→2 ρ1→2 ρ2→2

 =

1
2

1
2 0

0 1
2

1
4

1
2 0 3

4

 , (S27)

and the stationary distribution is (q0, q1, q2) = (14 ,
1
4 ,

1
2).

When p = 1
The transition matrix is ρ0→0 ρ1→0 ρ2→0

ρ0→1 ρ1→1 ρ2→1

ρ0→2 ρ1→2 ρ2→2

 =

1
2 −

1
2M

1
2M 0

1
2M 1− 1

2M
1
4

1
2 0 3

4

 , (S28)

and the stationary distribution is (q0, q1, q2) = 1
M+4(1,M + 1, 2).

D OUTCOMES OF NEGOTIATION IN THE THREE-PERSON GAME

Here I investigate outcomes of the three-person public goods games played by C0,C1,C2,C3 players. In
Table 2 in the main text I list up all the possible compositions of players. There are 20 different cases. In 14
cases, there is only one stationary state and it is easy to confirm that the negotiation process always leads to
that state irrespective of players’ initial thought.

All that remains is to study the other 6 cases. As an example, here I describe my detailed analysis of the
case of (C0,C2,C2), that is, when one C0 player and two C2 players are matched.

Because three players are involved and because each player has either thought C or D, there are 23 = 8
possible states. Thanks to the symmetry between the two C2 players, however, I do not have to distinguish
their identity, and therefore I should study only the number of C2 players whose current thought is C. This
reasoning reduces the number of states from 8 to 6. More specifically, by (u, v) (u = {0, 1}, v = {0, 1, 2})
I hereafter mean the state where the number of C0 players whose current thought is C and the number of
C2 players whose current thought is C are u and v, respectively.

Let φu,v(t) be the probability that the three players is at state (u, v) after t steps of update. Because each
player independently has C as his initial thought with probability p and D with probability 1− p, I obtain

φ0,0(0)
φ0,1(0)
φ0,2(0)
φ1,0(0)
φ1,1(0)
φ1,2(0)

 =



(1− p)3
2p(1− p)2
p2(1− p)
p(1− p)2
2p2(1− p)

p3

 . (S29)

Let us consider transitions between states. For example, imagine state (0, 1), where C0 player’s thought
is D and one C2 player has thought C and the other C2 player has thought D. If the C0 player is chosen for
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updating his thought, he changes his thought from D to C because he always wants to cooperate. If the C2

player with currently C-thought is chosen for the update, on the other hand, he will change his thought to
D because he finds no cooperators among the other two players. If the C2 player with currently D-thought
is chosen for the update, he stays with the same thought because he finds only one cooperator among the
other two players. In sum, the transition from state (0, 1) to state (1, 1) occurs with probability 1/3, to
state (0, 0) occurs with probability 1/3, and no transition occurs with probability 1/3. A similar calculation
leads to the following transition matrix between states;

φ0,0(t+ 1)
φ0,1(t+ 1)
φ0,2(t+ 1)
φ1,0(t+ 1)
φ1,1(t+ 1)
φ1,2(t+ 1)

 =



2/3 1/3 0 0 0 0
0 1/3 2/3 0 0 0
0 0 0 0 0 0
1/3 0 0 1 1/3 0
0 1/3 0 0 1/3 0
0 0 1/3 0 1/3 1





φ0,0(t)
φ0,1(t)
φ0,2(t)
φ1,0(t)
φ1,1(t)
φ1,2(t)

 . (S30)

Note that states (1, 0) and (1, 2) are stationary states. Solving this recursion with the initial condition,
eq.(S29), gives 

φ0,0(∞)
φ0,1(∞)
φ0,2(∞)
φ1,0(∞)
φ1,1(∞)
φ1,2(∞)

 =



0
0
0

−1
2p

2 − 1
2p+ 1

0
1
2p

2 + 1
2p

 . (S31)

At state (1, 0), C0 players cooperates and two C2 players do not. At state (1, 2) all the three players
cooperate. Therefore, the expected payoff of the C0 player is given by

a0,22 =

(
−1

2
p2 − 1

2
p+ 1

)(
−c+ rc

3

)
+

(
1

2
p2 +

1

2
p

)
(−c+ rc) = −c+ p2 + p+ 1

3
rc, (S32)

and the expected payoff of a C2 player is given by

a2,02 =

(
−1

2
p2 − 1

2
p+ 1

)
rc

3
+

(
1

2
p2 +

1

2
p

)
(−c+ rc) = −p

2 + p

2
c+

p2 + p+ 1

3
rc. (S33)

The other 5 cases can be studied in a similar manner.

