
What Comes First, the OWL or the Bean?

Creating Reusable Scientific Software with OWL/RDF Vocabularies.

Eric G Stephan, Todd O Elsethagen, Kerstin Kleese van Dam, Laura Riihimaki

(eric.stephan, todd.elsethagen, kerstin.kleesevandam, laura.riihimaki)@pnnl.gov

Introduction

In the spring of 2013 the U.S. White House by executive order mandated: “Government information shall be

managed as an asset throughout its life cycle to promote interoperability and openness, and, wherever possible

and legally permissible, to ensure that data are released to the public in ways that make the data easy to find,

accessible, and usable.” [1] Key for the reusability of any scientific data is hereby the availability of metadata

describing the published data in a vocabulary that is familiar to its potential users. The objective of this paper is to

help scientific application developers who want to adopt the continuous stream of new community vocabularies

[2][3] to help make their data sharable, self-describable, and easily understood. To achieve this we suggest

semantic vocabulary and application integration best practices and discuss the tradeoffs of encoding vocabularies

through code versus deriving code from vocabularies.

Dilemma

A “chicken and egg” dilemma occurs when software developers need to decide if they should first

incorporate a new vocabulary directly as code (e.g. Java Bean), or derive code from a defined vocabulary (E.g.

OWL). Semantic web programmers may naturally gravitate toward producing semantic statements from code

representing a vocabulary, while knowledge engineers may gravitate toward developing the model external to any

code. Scientific teams wanting to adopt vocabularies might ask questions such as: “What is the most cost effective

approach for my project?” “What approach is the easiest to maintain?” or “Which approach will make my software

reusable in similar applications or other domains?” The semantic community provides technologies to support

encoding the vocabulary in software or converting vocabularies into code. Open source Jena API [4], OWL API [5],

and Alibaba API [6] all offer approaches for users to write encode vocabularies Java. At the same time Protégé and

Alibaba among other tools offer the ability to turn OWL and RDF vocabularies into Java code. By encoding a

vocabulary purely as code, the vocabulary schemata risks being invisible to users wanting to query and reason

over data generated by the scientific application. By converting externally defined document-based vocabularies

such as thesauri and schemata the code risks either being illegible because the code and vocabulary logic are

intermixed or it cannot be realistically maintained as a scientific application APIs.

In the following we will highlight through a real live example the challenges and necessary tradeoffs

encountered when choosing to encode vocabularies through code versus deriving code from vocabularies.

Use Case: Provenance based explanation generation for atmospheric science plots through the

PNNL Provenance Environment (ProvEn)

The goal of the ProvEn Services environment was to provide users of the atmospheric climate diagnostic plotting

tool developed for the DOE Climate Science for a Sustainable Energy Future (CSSEF) [7] with information about the

origin, credibility, and precision of the diagnostics data sets they were using. ProvEn Services organizes the plots,

information sources, and semantic knowledge using its own application layer with a Java-based RESTful interface

and application vocabulary. ProvEn Services relies on a Sesame triple store and maps Java objects through an

Object Triple Mapping (OTM) layer provided by Alibaba. ProvEn Services work by ingesting two dimensional

daily average and diurnal diagnostics plots that were generated comparing the Community Atmosphere Model

(CAM) [8] against observational data. These plots are referenced as linked data IRI within ProvEn. Original

sources of provenance information (e.g. NetCDF [9] headers, plotting scripts, test scripts, NetCDF Climate and

Forecast (CF) Metadata Convention (CF) vocabulary [10] and CAM variable definitions) are also retained as linked

data IRI so that users can later inspect for themselves sources in their native representation. Semantic information

is extracted from the original sources of provenance and added as reference to the corresponding plots. Users

ingesting semantic information will need to use an existing domain vocabulary or generate their own. ProvEn

Services is most useful when domain vocabularies are manually aligned to foundation vocabularies to support

cross-referenced searches related to provenance, citations, collaborators, organizations etc.

Vocabulary Type Purpose Description

PROV-O [13] Foundation Provenance W3C provenance ontology recommendation

Dublin Core [14] Foundation Citation Standardized way to cite sources

FOAF [15] Foundation Collaboration Social networking vocabulary

ORG [16] Foundation Organization Government Linked Data Group

CSSEF Climate Domain Atmophere CSSEF adopted or defined terms

ProvEn Services Application Internal Model Used to manage the process of collecting, managing,

and partitioning origin information

A browsable web interface was added to ProvEn Services that serves climate scientists diagnostics plots.

