-Supporting Information -

Radical Cascade Reaction of Aryl Alkynoates at Room Temperature: Synthesis of Fully Substituted α, β-Unsaturated Acids with Chalcogen Functionality

Harekrishna Sahoo, Saibal Singh, and Mahiuddin Baidya*

Department of Chemistry, Indian Institute of Technology Madras,
Chennai 600 036, Tamil Nadu, India
E-mail: mbaidya@iitm.ac.in
Page
General Information S3
General Procedure for Selenium Radical Based Smile Rearrangement of Aryl S3 Alkynoates
General Procedure for Sulfur Radical Based Smile Rearrangement of Aryl S4
Alkynoates
Gram Scale Synthesis of Product 3y S4
Post-functionalization S5
Synthesis of 3,3-Disubstituted Indanones S6
Crystallographic Experimental Section S7
Spectroscopic Data S8
NMR Spectra S17

General Information:

All non-aqueous reactions were carried out under an atmosphere of nitrogen in flame-dried glass ware and were stirred using a magnetic stir plate. All reactions were carried out using anhydrous solvent unless otherwise noted. DCE, MeCN, and DMSO were dried over calcium hydride. Dry toluene, and THF were prepared by distilling over sodium ketyl. Dried DMF and MeOH were purchased from FINAR. TBHP and DTBP were procured from Sigma Aldrich Company.

All reactions were monitored by thin layer chromatography (TLC) on WhatmanPartisil ${ }^{\text {® }}$ K6F TLC plates (silica gel $60 \AA, 0.25 \mathrm{~mm}$ thickness) and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 10 g phosphomolybdic acid/ 100 mL ethanol, $\mathrm{KMnO}_{4}: 0.75 \mathrm{~g}$ potassium permanganate, $5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, / 100 \mathrm{~mL}$ water. Products were isolated by column chromatography (Merck silica gel $100-200 \mu \mathrm{~m}$). Yields refer to chromatographically and spectroscopically homogenous materials unless noted otherwise. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak $\mathrm{CDCl}_{3} \delta=7.2600 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ and $\mathrm{DMSO}-\mathrm{d}_{6} \delta=2.500 \mathrm{ppm}$ for ${ }^{1} \mathrm{H} ; \delta=$ 39.51 ppm for ${ }^{13} \mathrm{C}$ or calibrated to tetramethylsilane ($\delta=0.00$). All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet, sext, sextet, sept, septet, m, multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; td , triplet of doublet; tt , triplet of triplet; dq, doublet of quartet; br, broad; app, apparent. Mass spectra were recorded by electron spray ionization (ESI) method on a Q-TOF Micro with lock spray source.

Arylalkynoates 1 were synthesized following previously published procedures (Chem. Commun. 2017, 53, 10136). Diselenide derivatives 2 were prepared following the know procedure (Org. Biomol. Chem. 2014, 12, 9557).

General Procedure for Selenium Radical Based Smile Rearrangement of Aryl Alkynoates:

The aryl alkynoates $\mathbf{1}(0.20 \mathrm{mmol})$, diaryl diselenides $\mathbf{2}(0.40 \mathrm{mmol})$ and TBHP in decane solution $(0.40$ $\mathrm{mmol})$ were taken in an oven dried reaction tube with a magnetic stir. The reaction tube was purged with nitrogen and then, dry $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ was added via a syringe. The reaction mixture was allowed to stir at room temperature for 24 h . After completion of the reaction (TLC monitored), it was transferred to a round bottom flask after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Volatiles were evaporated under reduced pressure and the
resulting residue was purified by column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to get pure products 3 .

General Procedure for Sulfur Radical Based Smile Rearrangement of Aryl Alkynoates:

The aryl alkynoates $\mathbf{1}(0.20 \mathrm{mmol})$ and aryl thiols $\mathbf{4}(0.40 \mathrm{mmol})$ were taken in an oven dried reaction tube with a magnetic stir. Then, dry $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ was added with a syringe and the mixture was allowed to stir under oxygen atmosphere (oxygen balloon) for 24 h at room temperature. After completion of the reaction (TLC monitored), it was transferred to a round bottom flask after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Volatiles were evaporated under reduced pressure and the resulting residue was purified by column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to get pure products 5 .