Another, and a little simpler derivation of these expected payoffs is to rely on the argument of ultimate
probabilities of absorption. Let ψ(a∗,b∗)

a,b be the probability that the negotiation process starting from state
(a, b) ultimately ends up at state (a∗, b∗). It is not difficult to see that they satisfy the following relation;(

ψ0,0 ψ0,1 ψ0,2 ψ1,0 ψ1,1 ψ1,2

)

=
(
ψ0,0 ψ0,1 ψ0,2 ψ1,0 ψ1,1 ψ1,2

)


2/3 1/3 0 0 0 0
0 1/3 2/3 0 0 0
0 0 0 0 0 0
1/3 0 0 1 1/3 0
0 1/3 0 0 1/3 0
0 0 1/3 0 1/3 1


, (S34)
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where I omitted the superscript (a∗, b∗). Taking into account the fact that there are two stationary states,
(1, 0) and (1, 2), the ultimate probability that the negotiation process arrives at (a∗, b∗) = (1, 0) should
satisfy

ψ
(1,0)
1,0 = 1, ψ

(1,0)
1,2 = 0. (S35)

Solving eqs.(S34, S35) gives(
ψ
(1,0)
0,0 ψ

(1,0)
0,1 ψ

(1,0)
0,2 ψ

(1,0)
1,0 ψ

(1,0)
1,1 ψ

(1,0)
1,2

)
=
(
1 3

4
1
2 1 1

2 0
)
, (S36)

and therefore the probability that the negotiation process arrives at state (1, 0) is given by

(
ψ
(1,0)
0,0 ψ

(1,0)
0,1 ψ

(1,0)
0,2 ψ

(1,0)
1,0 ψ

(1,0)
1,1 ψ

(1,0)
1,2

)


φ0,0(0)
φ0,1(0)
φ0,2(0)
φ1,0(0)
φ1,1(0)
φ1,2(0)



=
(
1 3

4
1
2 1 1

2 0
)


(1− p)3
2p(1− p)2
p2(1− p)
p(1− p)2
2p2(1− p)

p3

 = −1

2
p2 − 1

2
p+ 1.

(S37)

A similar argument leads to the absorption probability to state (1, 2), too.

E REPLICATOR DYNAMICS FOR THE THREE-PERSON GAME

In this section I will pay attention to the replicator dynamics on the edges of the simplex, S4. Remember that
xk (k = 0, 1, 2, 3) represents the frequency of strategy Ck in the population, and that wk (k = 0, 1, 2, 3)
represents the average payoff of strategy Ck. The following analysis assumes 0 < p < 1 and 1 < r < 3.

On the C0-C1 edge
A calculation shows

w0 − w1 = c(1− p)2(r − 1)(1− x0)2, (S38)

which is positive in the interior of the edge. Hence C0 dominates C1.

On the C1-C2 edge
A calculation shows

w1 − w2 =
c

2
p(1− p)(r − 1){2x1(1− x1) + 1} > 0. (S39)

Therefore, C1 dominates C2.
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On the C2-C3 edge
A calculation shows

w2 − w3 =
cp2(3− p)2(2r − 3)2

9(r − 1)
, (S40)

which is positive unless r = 3/2 (note that r = 3/2 is a ‘knife-edge’ case and I do not pursue in the
following). Therefore C2 dominates C3.

On the C3-C0 edge
A calculation shows

w3 − w0 =
c

3
(3− r) > 0. (S41)

Therefore, C3 dominates C0.

On the C0-C2 edge
A calculation shows

w2 − w0 =
c

3
(1− p)x2{3(r − 1)x2 − (2 + p)(2r − 3)}. (S42)

When r < 3/2, the expression inside the curly brackets is positive, so the whole expression above is
positive in the interior of the edge. Hence, C2 dominates C0. When 3/2 < r < 3+3p

1+2p , there is an unstable
equilibrium P02 at

x∗2 =
(2 + p)(2r − 3)

3(r − 1)
, (S43)

and the system shows bistability. When r > 3+3p
1+2p , I have

3(r − 1)x2 − (2 + p)(2r − 3) < 3(r − 1) · 1− (2 + p)(2r − 3) = −(1 + 2p)r + (3 + 3p) < 0 (S44)

in the interior of the edge and hence w2 < w0 holds, suggesting that C0 dominates C2.