By selecting citation or origin reports ProvEn provides users contextual information about the diagnostics datasets

through searches which use the foundation, domain, and application vocabularies. The heart of this provenance

tool is a flexible data base structure (knowledge store) that allows storage of varying sources and formats of

metadata without breaking, and allows easy translation between the vocabularies of different user groups.

Table 1: Inventory of vocabularies used for CSSEF Atmosphere Diagnostics Testbed demonstration.

Figure 2: Snapshot of Atmosphere Diagnostics Testbed plots being shown in ProvEn Services
along with an origin report generated by ProvEn.

There are two primary benefits to incorporating ProvEn Services into the diagnostics package. First,

ProvEn Services makes it easier for new users of the tool to accurately interpret the figures in the diagnostics

package if they are unfamiliar with the underlying observational data sets or are not an expert CAM modeler.

Users are provided linked data products where the plots are linked back to semantic descriptions of the

diagnostics citations, model run, and plot building process. Second, ProvEn Services has the potential to make the

analysis of a large number of UQ model runs more convenient by quickly associating a diagnostic plot with a given

set of parameters. In the future we are planning to roll out ProvEn Services to support provenance for the land

modeling community and as part of the Earth System Grid Federation (ESGF) [12].

Bean First, OWL Second Approach

This approach is usually motivated by the need to evolve an application specific vocabulary. In the case of

ProvEn Services prototype the application’s vocabulary, was evolving as quickly as the application, development of

the vocabulary from the code base synchronized the vocabulary maintenance with the services being developed.

For long-term maintenance ProvEn Services may stick with this approach because the object oriented model is

driving the vocabulary. For our use case, Sesame provided the means through the Alibaba interface to directly

relate Java interfaces, classes, methods, and variables to OWL classes and properties, and RDF triples. At runtime,

Java code interacting with a Sesame server is capable of persisting semantics that can be accessible to other

applications. Associations between Java and the semantic vocabulary are made by annotating the java code with

@IRI, @SubClassOf, and @SubPropertyOf. This can provide an extremely intuitive approach for the Java

developer who requires an internal model for application-based ontology. The Atmosphere Diagnostics Testbed

initially used the ProvEn Services internal application vocabulary encoded as Java beans and Property files. The

advantage of this approach was that from a Java developer perspective it was possible to write an application

vocabulary for ProvEn Services and have objects persisted in the triple store. The disadvantage of this approach is

that any code embedded vocabulary cannot be easily inspected by collaborating knowledge engineers, and makes

it clumsy for users of data if they stumbled across subtle changes in the resulting from code changes, it also makes

the prospect of search and discovery more difficult because we had to manually derive a application vocabulary as

an OWL document to determine how community and domain vocabularies would be aligned to the ProvEn Services

vocabulary.

OWL First, Bean Second Approach

This approach is motivated by either the need to incorporate an existing RDF/OWL vocabulary into an

existing application, or the need to develop a domain specific vocabulary prior to coding. Attempting to code an

existing vocabulary is potentially error prone and difficult to maintain. Protégé [11] and Sesame among other off

the shelf products provide the means to create Java interfaces for RDFS and OWL classes. For our use case, Alibaba

provided an OWL compiler to automatically generate annotated Java interfaces; we extended this capability to

automatically implement interfaces as well. There are several advantages to this approach: 1) by predefining the

vocabulary software development teams can develop CRUD and search interfaces in parallel, 2) if results are

shared in the future the vocabulary can be used as documentation for future users, and 3) as mentioned earlier,

many vocabularies are being created and shared, by adopting an existing standard, which can mean that a

vocabulary has been vetted and might have more of a stable track record if already being used by a community.

Converting an existing vocabulary into code reduces the burden of API maintenance. The disadvantage of this

approach is that the development team locks themselves into a particular semantic API. Jena, OWL API, and

Alibaba all offer different approaches and do not provide the ubiquitous interfaces that the RDBMS community

provides through ODBC and JDBC.

Lessons Learned and Conclusions

Developing scientific applications that rely on semantics can be potentially difficult to maintain without

proper planning or design. We recommend where possible for scientific applications to adopt existing

vocabularies developed and vetted by other communities. Active vocabulary communities also provide suggested

practices to support search and discovery. The most cost effective strategy for software development will depend

on the expertise of the teams developing scientific applications. Because of the availability of tools provide a

means to either produce vocabularies from code or convert existing vocabularies to code, some nice options are

available.

Given our team’s software developer background encoding the ProvEn Services application vocabulary

seemed to be the most efficient and intuitive way to prototype a ProvEn Services vocabulary along with the Java

RESTful services. In retrospect, we found some initial mistakes mapping Java classes to OWL classes, and we could

have overcome such errors by prototyping parts of the vocabulary in OWL and then letting Alibaba show us the

way the APIs want our application to link its object model to OWL.

