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A A PROOF OF THE EXISTENCE OF A STATIONARY STATE

Consider the n-player public goods game, and consider a group of n players where the number of C;,
players is given by I, (0 < k < n). By definition Iy + - - - + I, = n holds. The aim of this section is to
prove the existence of at least one stationary state.

For that purpose, I recursively define the sequence of integers, {.Jy, }m=0.1,..., by

Jo=20

Im—1 (S1)
Jn=Y_ I (m=>1).

k=0

It is easy to prove (by using mathematical induction) that each integer .J,,, is well-defined and upper-bounded
by n.

Next I will prove by mathematical induction that the sequence {.J,, } ;=0 1,... is non-decreasing. First,
J1 — Jo = Ip > 0 holds. Second, assume that J,,, — J,,,—1 > 0 holds for m > 1. Then I obtain

Jm Jm—l
It = Jm =Y Iy — D I 20 (S2)
k=0 k=0

because [’s are non-negative integers. This completes the proof.

Because the sequence {.J,, };m—0,1.... is a non-decreasing sequence of integers upper-bounded by n, there
exists the smallest m* > 1 satisfying J,,» = Ji+—1. Set * = J,,,«. Then I have

k*
Ko=) I (S3)
k=0

Next I will prove that I3+ = 0 holds. I consider two separate cases. First, suppose that m*=1. From
the definition of m*, J; = Jy holds. But from the definition .J; = Iy and Jy = 0 hold. Therefore Iy = 0
follows. From the definition of £*, I have k* = J; = 0. Therefore [+ = Iy = 0 follows. Second, suppose
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that m* > 2 holds. From the definition of m™* I have

Jo* 1 Jox o
0="Jur = Jor1= Y In— Y I (S4)
k=0 k=0

However, from the minimality of m*, [ have Jy,,»—1 > Jy+—2. Therefore I; , | = [+ = 0 holds. End of
the proof.

Now I am ready for proving the original claim. Consider a state where players with strategies from Cg to
Cp+ adopt thought C and all the others adopt thought D. The total number of players adopting thought C
at this state is calculated as Z’E*:o I, but from eq.(S3) it is equal to k£*. Because thresholds of those who
currently have thought D are strictly greater than k£*, they do not want to change their current thought. For
those who currently adopt C, there are £* — 1 others players with thought C. Therefore players from Cg
to Ci+_1 do not want to change their thought. Because I+ = 0 holds, Cy+ strategists are absent from the
group. Therefore the proposed state is a stationary state. This ends the proof.

B STOCHASTIC EVOLUTIONARY DYNAMICS

I consider the Fermi process described in the main text for a finite population of size M . Generally speaking,
it is a Markov process, the state space of which is all possible partition of M, that is

{(Mo,--- ,My) | Mo+ ---+ M, =M, Me{0,1,---,M} (forall k)}, (S5)

where M. corresponds to the number of Cj, players in the population

I first review some known results for n = 2. Suppose M > 2, and consider a single mutant strategy 7
invading a population of resident strategy o, where o, 7 € {0, 1,2}. In what follows I will calculate the
fixation probability of the mutant, which is denoted by 7,_, .

For that purpose, imagine that there are : mutants and M — ¢ residents in the population. Their average
payoffs are calculated, respectively, as

we(i) = —— {6 = Dar + (M = i)ar)

=

(S6)

—_

we (1) = 71 {iagr + (M —i—1)agse}.

According to a general argument about the fixation probability of a single mutant (Nowak et al. 2004), the
fixation probability is calculated as

M-1 j

Togosr =1 Z HeXp [—s{wr (i) —wo (i) }], (S7)

j=0 i=1
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where I employ the convention, H?:l - = 1. Applying eq.(S7) to the payoffs (S6) yields

M-1 j
S .
Mooy = 1 Z Hexp [_M — 1<u1@ + UO):|

j=0 i=1 S8)
M-—1 s
=1 —_— (7 4+ 1) + 2ugg
/j_O eXP{ 2(M_1){U1J(J+ )+ Uoj}y
where
Qr 1
w)y (1 -1 -1 1 ar.o
(u()) a (—1 M 0 —]\/[—1—1) agr | (59)
Qg0