Gram Scale Synthesis of Product 3y:

The phenyl 3-phenylpropiolate $\mathbf{1 b}$ ($1.45 \mathrm{~g}, 6.5 \mathrm{mmol}$), bis(4-chlorophenyl) diselenide $\mathbf{2 b}$ ($5.0 \mathrm{~g}, 13.0 \mathrm{mmol}$) and TBHP in decane solution (2.0 equiv) were taken in an oven dried round bottom flask with a magnetic stir. The reaction flask was purged with nitrogen and then, dry $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ was added via a syringe. The reaction mixture was allowed to stir under nitrogen atmosphere for 24 h at room temperature. After completion of the reaction (TLC monitored), the solvent was evaporated to dryness. The resulting residue was purified by silica gel column chromatography (hexane : ethyl acetate, $70: 30$) to provide pure product 3y in 78% yield (2.1 g).

Post-functionalization:

Synthesis of compound 6:

The product 3y (0.2 mmol), N-iodosuccinimide (0.4 mmol) and DTBP (0.4 mmol) were taken in an oven dried reaction tube equipped with a magnetic stir. Then, $\mathrm{PhCl}(1.5 \mathrm{~mL})$ was added and the mixture was allowed to stir at $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (TLC monitored), it was transferred to a round bottom flask after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were evaporated to dryness under reduced pressure and the resulting residue was purified by column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to get pure product $6(78 \%, 77 \mathrm{mg})$ as white solid.

Synthesis of compound 7:

The product $\mathbf{3 y}$ (0.2 mmol), N -bromosuccinimide (0.4 mmol) and DTBP $(0.4 \mathrm{mmol})$ were taken in an oven dried reaction tube equipped with a magnetic stir. Then, $\mathrm{PhCl}(1.5 \mathrm{~mL})$ was added and the mixture was allowed to stir at $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (TLC monitored), it was transferred to a round bottom flask after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were evaporated to dryness under reduced pressure and the resulting residue was purified by column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to get pure product $7(70 \%, 63 \mathrm{mg})$ as white solid.

Synthesis of compound 8:

The product $\mathbf{3 y}(0.2 \mathrm{mmol})$, diphenyldiselenide $\mathbf{2 a}(0.4 \mathrm{mmol})$ and DTBP $(0.4 \mathrm{mmol})$ were taken in an oven dried reaction tube equipped with a magnetic stir. Then, $\mathrm{PhCl}(1.5 \mathrm{~mL})$ was added and the mixture was
allowed to stir at $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (TLC monitored), it was transferred to a round bottom flask after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were evaporated to dryness under reduced pressure and the resulting residue was purified by column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to get pure product $\mathbf{8}(75 \%, 79 \mathrm{mg})$ as white solid.

Synthesis of compound 9:

The product $3 \mathbf{y}(0.2 \mathrm{mmol})$, and DTBP $(0.4 \mathrm{mmol})$ were taken in an oven dried reaction tube equipped with a magnetic stir. Then, $\mathrm{PhCl}(1.5 \mathrm{~mL})$ was added and the mixture was allowed to stir at $120{ }^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction (TLC monitored), it was transferred to a round bottom flask after dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were evaporated to dryness under reduced pressure and the resulting residue was purified by column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate to get pure product $9(84 \%, 62 \mathrm{mg})$ as white solid.

Synthesis of 3,3-Disubstituted Indanones:

The product $3 \mathbf{y}(0.2 \mathrm{mmol})$ was taken in an oven dried reaction tube equipped with a magnetic stir. Triflic acid (0.1 mL) and dry solvent ($\mathrm{PhMe}, 1 \mathrm{~mL}$) was added. The mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 3 h . After that, it was allowed to cool to room temperature and 5 mL water was added. The reaction mixture was extracted with EtOAc (5 mL , three times). The organic layer was washed with saturated NaHCO_{3} solution, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The resulting
residue was directly purified by silica gel column chromatography to get the desired product 10a (58 mg , 98% yield).
Compound $\mathbf{1 0 b}$ ($42 \mathrm{mg}, 66 \%$ yield) was prepared in the same way using $\mathrm{PhCl}(1 \mathrm{~mL})$.
This reaction proceeded through an acid promoted intramolecular cyclization flowed by 1,4-addition reaction of nucleophile solvent to give the intermediate \boldsymbol{B}, which undergo deselenylation upon heating under acidic condition. These observations are in line with previous literature findings (Totu, T.; Kawai, S.; Ueno, Y. Synlett, 1996, 539; Ramulu, B. V.; Niharika, P.; Satyanarayana, G. Synthesis 2015; 47, 1255).

Crystallographic Experimental Section:

ORTEP diagram of 3a: CCDC 1825820 (Ellipsoid probability 30\%)

ORTEP diagram of 6: CCDC 1825821 (Ellipsoid probability 30\%)

Spectroscopic Data:

3a: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 95% (79 mg), $\mathrm{Mp}\left(196-198^{\circ} \mathrm{C}\right.$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O) ~ \delta 12.80(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO) $\delta 167.58,144.61,140.82,139.65,133.41,132.75$, 130.14, 129.25, 128.82, 128.71, 128.54, 128.28, 128.20, 127.97, 126.05. HRMS (ESI/TOF-Q) m / z : $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{SeNa}^{+} 436.9823$; Found 436.9832.

3b: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $93 \% ~\left(71 \mathrm{mg}\right.$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.19(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO) $\delta 167.85,146.31,141.28,140.81,133.18,129.25,129.12,128.70,128.44,128.34,128.22,128.02$, 127.83, 124.89. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{SeH}^{+}$381.0394; Found 381.0371.

3c: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $91 \% ~(72 \mathrm{mg}), \mathrm{Mp}\left(181-183^{\circ} \mathrm{C}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 12.64$ (s, 1H), 7.50 ($\mathrm{s}, 2 \mathrm{H}$), $7.40-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}), 2.27$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO) $\delta 167.90,146.55,141.36,137.91,137.44,132.93,129.24$, 129.13, 128.69, 128.66, 128.25, 127.88, 127.64, 123.95. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{SeH}^{+}$395.0550; Found 395.0533.

3d: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 85% (70 mg), Mp ($172-174^{\circ} \mathrm{C}$); ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO) $\delta 12.64(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.28-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(101$ MHz, DMSO) $\delta 168.18,159.06,146.82,141.54,133.07,132.68,129.78,129.52,129.14,128.73$, 128.23, 127.89, 127.53, 122.99, 113.56. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SeNa}^{+}$433.0319; Found 433.0305.

3e: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 72% (66 mg), $\mathrm{Mp}\left(173-175^{\circ} \mathrm{C}\right.$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O) ~ \delta 12.80(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 4 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.17$ (d, J=6.9 Hz, $2 \mathrm{H}) .{ }^{13}$ C NMR (101 MHz , DMSO) $\delta 167.47,144.58,140.70,139.96,133.36,131.12,130.36$, 129.17, 128.76, 128.64, 128.46, 128.13, 127.90, 125.99, 121.33. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{SeH}^{+} 458.9499$; Found 458.9493.

3f: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: $61 \%(49 \mathrm{mg}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO) $\delta 12.80(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 4 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO) $\delta 167.17,145.48,143.36,140.29,133.91,132.23,129.31,129.20,128.74$, 128.42, 128.36, 128.27, 118.60, 110.48. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{SeNa}^{+} 428.0166$; Found 428.0147.

3g: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 88% (69 mg), $\mathrm{Mp}\left(142-144{ }^{\circ} \mathrm{C}\right.$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.87(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.13(\mathrm{td}$, $J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.41,161.67(\mathrm{~d}, J$ $=244.2 \mathrm{~Hz}), 143.90,142.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 140.61,133.60,130.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 129.23$, $128.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 128.20,128.05,126.63,124.54(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 115.08,114.87(\mathrm{~d}, J=2.6$ $\mathrm{Hz}), 114.68 .{ }^{19}$ F NMR (471 MHz, DMSO) $\delta-113.23$. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{SeNa}^{+}$ 421.0119; Found 421.0114.