On the C1-C3 edge
A calculation shows

w3 − w1 =
c

3
p(1− x3){−3(r − 1)x3 + (2r − 3)p+ (−3r + 6)}. (S45)

When r < 3/2, I have

− 3(r− 1)x3+(2r− 3)p+(−3r+6) > −3(r− 1) · 1+ (2r− 3) · 1+ (−3r+6) = −4r+6 > 0 (S46)

in the interior of the edge, and hence C3 dominates C1. When 3/2 < r < 6−3p
3−2p there exists a stable

equilibrium Q13 at

x∗3 =
(2r − 3)p+ (−3r + 6)

3(r − 1)
, (S47)
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and the system allows coexistence of C1 and C3. When r > 6−3p
3−2p I have

−3(r−1)x3+(2r−3)p+(−3r+6) < −3(r−1) ·0+(2r−3)p+(−3r+6) = −(3−2p)r+(6−3p) < 0
(S48)

in the interior of the edge, suggesting that C1 dominates C3.

F ADIABATIC LIMIT AND STRONG SELECTION FOR THE THREE-PERSON
GAME

I consider the adiabatic limit, µ → 0, for n = 3. When selection is strong (s → ∞) the fixation
probability of strategy τ invading the population of strategy σ is determined by the sign of gσ→τ (j) ≡
v2j(j + 1)(2j + 1) + 3v1j(j + 1) + 6v0j (see eq. (S11)), as follows;

πσ→τ =

{
0 if at least one of gσ→τ (0), · · · , gσ→τ (M − 1) is negative
1/K otherwise; K is the number of zeros among {gσ→τ (0), · · · , gσ→τ (M − 1)}

(S49)

(see eq.(S12) for the definition of v2, v1 and v0). Note that gσ→τ (0) = 0 always holds.

The function gσ→τ (j) can be a quadratic function of j even after factoring out one j, and therefore it
is generally difficult to determine the sign of gσ→τ at M discrete points, j = 0, · · · ,M − 1. Therefore, I
restrict my attention to a large M and treat z ≡ j/M as a continuous variable as an approximation, where
0 ≤ z ≤ 1. More precisely speaking, I set j =Mz and consider the polynomial g(Mz), of which leading
term with respect to M is M3. For a large M , therefore, the sign of the following polynomial

Gσ→τ (z) = lim
M→∞

g(Mz)

M3

= 2z

[
(aτ,ττ − 2aτ,τσ + aτ,σσ − aσ,ττ + 2aσ,τσ − aσ,σσ)z2

+ 3(aτ,τσ − aτ,σσ − aσ,τσ + aσ,σσ)z + 3(aτ,σσ − aσ,σσ)

]
,

(S50)

in 0 ≤ z ≤ 1 determines the fixation probability. In particular, if there exists some 0 ≤ z∗ ≤ 1 such
that Gσ→τ (z∗) < 0 holds, then the corresponding fixation probability is calculated as zero. Otherwise, I
separately calculate gσ→τ (0) (= 0), gσ→τ (1), gσ→τ (2) · · · to find the number of consecutive zeros from
gσ→τ (0), and calculate the fixation probability as 1/K, where K is the number of consecutive zeros. Note
that, because gσ→τ is at most cubic in j, the number of consecutive zeros can be either 1, 2, 3 or M (in the
last case gσ→τ is identical to zero).

Below I will study twelve separate cases. Remember that I assume a large M and 1 < r < 3 in the
following.

When (σ, τ) = (1, 0)
If p = 1 I have g1→0(j) ≡ 0 for all j, and hence π1→0 = 1/M . If p 6= 1, g1→0(j) is quadratic in j even
after factoring out one j, so I consider

G1→0(z) = 2c(r − 1)(1− p)2z(z2 − 3z + 3), (S51)

10
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which is non-negative in 0 ≤ z ≤ 1. Calculations show

g1→0(0) = 0

g1→0(1) > 0,
(S52)

and therefore K = 1 and π1→0 = 1. To summarize, I obtain

π1→0 =

{
1/M if p = 1

1 if p 6= 1.
(S53)

When (σ, τ) = (2, 0)
If p = 1 I have g2→0(j) ≡ 0 for all j, and hence π2→0 = 1/M . If p 6= 1, g2→0(j) is quadratic in j even
after factoring out one j, so I consider