Similarly, I consider the case of n = 3. Suppose M > 3 and consider mutants 7 and residents o, where
o,7 € {0,1,2,3}. When there are ¢ mutants and () — i) residents, their average payoffs are

1

wy (i) = T {G=1)(i —2)arrr +2(i — 1) (M —)arro + (M —i)(M —i—1)ar oo}
we (i) = UENED {i(i = Dagrr +2i(M —i—1)agre + (M —1—1)(M —i—2)as 50},
(S10)
respectively. Applying eq.(S7) to the payoffs (ST0) yields
M-1 j s
. .92 .
’ 1 (S11)
1/ 3 exp |- : {027 (j +1)(2) + 1) + 3vrj(j + 1) + 6uoj} |,
= 6(M —1)(M — 2)
where
Qr 171
Vs 1 9 1 1 9 1 Z””
vn|=1-3 2M+2 -2M+1 1 =2M+2 2M — 3 aT’UU . (S12)
vp 2 —2M M?*-M O 0 ~M?+3M -2 o
Qg 10
Qo o0

C ADIABATIC LIMIT AND STRONG SELECTION FOR THE TWO-PERSON GAME

When I consider the adiabatic limit, 4 — 0, I need to calculate fixation probabilities for all combinations
of resident and mutant strategies. According to Eq. (S8), when selection is strong (s — 00) the fixation
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probability is determined solely by the sign of f,_+(j) = u1j(j + 1) + 2upj as follows;

L. if at least one of fy_(0),- -+, fosr (M — 1) is negative (S13)
T 1/K otherwise; K is the number of zeros among { f,—(0),- - , fosr (M — 1)}
(see eq.(S9) for the definitions of u; and ug). Remember that f,_,-(0) = 0 always holds.
I will consider six separate cases below. Remember that [ assume 1 < r < 2.
When (o,7) = (1,0)
A calculation shows
fiso(g) = c(r =11 —p)i{2M — (j + 3)}. (S14)
Therefore I have
/M ifp=1
T—so=1<1/2 ifp#A1,M=2 (S15)
1 ifp#1, M > 3.
When (o,7) = (2,0)
A calculation shows
fas0(j) = —c{2(r = 1) + (2 = )M}, (S16)
which is negative for all j > 1. Therefore mo_,o = 0.
When (o, 7) = (0,1)
A calculation shows
Jos1(j) = —c(r = 1)(1 = p)i(G = 1). (S17)
Therefore I have
1/M ifp=1
Tos1 =1 1/2 ifp#1, M =2 (S18)
0 ifp#1,M > 3.
When (o, 7) = (2,1)
A calculation shows
fo—1(j) = e(r = Dpj(j — 1), (S19)
Therefore I have
1/M ifp=0
To 41 = / . (S20)
1/2  ifp#0.
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When (o, 7) = (0, 2)
A calculation shows

fooa(j) = ef2(r = 1) + (2 - r)M}j, (s21)

which is always positive for j > 1. Therefore I have mp_2 = 1.

When (o, 7) = (1,2)
A calculation shows

fi2(j) = —c(r — V)pj{2M — (j + 3)}. (S22)
Therefore 1 have
1/M ifp=0
T2 =11/2 ifp#A0, M =2 (523)

0 ifp£0,M > 3.

Given these fixation probabilities, I can calculate the stationary distribution of the Fermi process over
monomorphic states, namely the relative fraction of time the process spends at all-Cyp, all-C; and all-Cs
states, which I denote by (qo, ¢1, g2). Because M = 2 is somewhat a degenerate case, I will consider
M > 3 in the following. Because a rare mutation produces one of the two strategies that are not present in
the currently monomorphic population, the transition matrix between these three states is given by

PO—0 P1—0 P2—0
PO—1  Pl—1  P2—1
PO—2 Pl1—=2 P22

1_ (1 1 1 1 (524)
- (§7T0—>1 + §7T0—>2) 5710 520
1 1 1 1
= 5T0—1 1— (3m—0 + 5T152) 5721 ;
1 1 1
5T0—2 5T1—2 1- (§7TZ—>O + 5772—>1)

where p,_,r represents the transition probability that a resident population of strategy C, is taken over
strategy C, when one random mutant of unknown identity arises in the resident population. The stationary
distribution is given as a right eigenvector of this transition matrix;

q0 PO—=0 P10 P20 qo0
a1 | = | pos1 P11 P21 q |- (S25)
q2 P0—2 P1—2 P22 q2

I consider three separate cases below.