3h: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 70\% (62 mg); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.90(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.23(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO) $\delta 167.35,143.55,141.70,140.47,133.74,132.39,129.41,129.23,128.96(d, J=31.5$ $\mathrm{Hz}), 128.69,128.63,128.51,128.31,128.12,127.53,124.57(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.96(\mathrm{q}, J=$ 273.81 Hz). ${ }^{19}$ F NMR (471 MHz , DMSO) δ-61.21. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{SeNa}^{+}$471.0087; Found 471.0103.

3i: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 78% (61 mg), $\mathrm{Mp}\left(111-113{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 12.72(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.91,146.65$, $141.30,140.82,137.27,133.05,129.25,129.22,128.78,128.73,128.66,128.41,128.12,128.00$, 127.77, 125.54, 124.54, 20.99. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{SeH}^{+}$ 395.0550; Found 395.0568.

3j: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $72 \%(61 \mathrm{mg}), \mathrm{Mp}\left(148-150{ }^{\circ} \mathrm{C}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 12.74(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) δ 168.05, 147.17, $147.02,146.21,141.30,134.69,132.95,129.28,129.24,128.74,128.38,128.05,127.73,123.92$, 122.53, 108.60, 108.07, 101.32. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{SeH}^{+}$ 425.0292; Found 425.0273.

3k: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $62 \%(51 \mathrm{mg}), \mathrm{Mp}\left(139-141^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.47$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 10 \mathrm{H})$, 7.03 - $6.86(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.70,156.45,146.31$, $141.23,132.39,130.27,130.19,130.07,129.71,129.43,128.44,128.09,127.88,127.55,124.91$, 120.32, 111.91, 55.75. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{K}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SeK}^{+} 449.0058$;

Found 449.0072.

31: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 55\% (46 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 12.67(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.25(\mathrm{~m}, 11 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO) $\delta 166.92,144.70,139.55,139.20,132.85,131.95,131.03,129.64,129.43,129.32$, 129.28, 128.24, 128.14, 127.78, 127.13, 126.94. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{SeH}^{+} 415.0004$; Found 415.0025 .

3m: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $66 \%(57 \mathrm{mg}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, DMSO) $\delta 12.72(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.25(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 167.87,146.58,141.10,138.49,133.12,132.50$, $132.32,129.26,129.15,128.81,128.45,128.14,128.08,127.82,127.65,127.51,127.24,126.59$, 126.52, 126.34, 125.39. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{SeNa}^{+} 453.0370$;

Found 453.0379.

3n: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $70 \%(64 \mathrm{mg}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, DMSO) $\delta 12.86(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.27(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.92,145.80,141.25,139.87,139.68,139.38,133.24,129.28$, 129.12, 129.01, 128.81, 128.52, 128.11, 127.88, 127.72, 126.65, 126.48, 125.11. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SeNa}^{+} 479.0526$; Found 479.0502.

30: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 92% (73 mg); ${ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.52(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 6 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.95,146.59,141.02,138.45,137.51,133.05,129.26$, 128.98, 128.71, 128.40, 128.18, 128.01, 127.78, 124.35, 20.86. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{SeH}^{+} 395.0550$; Found 395.0533.

3p: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 79\% (65 mg); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.61(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) δ 168.02, $158.98,146.63,141.19,133.47,132.82,130.31,129.47,129.21,128.46,128.11,127.96$, 127.64, 123.77, 113.66, 55.10. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SeNa}^{+}$433.0319; Found 433.0305.

3q: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 65% (52 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 7.54-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.78,161.66(\mathrm{~d}, ~ J=245.1 \mathrm{~Hz}), 145.48,140.65,137.57$, 133.11, $130.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 129.24,129.01,128.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 128.11,127.85$, $125.24,115.32(\mathrm{~d}, J=21.5 \mathrm{~Hz}) .{ }^{19}$ F NMR (471 MHz, DMSO) $\delta-113.52$. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{SeNa}^{+} 421.0119$; Found 421.0114.