G2→0(z) = −c(1− p)z{2(r − 1)z2 + (2pr − 2r − 3p)z − 2(2pr + r − 3p− 3)}. (S54)

For G2→0(z) to be non-negative in 0 ≤ z ≤ 1,

{2(r − 1)z2 + (2pr − 2r − 3p)z − 2(2pr + r − 3p− 3)}|z=0,1 ≤ 0, (S55)

is necessary and sufficient, which is equivalent to

r ≥ 3 + 3p

1 + 2p
. (S56)

For r > (3 + 3p)/(1 + 2p), separate calculations show

g2→0(0) = 0

g2→0(1) > 0,
(S57)

and therefore K = 1 and π2→0 = 1. If r < (3 + 3p)/(1 + 2p), on the other hand, I have π2→0 = 0. To
summarize, I obtain

π2→0 =


1/M if p = 1

1 if p 6= 1 and r > 3+3p
1+2p

0 if p 6= 1 and r < 3+3p
1+2p ,

(S58)

where I avoided the evaluation of the knife-edge case, r = (3 + 3p)/(1 + 2p).

When (σ, τ) = (3, 0)
A straightforward calculation shows

g3→0(j) = −2cj(M − 2){(3− r)M + 3(r − 1)}, (S59)

Frontiers 11
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which is negative for M ≥ 3 and j ≥ 1. Therefore I obtain

π3→0 = 0. (S60)

When (σ, τ) = (0, 1)
A straightforward calculation shows

g0→1(j) = −2c(r − 1)(1− p)2j(j − 1)(j − 2). (S61)

If p = 1, I have g0→1(j) ≡ 0 and therefore π0→1 = 1/M . If p 6= 1, I have g0→1(j) < 0 for j ≥ 3, and
therefore π0→1 = 0 holds for M ≥ 4. To summarize, I obtain

π0→1 =

{
1/M if p = 1

0 if p 6= 1.
(S62)

When (σ, τ) = (2, 1)
If p = 0 or 1, I have g2→1(j) ≡ 0 for all j, and hence π2→1 = 1/M . If p 6= 0, 1, g2→1(j) is quadratic in j
even after factoring out one j, so I consider

G2→1(z) = −c(r − 1)p(1− p)z(2z2 − 3z − 3), (S63)

which is non-negative in 0 ≤ z ≤ 1. Calculations show

g2→1(0) = 0

g2→1(1) > 0,
(S64)

and therefore K = 1 and π2→1 = 1. To summarize, I obtain

π2→1 =

{
1/M if p = 0, 1

1 if p 6= 0, 1.
(S65)

When (σ, τ) = (3, 1)
A straightforward calculation leads to

g3→1(j) = −cpj(j − 1){2(r − 1)j +M(2r − 3)(p− 3)− 2(r − 1)(3p− 7)}. (S66)

If p = 0, I have g3→1(j) ≡ 0 for all j, and hence π3→1 = 1/M . If p 6= 0, g3→1(j) ≤ 0 holds for all
j = 0, · · · ,M − 1 if and only if g3→1(M − 1) ≤ 0, because the expression inside the curly brackets in
eq.(S66) is an increasing function of j. Solving g3→1(M − 1) ≤ 0 for a large M gives the condition,

r ≥ 7− 3p

4− 2p
. (S67)

12
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For r > (7− 3p)(4− 2p),

g3→1(0) = 0

g3→1(1) = 0

g3→1(2) > 0

(S68)

hold, so I have K = 2 and therefore π3→1 = 1/2. If r < (7 − 3p)/(4 − 2p), on the other hand, I have
π3→1 = 0. To summarize, I obtain

π3→1 =


1/M if p = 0

1/2 if p 6= 0 and r > 7−3p
4−2p

0 if p 6= 0 and r < 7−3p
4−2p ,

(S69)

where I avoided the evaluation of the knife-edge case, r = (7− 3p)/(4− 2p).