Whenp =0

The transition matrix is
PO—0 P10 P20 3 : 0
pos1 pist po1 | = |0 5—ao;r  aw | (S26)
P0—2  Pl=2 P22 % QL 1—%
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and the stationary distribution is (qo, g1, q2) = ﬁ(L 1, M +1).

When 0 <p <1
The transition matrix is

PO—0  P1—0 P20 % % 0
pos1 prs1t past | =0 3 % : (S27)
P02 P12 P22 % 0 3
and the stationary distribution is (qo, q1, ¢2) = (}1, }1, %)
Whenp =1
The transition matrix is
P0—=0 P10 P2-0 s—957 a7 O
pos1 pst et | = o l—am 1 (S28)
PO—2 P12 P22 3 0 2

and the stationary distribution is (qo, g1, q2) = ﬁ(l, M +1,2).

D OUTCOMES OF NEGOTIATION IN THE THREE-PERSON GAME

Here I investigate outcomes of the three-person public goods games played by Cyp, Cy, Ca, C3 players. In
Table 2 in the main text I list up all the possible compositions of players. There are 20 different cases. In 14
cases, there is only one stationary state and it is easy to confirm that the negotiation process always leads to
that state irrespective of players’ initial thought.

All that remains is to study the other 6 cases. As an example, here I describe my detailed analysis of the
case of (Cp, Ca, C2), that is, when one C player and two Cy players are matched.

Because three players are involved and because each player has either thought C or D, there are 23 = 8
possible states. Thanks to the symmetry between the two Co players, however, I do not have to distinguish
their identity, and therefore I should study only the number of Co players whose current thought is C. This
reasoning reduces the number of states from 8 to 6. More specifically, by (u,v) (v = {0,1},v = {0, 1,2})
I hereafter mean the state where the number of Cy players whose current thought is C and the number of
Cs players whose current thought is C are u and v, respectively.

Let ¢, (t) be the probability that the three players is at state (u, v) after ¢ steps of update. Because each
player independently has C as his initial thought with probability p and D with probability 1 — p, I obtain

¢0,0(0) (1-p)?

$0,1(0) 2292(1 —p)?

$02(0) | _ | p*(1—p)

d1000) | | pA=p)? | (529)
$1,1(0) 2p*(1 - p)

$1.2(0) P’

Let us consider transitions between states. For example, imagine state (0, 1), where Cy player’s thought
is D and one Cs player has thought C and the other Cy player has thought D. If the C player is chosen for
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updating his thought, he changes his thought from D to C because he always wants to cooperate. If the Co
player with currently C-thought is chosen for the update, on the other hand, he will change his thought to
D because he finds no cooperators among the other two players. If the Ca player with currently D-thought
is chosen for the update, he stays with the same thought because he finds only one cooperator among the
other two players. In sum, the transition from state (0, 1) to state (1, 1) occurs with probability 1/3, to
state (0, 0) occurs with probability 1/3, and no transition occurs with probability 1/3. A similar calculation
leads to the following transition matrix between states;

$o0(t+1) 2/3 1/3 0 0 0 0\ [¢o0o(t)
¢o1(t+1) 0 1/3 2/3 0 0 O $0,1(t)
go20t+1)| _[ 0 0 0 0 0 0]z (S30)
¢170(t + 1) 1/3 0 0 1 1/3 0 ¢1’0(t)
p1a1(t+1) 0 1/3 0 0 1/3 0] | ¢11(¢)
¢172(t +1) 0 0o 1/3 0 1/3 1 gbl,z(t)
Note that states (1,0) and (1, 2) are stationary states. Solving this recursion with the initial condition,
eq.(S29), gives
$0,0(00) 0
$0,1(00) 0
$o,2(00) | _ 0
pro(c0) | | =32 —dp+1|° (531
¢1,1(0) 0
$1,2(00) 7+ ip

At state (1,0), Cy players cooperates and two Cy players do not. At state (1,2) all the three players
cooperate. Therefore, the expected payoff of the Cy player is given by

1 1 1 1 2 1
ap,22 = (—§p2 5P + 1) <—c + %C> + <§p2 + 5])) (—c+rc) = —c+ %rc, (S32)

and the expected payoff of a Cy player is given by

1 1 1 1 2 2 1
azo2 = (—§p2 — 5Pt 1) %c + <§p2 + 51)) (—c+rc) = P ;ch + P +§ * e (S33)

The other 5 cases can be studied in a similar manner.