3r: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 62% (51 mg); ${ }^{1} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.52(\mathrm{dd}, J=5.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, $6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO) $\delta 167.74,159.05,145.98,142.53,140.54,133.15,129.65,129.22,129.18,128.23,128.17$, $127.99,127.80,124.88,120.82,114.17,113.35,55.05$. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SeH}^{+} 411.0499$; Found 411.0510.

3s: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: $57 \%(47 \mathrm{mg}) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ $167.92,155.75,144.51,140.46,132.86,130.37,129.57(2 \times C), 129.35,129.12,128.01,127.75$, $127.54(2 \times C), 125.78,120.48,111.83,55.54$. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{K}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SeK}^{+} 449.0058$; Found 449.0072.

3t: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $89 \%(80 \mathrm{mg}), \mathrm{Mp}\left(154-156{ }^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.91$ (s, 1H), $7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 7 \mathrm{H})$, $7.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.43$, $144.85,140.65,139.47,135.29,133.08$, 132.81, 130.11, 129.17, 128.66, 128.55, 128.28, 127.56, 125.78. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{SeNa}^{+} 470.9434$; Found 470.9418.

3u: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $65 \% ~\left(56 \mathrm{mg}\right.$); ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO) $\delta 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO) $\delta 167.28,162.34(\mathrm{~d}, J=245.7 \mathrm{~Hz}), 143.08,140.62$, $139.54,136.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 132.70,130.11,128.67(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 128.29,128.26,126.74$, 123.40, 123.38, 116.35 (d, $J=21.7 \mathrm{~Hz}$). ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}$) $\delta-113.36$. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClFO}_{2} \mathrm{SeNa}^{+} 454.9729$; Found 454.9706.

3v: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $71 \%(63 \mathrm{mg}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ MHz, DMSO) $\delta 7.46-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.42,144.01,143.23,140.80,139.68,134.07,132.64,130.13,128.75,128.58,128.26$, 128.17, 126.77, 125.01, 27.77, 15.35. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{2} \mathrm{SeH}^{+}$443.0317; Found 443.0324.

3w: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 55\% (53 mg), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.85-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ $-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO) $\delta 167.65,146.47,140.61$, $139.39,136.81,132.96,130.79,130.13,130.09,129.68(\mathrm{~d}, J=31.8 \mathrm{~Hz}), 128.96(\mathrm{~d}, J=3.7$ $\mathrm{Hz}), 128.60,128.52,128.32,124.91,124.46(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 123.70(\mathrm{~d}, J=273.54 \mathrm{~Hz}) .{ }^{19} \mathbf{F}$ NMR (471 MHz, DMSO) δ-61.27. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{O}_{2} \mathrm{SeH}^{+} 482.9878$; Found 482.9893.

3x: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 52% (82 mg); ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 7.53-7.49$ (m, 2H), $7.43-7.14(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.80,145.42,140.94,140.01,134.19,133.24$, 130.30 , 129.50, 129.28, 129.02, 128.75, 128.55, 128.19, 127.91, 125.74.

HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{42} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{SSe}_{2} \mathrm{H}^{+} 791.0273$; Found 791.0252.

3y: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 86% (71 mg), Mp ($145-147$ ${ }^{\circ} \mathrm{C}$), ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.84(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.15(\mathrm{~m}$, 12H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.74,146.54,141.13,140.67,135.11,132.99$, $129.20,128.68,128.49,128.34,128.25,128.13,127.86,124.67$. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{SeNa}^{+} 436.9823$; Found 436.9832 .

3z: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 44% (36 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 9 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.52,143.86,140.22,138.26,135.75,133.43,129.28$, 129.13, 128.81, 128.39, 128.13, 127.98, 127.61, 127.40, 124.34, 20.09. HRMS (ESI/TOFQ) m/z: $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{SeNa}^{+}$431.0526; Found 431.0511.