When (σ, τ) = (0, 2)
A straightforward calculation shows

g0→2(j) = c(1− p)j(j − 1){2(r − 1)j −M(2r − 3)(p+ 2) + 2(r − 1)(3p+ 4)}. (S70)

If p = 1, I have g0→2(j) ≡ 0 for all j, and hence π0→2 = 1/M . If p 6= 1, I find that g0→2(j) ≥ 0 holds for
all j = 0, · · · ,M − 1 if and only if g0→2(2) ≥ 0 holds, because the expression inside the curly brackets in
eq.(S70) is an increasing function of j. Solving g0→2(2) ≥ 0 for a large M gives the condition,

r ≤ 3

2
. (S71)

For r < 3/2,

g0→2(0) = 0

g0→2(1) = 0

g0→2(2) > 0

(S72)

hold, so I have K = 2 and therefore π0→2 = 1/2. If r > 3/2, on the other hand, I have π0→2 = 0. To
summarize, I obtain

π0→2 =


1/M if p = 1

1/2 if p 6= 1 and r < 3
2

0 if p 6= 1 and r > 3
2 ,

(S73)

where I avoided the evaluation of the knife-edge case, r = 3/2.

When (σ, τ) = (1, 2)
If p = 0 or 1, I have g1→2(j) ≡ 0 for all j, and hence π1→2 = 1/M . If p 6= 0, 1, g1→2(j) is quadratic in j

Frontiers 13
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even after factoring out one j, so I consider

G1→2(z) = c(r − 1)p(1− p)z(2z2 − 3z − 3), (S74)

which is negative for 0 < z ≤ 1. Therefore, π1→2 = 0. To summarize, I obtain

π1→2 =

{
1/M if p = 0, 1

0 if p 6= 0, 1.
(S75)

When (σ, τ) = (3, 2)
A straightforward calculation shows

g3→2(j) = 2c(r − 1)p2j(j − 1)(j − 2). (S76)

If p = 0, I have g3→2(j) ≡ 0 for all j, and hence π3→2 = 1/M . If p 6= 0, I find that g3→2(0) = g3→2(1) =
g3→2(2) = 0 and g3→2(j) > 0 for all j ≥ 3, and therefore K = 3 and π3→2 = 1/3. To summarize, I
obtain

π3→2 =

{
1/M if p = 0

1/3 if p 6= 0.
(S77)

When (σ, τ) = (0, 3)
A calculation shows

g0→3(j) = 2cj(M − 2){(3− r)M + 3(r − 1)}, (S78)

which is zero at j = 0 but positive for M ≥ 3 and j ≥ 1. Therefore I obtain

π0→3 = 1. (S79)

When (σ, τ) = (1, 3)
If p = 0, I have g1→3(j) ≡ 0 for all j, and hence π1→3 = 1/M . If p 6= 0, g1→3(j) is quadratic in j even
after factoring out one j, so I consider

G1→3(z) = cpz{2(r − 1)z2 − (2rp− 3p+ 3)z + 2(2rp− 3p− 3r + 6)}. (S80)

Let H1→3(z) be the expression inside the curly brackets in eq.(S80). The axis of the parabola y = H1→3(z)
lies at ẑ = (2rp−3p+3)/4(r−1), which is positive. If ẑ < 1 (which is equivalent to r > (7−3p)/(4−2p)),
for G1→3(z) to be non-negative in 0 ≤ z ≤ 1

H1→3(ẑ) = −
{(4− 2p)r − (7− 3p)}{(4− 2p)r + (3p− 15) + 8r}

8(r − 1)
≥ 0. (S81)

14
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is sufficient and necessary. However, this is never satisfied because

(4− 2p)r − (7− 3p) > (7− 3p)− (7− 3p) = 0

(4− 2p)r + (3p− 15) + 8r > (7− 3p) + (3p− 15) + 8r = 8(r − 1) > 0,
(S82)

and therefore π1→3 = 0 is concluded. If the axis lies in ẑ ≥ 1 (which is equivalent to r ≤ (7−3p)/(4−2p)),
for G1→3(z) to be non-negative in 0 ≤ z ≤ 1

H1→3(1) = −{(4− 2p)r − (7− 3p)} ≥ 0, (S83)

is necessary and sufficient, which is indeed satisfied because

(4− 2p)r − (7− 3p) ≤ (7− 3p)− (7− 3p) = 0. (S84)

For r < (7− 3p)/(4− 2p), I find

g1→3(0) = 0

g1→3(1) > 0,
(S85)

and therefore K = 1 and π1→3 = 1 holds. To summarize, I obtain

π1→3 =


1/M if p = 0

1 if p 6= 0 and r < 7−3p
4−2p

0 if p 6= 0 and r > 7−3p
4−2p ,

(S86)

where I avoided the evaluation of the knife-edge case, r = (7− 3p)/(4− 2p).