Another, and a little simpler derivation of these expected payoffs is to rely on the argument of ultimate
probabilities of absorption. Let @Déab ) be the probability that the negotiation process starting from state
(a, b) ultimately ends up at state (a*, b*). It is not difficult to see that they satisfy the following relation;

(Yoo o1 toz Y10 Y11 Y12)

2/3 1/3 0 0 0 0

0 1/3 2/3 0 0 0

0 0 0 0 0 o0f: (S34)
= (Y00 o1 o2 Y10 Y11 Y12) 3 0 0 1 1/3 0

0 1/3 0 0 1/3 0

0 0 1/3 0 1/3 1
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where I omitted the superscript (a*, b*). Taking into account the fact that there are two stationary states,
(1,0) and (1, 2), the ultimate probability that the negotiation process arrives at (a*,b*) = (1,0) should

satisfy
el =1, iy =0, (835)

Solving eqs.(S34] [S35)) gives
1,0 1,0 1,0 1,0 1,0 1,0\ _
(06 wbh? wf? Wl W W)= F b1 o), (836

and therefore the probability that the negotiation process arrives at state (1,0) is given by

$0,0(0)
$0,1(0)
0
(o6 o6 ol ol ol o) | 5
¢1,1(0)
0
$1,2(0) S37)
(1—p)?
21)2(1 —p)?
o 3 1 1 p(l—p) __12_1
=(1 3 31 30 p(1—p2 | = 5P 2P+1-
2p*(1 —p)
p3

A similar argument leads to the absorption probability to state (1,2), too.

E REPLICATOR DYNAMICS FOR THE THREE-PERSON GAME

In this section I will pay attention to the replicator dynamics on the edges of the simplex, S4. Remember that
xp (k= 0,1,2,3) represents the frequency of strategy Cj. in the population, and that wy (k = 0,1,2,3)
represents the average payoff of strategy C. The following analysis assumes 0 < p < land 1 <7 < 3.

On the Cp-C; edge
A calculation shows

wo — wy = c(1 —p)%(r — 1)(1 — x0)?, (S38)

which is positive in the interior of the edge. Hence Cy dominates C;.

On the C;-C9 edge
A calculation shows

wi — wy = gp(l ) — D{221(1 — 1) + 1} > 0. (S39)

Therefore, C; dominates Cs.
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On the C2-C3 edge
A calculation shows

cp?(3 — p)?(2r — 3)?

9(r—1) ’
which is positive unless » = 3/2 (note that r = 3/2 is a ‘knife-edge’ case and I do not pursue in the
following). Therefore Co dominates Cs.

(S40)

w2 — W3 =

On the C3-Cy edge
A calculation shows

w3 — wp = 5(3—@ > 0. (S41)
Therefore, C3 dominates Cy.
On the Cy-Cq edge
A calculation shows
c
wy — wp = 5(1 —p)x2{3(r — )2 — (2+p)(2r — 3)}. (542)

When r < 3/2, the expression inside the curly brackets is positive, so the whole expression above is
positive in the interior of the edge. Hence, Cy dominates Cy. When 3/2 < r < i’i—gg, there is an unstable
equilibrium Py2 at
. (2+p)(2r—3)
Ty = s
3(r—1)

(543)

and the system shows bistability. When r > ‘;’i—;’g, I have

3r—Lza—24+p)(2r=3)<3(r—1)-1-2+p)2r—3)=—(1+2p)r+ (3+3p) <0 (S44)

in the interior of the edge and hence w2 < wyp holds, suggesting that Cy dominates Co.