5b: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: $78 \%(50 \mathrm{mg}), \mathrm{Mp}\left(189-191^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 7.42-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 167.54,149.52,140.97,140.68,134.07,129.37,129.22,128.82$, $128.51,128.39,128.35,128.26,128.14,126.96,126.52$. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{SNa}^{+} 355.0769$; Found 355.0761.
5a: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 77% (56 mg), $\mathrm{Mp}\left(208-210{ }^{\circ} \mathrm{C}\right.$); ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 2H), 2.27 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13}$ C NMR (126 MHz , DMSO) $\delta 167.25,147.79,140.26,139.84,133.74$, 133.05, 130.32, 129.57, 129.22, 128.87, 128.48, 128.33, 128.29, 127.58, 127.08. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{SH}^{+} 367.0560$; Found 367.0555.

5c: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 75\% (69 mg), Mp (198-200 ${ }^{\circ} \mathrm{C}$); ${ }^{1}$ H NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 12.77(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.92$, $159.40,149.97,140.94,134.54,133.20,130.06,129.12,128.89,128.85,128.24,128.07,126.62$, 124.56, 113.63, 55.14. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{SH}^{+}$363.1055; Found 363.1061.

5d: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 81% (65 mg), Mp (169-171 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 13.05(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.29(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.09,148.31,140.08$, 139.67, 133.16, 132.82, 131.95, 131.38, 130.29, 129.17, 128.82, 128.51, 128.38, 128.35, 127.08. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{SH}^{+} 401.0170$; Found 401.0152.

5e: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 72% (64 mg); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO) $\delta 167.03,148.49,140.04$, $139.63,133.41,133.14,132.01,131.53,130.25,128.76,128.47,128.35,128.30$, 126.90, 120.28. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+\mathrm{Calcd}$ for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrClO}_{2} \mathrm{SH}^{+}$ 444.9665; Found 444.9653.

5f: Yellow solid, eluent (30\% ethyl acetate in hexane). Yield: 68\% (52 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.49-7.26(\mathrm{~m}, 9 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.03,145.87,140.20,139.85,137.04,132.91,130.53,130.27$, 129.80, 129.59, 128.92, 128.61, 128.46, 128.27, 128.15, 20.60. HRMS (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]+$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClO}_{2} \mathrm{SK}^{+} 419.0275$; Found 419.0289.

5g: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 73% (65 mg), Mp (161-163 $\left.{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 13.10(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.34(\mathrm{~m}$, $7 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) δ 167.30 , $152.09,140.13,139.71,136.11,133.39,132.97$, $130.34,129.04,128.64,128.55$, 128.47, 128.37, 128.02, 125.30, 121.58. HRMS (ESI/TOF-Q) m/z: [M+Na]+Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrClO}_{2} \mathrm{SNa}^{+}$466.9484; Found 466.9456.

5h: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 71% (55 mg), Mp (211-213 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.48-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.1-7.05(\mathrm{~m}$, 1H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.28,162.20(\mathrm{~d}, J=246.3 \mathrm{~Hz}$), 149.92, 140.14, $139.68,136.80(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}), 133.30,131.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.34,128.78,128.50$, $128.47,128.38,126.23,124.91,115.46(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 113.78(\mathrm{~d}, J=21.0 \mathrm{~Hz}) .{ }^{19}$ F NMR (471 MHz, DMSO) δ-111.91. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClFO}_{2} \mathrm{SNa}^{+} 407.0285$; Found 407.0308.

5i: Yellow solid, eluent (30% ethyl acetate in hexane). Yield: 76\% (60 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.05$, $143.23,139.74,139.47,138.00,132.33,131.16,130.15,129.37,129.21,128.61,128.57$, 128.14, 128.03, 127.91, 21.78. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{2} \mathrm{SNa}^{+}$417.0692; Found 417.0709.

$\mathbf{5 j}$: Yellow liquid, eluent (30% ethyl acetate in hexane). Yield: 81% (69 mg); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.42$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-7.29$ (m, 3H), $7.27-7.20(\mathrm{~m}, 4 \mathrm{H})$, $6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 167.79,153.43,150.29,150.25,140.40,139.97,133.20,130.35$, 128.79, 128.40, 128.38, 125.99, 123.94, 114.61, 112.10, 111.79, 56.22, 55.39. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{4} \mathrm{SNa}^{+} 449.0590$; Found 449.0586.