When (σ, τ) = (2, 3)
If p = 0, I have g2→3(j) ≡ 0 for all j, and hence π2→3 = 1/M . If p 6= 0, g2→3(j) is quadratic in j even
after factoring out one j, so I consider

G2→3(z) = −2cp2(r − 1)z(z2 − 3z + 3), (S87)

which is negative in 0 < z ≤ 1. Therefore, π2→3 = 0. To summarize, I obtain

π2→3 =

{
1/M if p = 0

0 if p 6= 0.
(S88)

Given these twelve fixation probabilities, I will calculate the stationary distribution of the Fermi process.
Let qi be the fraction of time that the stochastic process under the adiabatic limit and strong selection stays
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at the all-Ci state (i = 0, 1, 2, 3). It is calculated as the solution of
q0
q1
q2
q3

 =


ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3



q0
q1
q2
q3

 , (S89)

where the matrix with ρ’s is the transition matrix. I consider three separate cases. Note that the following
analysis assumes a large M .

(i) When p = 0
(i-a) When r < 3/2
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


1
2

1
3 0 0

0 2
3 −

2
3M

1
3M

1
3M

1
6

1
3M 1− 2

3M
1

3M
1
3

1
3M

1
3M 1− 2

3M

 . (S90)

The stationary distribution is

(q0, q1, q2, q3) =
1

33 + 9M
(6, 9, 9 + 4M, 9 + 5M). (S91)

(i-b) When r > 3/2
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


2
3

1
3 0 0

0 2
3 −

2
3M

1
3M

1
3M

0 1
3M 1− 2

3M
1

3M
1
3

1
3M

1
3M 1− 2

3M

 . (S92)

The stationary distribution is

(q0, q1, q2, q3) =
1

12 + 3M
(3, 3, 3 +M, 3 + 2M). (S93)

(ii) When 0 < p < 1
(ii-a) When r < 3/2
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


1
2

1
3 0 0

0 1
3

1
3 0

1
6 0 2

3
1
9

1
3

1
3 0 8

9

 . (S94)

The stationary distribution is

(q0, q1, q2, q3) =
1

26
(2, 3, 6, 15). (S95)
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(ii-b) When 3/2 < r < (7− 3p)/(4− 2p)
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


2
3

1
3 0 0

0 1
3

1
3 0

0 0 2
3

1
9

1
3

1
3 0 8

9

 . (S96)

The stationary distribution is

(q0, q1, q2, q3) =
1

10
(1, 1, 2, 6). (S97)

(ii-c) When (7− 3p)/(4− 2p) < r < (3 + 3p)/(1 + 2p)
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


2
3

1
3 0 0

0 2
3

1
3

1
6

0 0 2
3

1
9

1
3 0 0 13

18

 . (S98)

The stationary distribution is

(q0, q1, q2, q3) =
1

18
(5, 5, 2, 6). (S99)

(ii-d) When r > (3 + 3p)/(1 + 2p)
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


2
3

1
3

1
3 0

0 2
3

1
3

1
6

0 0 1
3

1
9

1
3 0 0 13

18

 . (S100)

The stationary distribution is

(q0, q1, q2, q3) =
1

16
(5, 4, 1, 6). (S101)

(iii) When p = 1
(iii-a) When r < 2
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


2
3 −

2
3M

1
3M

1
3M 0

1
3M

2
3 −

2
3M

1
3M 0

1
3M

1
3M 1− 2

3M
1
9

1
3

1
3 0 8

9

 . (S102)

The stationary distribution is

(q0, q1, q2, q3) =
1

9 +M
(1, 1, 1 +M, 6). (S103)
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(iii-b) When r > 2
The transition matrix is given by

ρ0→0 ρ1→0 ρ2→0 ρ3→0

ρ0→1 ρ1→1 ρ2→1 ρ3→1

ρ0→2 ρ1→2 ρ2→2 ρ3→2

ρ0→3 ρ1→3 ρ2→3 ρ3→3

 =


2
3 −

2
3M

1
3M

1
3M 0

1
3M 1− 2

3M
1

3M
1
6

1
3M

1
3M 1− 2

3M
1
9

1
3 0 0 13

18

 . (S104)

The stationary distribution is

(q0, q1, q2, q3) =
1

63 + 15M
(15, 15 + 8M, 15 + 7M, 18). (S105)
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