On the C;-C3 edge
A calculation shows

w3 — wy = gp(l — 23){=3(r — Das + (2r — 3)p + (=3r + 6)}. (S45)
When r < 3/2, T have

—3(r—=Dzs+2r—=3)p+(=3r+6) > -3(r—1)-1+(2r—3)- 1+ (=3r+6) = —4r+6 > 0 (S46)
in the interior of the edge, and hence C3 dominates C;. When 3/2 < r < g:—gg
equilibrium Q3 at

there exists a stable

(2r —3)p+ (—3r +6)
3(r—1) ’

(S47)

Ty =

Frontiers 9
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and the system allows coexistence of C; and C3. When r > g:—‘;’z I have

—3(r—1)a3+(2r—3)p+(=3r+6) < =3(r—1)-0+(2r—3)p+(=3r+6) = —(3—2p)r+(6—3p) <0
(S48)
in the interior of the edge, suggesting that C; dominates Cs.

F ADIABATIC LIMIT AND STRONG SELECTION FOR THE THREE-PERSON
GAME

I consider the adiabatic limit, © — 0, for n = 3. When selection is strong (s — oo) the fixation
probability of strategy 7 invading the population of strategy o is determined by the sign of g,,+(j) =
v (j+1)(27 + 1) + 3v15(j + 1) + 6vpj (see eq. (SII)), as follows;

(S49)

0 if at least one of g5+ (0), -+, go—r (M — 1) is negative
To—T = . .
- 1/K otherwise; K is the number of zeros among {go—+(0), - , gosr (M — 1)}

(see eq.(S12) for the definition of vy, v1 and vg). Note that g,—,,(0) = 0 always holds.

The function g,—,,(j) can be a quadratic function of j even after factoring out one j, and therefore it
is generally difficult to determine the sign of g, at M discrete points, j = 0,--- , M — 1. Therefore, I
restrict my attention to a large M and treat z = j/M as a continuous variable as an approximation, where
0 < z < 1. More precisely speaking, I set j = M z and consider the polynomial g(}M z), of which leading
term with respect to M is M?3. For a large M, therefore, the sign of the following polynomial

. Mz
Gorsr2) = Jim 275

=2z (aT,TT — 20770 t G190 — Uorr + 205,76 — aO',O'O')ZQ (S50)

+ 3(6%—,7—0 - aT,JU - a/J,TJ + aa,oa)z + 3(aT,UU - a’O’,UO’) )

in 0 < z < 1 determines the fixation probability. In particular, if there exists some 0 < z* < 1 such
that G,_,-(2*) < 0 holds, then the corresponding fixation probability is calculated as zero. Otherwise, I
separately calculate g,—+(0) (=0), go—+(1), go—+(2) - - - to find the number of consecutive zeros from
go—+(0), and calculate the fixation probability as 1/K, where K is the number of consecutive zeros. Note
that, because g, is at most cubic in j, the number of consecutive zeros can be either 1, 2, 3 or M (in the
last case g, is identical to zero).

Below I will study twelve separate cases. Remember that I assume a large M and 1 < r < 3 in the
following.

When (o, 7) = (1,0)
If p = 1T have g10(j) = 0 for all j, and hence 71,0 = 1/M.If p # 1, g1,0(j) is quadratic in j even
after factoring out one j, so I consider

Gi50(2) = 2¢(r — 1)(1 — p)?2(2® — 32+ 3), (S51)

10
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which is non-negative in 0 < z < 1. Calculations show

1-0(0) =0
91-0(0) (S52)
g1-0(1) >0,
and therefore X' = 1 and m1_,0 = 1. To summarize, I obtain
1/M ifp=1
10 = / . (S53)
1 ifp # 1.

When (o, 7) = (2,0)
If p = 1 T have go,(j) = 0 for all j, and hence w0 = 1/M. If p # 1, go—,0(7) is quadratic in j even
after factoring out one j, so I consider

Goyo(2) = —c(1 = p)z{2(r — 1)2% + (2pr — 2r — 3p)z — 2(2pr + 1 — 3p — 3)}. (S54)
For G2_,0(2) to be non-negative in 0 < z < 1,
{2(r — 1)2* + (2pr — 2r — 3p)z — 2(2pr + 7 — 3p — 3)} =01 <0, (S55)

is necessary and sufficient, which is equivalent to

3+ 3p
> .
T 2 (S56)
For r > (3 + 3p)/(1 + 2p), separate calculations show
0)=0
92%0( ) (S57)
92—>0(1> > 07

and therefore K’ = 1 and mo—0 = 1. If » < (3 + 3p)/(1 + 2p), on the other hand, I have 3,0 = 0. To
summarize, I obtain

/M ifp=1
Too =< 1 if p# Land r > 2 (S58)
0 ifp7é1and7"<?i—g§,

where I avoided the evaluation of the knife-edge case, r = (3 + 3p)/(1 + 2p).