6a: Yellow solid, eluent (4\% ethyl acetate in hexane). Yield: 78% (77 mg), Mp (138$\left.140{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.72,146.07,141.56,135.46,134.70,132.24$, 129.52, 128.82, 128.70, 128.47, 128.38, 128.24, 127.98, 81.91. HRMS (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClISeH}^{+}$496.9072; Found 496.9068.

6b: Yellow solid, eluent (4\% ethyl acetate in hexane). Yield: 72% (71 mg), ($\mathbf{E} / \mathbf{Z}=1: 1$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 6}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.89,154.57,145.98,144.56,141.36,139.98,134.40,134.10,134.02$, $134.00,133.87,133.78,130.41,130.20,129.37,129.32,128.88,128.79,128.63,128.60$, 128.54, 128.51, 128.46, 128.32, 128.08, 83.81, 83.26. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClISeH}^{+} 496.9072$; Found 496.9068.

7: Yellow solid, eluent (4\% ethyl acetate in hexane). Yield: 70\% (63 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) $\delta 151.07,142.48,141.95,135.40,134.70$, 129.68, 129.49, 129.16, 129.04, 128.48, 128.31, 128.28, 127.95, 108.11. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{ClBrSeH}^{+} 448.9211$; Found 448.9229 .

8: Yellow solid, eluent (4\% ethyl acetate in hexane). Yield: 75% (79 mg) , Mp (128-130 ${ }^{\circ} \mathrm{C}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.17-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.58,143.06$, $143.04,135.12,133.65,133.48$, 132.27, 130.49, 129.36, 128.70, 128.20, 128.17, 127.94, 127.44, 122.09. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{K}]+$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClSe}_{2} \mathrm{~K}^{+}$ 564.9143; Found 564.9178.

9: Yellow solid, eluent (4% ethyl acetate in hexane). Yield: 84% (62 mg), Mp ($96-98$ $\left.{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-$ $7.21(\mathrm{~m}, 9 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.81, 141.46, 140.27, $133.93,133.79,129.88,129.58$, 129.39, 128.69, 128.46, 128.19, 127.54, 127.30, 121.91. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]+$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClSeNa}^{+}$392.9925; Found 392.9946.

10a: White solid, eluent (5% ethyl acetate in hexane). Yield: 98% (58 mg); ${ }^{1} \mathbf{H} \mathbf{N M R}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{q}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.26,160.18,146.98,143.82,136.27,135.77$, 134.86, 129.15, 128.44, 128.05, 127.96, 127.93, 126.58, 123.68, 56.15, 55.85, 20.94. HRMS (ESI/TOF-Q) m/z: [M+H]+ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{OH}^{+}$299.1436; Found 299.1453.

10b: Yellow solid, eluent (5\% ethyl acetate in hexane). Yield: $66 \%(42 \mathrm{mg}) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.6$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{q}, J=19.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.71,159.54,146.36,145.52,135.84,135.14,132.72,129.55$, 128.71, 128.36, 128.02, 127.98, 126.96, 123.97, 56.06, 55.85. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClOH}^{+}$319.0890; Found 319.0893 .

3za': Yellow solid, eluent (4\% ethyl acetate in hexane). Yield: 20\% (19 mg); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 6 \mathrm{H}), 6.93-6.90(\mathrm{~m}$, $2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.04,156.01,139.62,136.31,132.34$, 131.70, 130.13, 129.08, 128.46, 128.20, 127.86, 127.59, 127.33, 118.53, 52.70. HRMS (ESI/TOF-Q) m/z: [M+Na]+ Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Se}_{2} \mathrm{Na}^{+} 496.9535$; Found 496.9527.

NMR Spectra:

＊		晨
$\stackrel{\square}{\square}$		號

[^0]

$3 g$

3h

$\underbrace{\text { Gay }}$
$\stackrel{\text { ? }}{\substack{3 \\ i}}$

A

$\xrightarrow[\mid c c c c]{\stackrel{\circ}{0}}$

が	
\bigcirc	4

	N ${ }^{\infty}{ }^{\infty} \infty$ 	
\dagger	\bigcirc -	\checkmark

[^0]: $\begin{array}{lllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \underset{\sim}{90} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$