When (o, 7) = (3,0)
A straightforward calculation shows

g3-0(j) = =2¢j(M = 2){(3 = r)M + 3(r — 1)}, (S59)

Frontiers 11
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which is negative for M > 3 and j > 1. Therefore I obtain

T30 = 0. (560)

When (o, 7) = (0,1)
A straightforward calculation shows

go1(j) = —2c(r = 1)1 = p)?i(G — 1 - 2). (S61)

If p = 1, T have go—1(j) = 0 and therefore myp_,; = 1/M. If p # 1, I have gp—1(j) < 0 for j > 3, and
therefore m9_,; = 0 holds for M/ > 4. To summarize, I obtain

ym itp=1
Tos1 = . (562)
0 if p#£ 1.

When (o,7) = (2,1)
If p=0or 1, have go—1(7) = 0 for all j, and hence mo—,; = 1/M.If p # 0,1, go—,1(7) is quadratic in j
even after factoring out one j, so I consider

Goy1(2) = —c(r — 1)p(1 — p)z(22% — 32 — 3), (S63)

which is non-negative in 0 < z < 1. Calculations show

0)=0
g2-1(0) (S64)
92-1(1) >0,
and therefore X' = 1 and m5_,; = 1. To summarize, I obtain
1/M ifp=0,1
Tos1 = / . (S65)
1 ifp#0,1.
When (0,7) = (3,1)
A straightforward calculation leads to
93-+1(3) = —cpj(j — D{2(r = 1)j + M(2r = 3)(p—3) = 2(r = 1)3p = 7)}- (S66)
If p = 0, I have g3,1(j) = 0 for all j, and hence 73_,; = 1/M. If p # 0, g3,1(7) < 0 holds for all
j=0,---,M —1if and only if g3_,; (M — 1) < 0, because the expression inside the curly brackets in
eq.(S60)) is an increasing function of j. Solving g3—,1(M — 1) < 0 for a large M gives the condition,
7—3
r>-—r (S67)
4—2p

12
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For r > (7 — 3p)(4 — 2p),

93-1(0) =0
g351(1) =0 (S68)
g3_>1(2) >0

hold, so I have K = 2 and therefore m3_,; = 1/2. If r < (7 — 3p)/(4 — 2p), on the other hand, I have
w31 = 0. To summarize, I obtain
1/M ifp=0
M1 =191/2 ifp#0andr > =P (S69)
0 1fp7é0andr<zg§,

where I avoided the evaluation of the knife-edge case, r = (7 — 3p)/(4 — 2p).

When (o, 7) = (0, 2)
A straightforward calculation shows

90-2(j) = c(L =p)j(j — D{2(r = 1)j = M(2r =3)(p+2) +2(r —1)Bp + 4)}. (870)
If p = 1, Thave gg—2(j) = 0 for all j, and hence w92 = 1 /M. If p # 1,1 find that go_,2(j) > 0 holds for
all j =0,--- , M — 1ifand only if gg—2(2) > 0 holds, because the expression inside the curly brackets in
eq.(S70) is an increasing function of j. Solving gp—,2(2) > 0 for a large M gives the condition,
3
r<-— S71
<5 (S71)
Forr < 3/2,
go—2(0) =0
go—2(1) =0 (572)
go—2(2) >0

hold, so I have K = 2 and therefore 7,2 = 1/2. If » > 3/2, on the other hand, I have my_2 = 0. To
summarize, I obtain
1M ifp=1
To—s2 = { 1/2 ifp#landr<% (S73)
0 ifp#landr > 3,

where I avoided the evaluation of the knife-edge case, r = 3/2.

When (o, 7) = (1,2)
If p=0or 1, I have g;,2(j) = 0 for all j, and hence w10 = 1/M.If p # 0,1, g1—,2(7) is quadratic in j

Frontiers 13



Frontiers Supplementary Material

even after factoring out one 7, so I consider
G12(2) = c(r — D)p(1 — p)2(22* — 32 — 3), (S74)

which is negative for 0 < z < 1. Therefore, 7,2 = 0. To summarize, I obtain

1/M ifp=0,1
S L (S75)
0 itp+#0,1.
When (0, 7) = (3,2)
A straightforward calculation shows
g3-+2(4) = 2c(r = 1)p*j(j = 1)(j — 2). (S76)

If p = 0, T have g3_2(j) = 0 for all j, and hence w30 = 1/M.If p # 0, I find that g3_,2(0) = g3—2(1) =
g3—2(2) = 0 and g3—2(j) > 0 for all j > 3, and therefore K = 3 and 73,2 = 1/3. To summarize, I

obtain
1/M ifp=0
S np (S77)
1/3  ifp #0.
When (o, 7) = (0, 3)
A calculation shows
9o—3(J) = 2¢j(M = 2){(3 —r)M + 3(r — 1)}, (S78)

which is zero at j = 0 but positive for M > 3 and j > 1. Therefore I obtain

To—3 = 1. (S79)

When (o,7) = (1, 3)
If p = 0, I have g13(j) = 0 for all j, and hence 713 = 1 /M. If p # 0, g13(j) is quadratic in j even
after factoring out one j, so I consider

G13(2) = epz{2(r — 1)2% — (2rp = 3p+3)2 + 2(2rp — 3p — 3r + 6)}. (S80)

Let Hi_,3(z) be the expression inside the curly brackets in eq.(S80). The axis of the parabola y = H;_,3(2)
lies at Z = (2rp—3p+3)/4(r—1), which is positive. If 2 < 1 (which is equivalent to r > (7—3p)/(4—2p)),
for G'1,3(2) to be non-negative in 0 < z < 1

{(4—2p)r — (7= 3p)H{(4 — 2p)r + (3p — 15) + 8r}

Hi3(2) = = 8(r —1)

> 0. (S81)
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is sufficient and necessary. However, this is never satisfied because

(4—=2p)r —(7—3p) > (7T—3p) = (7T—3p) =0

(S82)
(4—=2p)r+Bp—15)+8r>(7T—3p)+ Bp—15)+ 8 =8(r—1) > 0,

and therefore 1,3 = 0 is concluded. If the axis lies in Z > 1 (which is equivalent to r < (7—3p)/(4—2p)),
for G1_,3(2) to be non-negative in 0 < z < 1

Hios(1) = —{(4 = 2p)r — (T 3p)} > 0, (S83)
is necessary and sufficient, which is indeed satisfied because
(4—=2p)r —(7—3p) < (7T—3p) — (7T—3p) =0. (S84)
Forr < (7 —3p)/(4 — 2p), I find

g1-3(0)

=0 (S85)
91—>3(1) > 07

and therefore X' = 1 and 71_,3 = 1 holds. To summarize, I obtain

/M ifp=0
T =141 ifp#O0andr < =32 (S86)

0 if p#0andr > =2,

where I avoided the evaluation of the knife-edge case, » = (7 — 3p)/(4 — 2p).

When (o, 7) = (2, 3)
If p = 0, I have go_,3(j) = 0 for all j, and hence w3 = 1 /M. If p # 0, g2—,3(j) is quadratic in j even
after factoring out one j, so I consider

Goy3(2) = —2¢p?(r — 1)2(2% — 32 + 3), (S87)

which is negative in 0 < z < 1. Therefore, m2_,3 = (. To summarize, I obtain

1/M ifp=20
S (S88)
0 itp#0.

Given these twelve fixation probabilities, I will calculate the stationary distribution of the Fermi process.
Let g; be the fraction of time that the stochastic process under the adiabatic limit and strong selection stays
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at the all-C; state (¢ = 0,1, 2, 3). It is calculated as the solution of

qo
q1
q2
a3

P0—0
PO—1
PO—2
P0—3

P1=0 P2—0 P30
P1—1 P2—1 P3—=1
P1—=2 P22 P32
P1—3 P23 P33

(S89)

where the matrix with p’s is the transition matrix. I consider three separate cases. Note that the following

analysis assumes a large M.

(i) Whenp =0
(i-a) When r < 3/2
The transition matrix is given by

P0—0 P10
PO—1  Pl1—1
PO—2 P12
P0—3  P1-3

The stationary distribution is

(90, 91,92, q3)

(i-b) When r > 3/2
The transition matrix is given by

PO—0 P1=0
PO—1  Pl—1
P0—2 P12
P0—3 P13

The stationary distribution is

(QO7 q1, 492, Q3) =

(i) When0 <p <1
(ii-a) When r < 3/2
The transition matrix is given by

£0—0
P0—1
£0—2
P0—3

The stationary distribution is

P20
P21
P22
P23

P20
P2—1
P22
P23

P1—0
Pl1—1
P12
P13

P3—0
P3—1
P32
P3—3

1
= —(6,9.94+4M .94+ 5M).
33 + 9M< I 9+ )
P30 2 : 0
1| [0 2-3% s
= 1 2
P3—2 0 I 1— Y
1 1 1
P3—3 3 3M 3M

P2—0
P2—1
P22
P23

WD~ O N
—
—_

12 +

colro
|

3M

P3—0 % %

P3=1 | _ 0 3

P3—2 10
f 1

P33 3 3

1
(90,9192, q3) = =(2,3,6,15).

26

w | oo
g, Z-o
=

O winwl— O

(3,3,3+ M,3+2M).

wlocol—= O© O

g~ =

| o
=

<

4=

—_
|

w
[\]

(S90)

(S91)

(S92)

(S93)

(S94)

(S95)
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(ii-b) When 3/2 < r < (7 — 3p)/(4 — 2p)

The transition matrix is given by

PO—0 P10 P20 P30 % % (1J 0
po—1 P11 P21 P31 | _ [0 3 3 (1] (S96)
PO—2 P12 P22 P32 0 0 3 g
P0—3  P1—3 P23 P33 L0 3
The stationary distribution is
1
(90, 91,92, 93) = 1—0(17 1,2,6). (S97)
(ii-c) When (7 — 3p) /(4 — 2p) < r < (3+ 3p)/(1 + 2p)
The transition matrix is given by
2 1
P0—0  P1—0 P20 P30 3 3 0 0
Po0—1  Pl—1 P21 P31 0 3 : &
= 3 ¢ (S98)
PO—2  Pl=2 P22 P32 0 0 5 3
P0—3  P1—=3 P23 P33 % 0 O %
The stationary distribution is
1
(QO7Q17QQ7CI3) - E(5757276> (899)
(ii-d) When » > (3 + 3p) /(1 + 2p)
The transition matrix is given by
PO—0 P1=0 P2—0 P3—0 % % % ?
Po—1 P11 P21 P31 | |03 Fog (S100)
P0—2 P12 P22 P32 0 0 35 3§
PO0—3 P13 P23 P33 % 0 0 %
The stationary distribution is
1
(a0, 91, 42, 93) = 15(5,4,1,6). (S101)
(iii) When p = 1
(iii-a) When r < 2
The transition matrix is given by
PO—0  P1—0 P20 P30 % —131M , %2 @ 0
P01 P11 P21 P31 | _ 3y 373 3N, (1) (S102)
PO—2  P1—2 P22 P32 I 7 1 — 357 g
P03  Pl—3 P23 P33 % % 0 5
The stationary distribution is
( ) = ! (1,1,14+ M,6) (S103)
40,491,492, 43 _9+M ) Ly y V).
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(iii-b) When r > 2
The transition matrix is given by

PO—0 P1—=0  P2—0
PO—1  Pl—1 P21
PO—2  P1—=2  P2—2
P0—3 P13 P23

The stationary distribution is

(90, q1, 92, 43)

2 2 1 1
P30 37 3M 3M 3M
1 2 1
ps=1| _ | s l—sw swm
= 1 R
P3—2 3y 3M 3M
P33 3 0 0
! (15,15 + 8M, 15 4+ 7M, 18)
63+ 15M * ’ o

0
1
¢ (S104)
i
18

(S105)
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