From a knowledge engineer perspective the rationale for intuitive prototyping might not seem as

straightforward, however by only correlating the application vocabulary to our Java code, the ProvEn Services

interface is light and extensible. Alignments between the application vocabulary, domain vocabulary, and

foundation vocabularies are made prior to loading them into the ProvEn Services, and it is viewed as more of an

administrator function. When possible, aligning vocabularies by making assertions in OWL/RDF is far cheaper

than attempting maintain this through code. In the future we want to extend the ProvEn Services interface by

adding existing vocabulary APIs such as the foundation vocabularies mentioned earlier. Our approach of using

Alibaba to automate the creation of Java interfaces for each OWL class and property, as well as automating the

process of implementing interfaces has made code creation and maintenance very cost effective. This point is

significant when considering the cost of maintaining synchronized version control between code and vocabularies.

As the example use case of the ProvEn Services demonstrated, the adoption of existing vocabularies

reduces the cost of maintaining data origin information for projects such as CSSEF, because other research

communities provide most of the vocabularies required. By utilizing community vocabularies ProvEn Services can

leverage available concepts to represent origin, citation, collaboration, and organization. Using community

vocabularies also means that knowledge is more easily transferrable and exchanged, thus making it more cost

effective to support the Whitehouse Executive Order by making the research results more accessible to future

users by providing critical provenance information about the results in community accepted vocabularies.

Acknowledgements

This research was supported by the Office of Science of the U.S. Department of Energy as part of the Climate

Science for a Sustainable Energy Future (CSSEF) program. The Pacific Northwest National Laboratory is operated

for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830.

Licensing

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 3.0 License.
License: http://figshare.com/articles/Workshop_Creative_Commons_License/790737

References

[1] Obama, Barack. “Executive Order -- Making Open and Machine Readable the New Default for Government
Information”. www.whitehouse.gov . 09 May 2013. 04 September 2013. http://www.whitehouse.gov/the-press-
office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-
[2] Berrueta, Diego, and Jon Phipps. "Best Practice Recipes for Publishing RDF Vocabularies-W3C Working Group

Note." World Wide Web Consortium (WC), Aug.,.: http://www. w3. org/TR/2008/NOTE-swbp-vocab-pub-

20080828/.(Cit. on pp.,) (2008).

[3] W3C. “RDF Vocabularies Current Status”. http://www.w3.org/standards/techs/rdfvocabs#w3c_all . 01-

August-2013. 04 September 2013.

[4] McBride, Brian. "Jena: A semantic web toolkit." Internet Computing, IEEE 6.6 (2002): 55-59.

[5] Horridge, Matthew, Sean Bechhofer, and Olaf Noppens. "Igniting the OWL 1.1 Touch Paper: The OWL

API." OWLED. Vol. 258. 2007.

[6] Aduna. “Alibaba”. www.openrdf.org. 2012. 04 September 2013. http://www.openrdf.org/alibaba.jsp
[7] U.S. Department of Energy. 1012. CSSEF: Climate Science for a Sustainable Energy Future.
http://climatemodeling.science.energy.gov/projects/cssef-climate-science-sustainable-energy-future.
[8] Collins, William D., et al. "The formulation and atmospheric simulation of the Community Atmosphere Model

version 3 (CAM3)." Journal of Climate 19.11 (2006): 2144-2161.

 [9] Rew, Russ, and Glenn Davis. "NetCDF: an interface for scientific data access." Computer Graphics and

Applications, IEEE 10.4 (1990): 76-82.

[10] Lawrence, B. N., et al. "Maintaining and advancing the CF standard for earth system science community data."

(2003).

[11] Noy, Natalya F., et al. "Creating semantic web contents with protege-2000."Intelligent Systems, IEEE 16.2

(2001): 60-71.

[12] Williams, Dean N., et al. "The Earth System Grid: Enabling access to multimodel climate simulation

data." Bulletin of the American Meteorological Society 90.2 (2009): 195-205.

[13] Lebo, Timothy, et al. "Prov-o: The prov ontology." W3C Recommendation, http://www. w3. org/TR/prov-

o/(accessed 30 Apr 2013) (2013).

[14] Weibel, Stuart, et al. "Dublin core metadata for resource discovery." Internet Engineering Task Force RFC 2413

(1998): 222.

[15] Brickley, Dan, and Libby Miller. "The Friend of a Friend (FOAF) project." (2000).

[16] Reynolds, Dave. The Organization Ontology. 25 June 2013. 04 September 2013.

http://www.w3.org/TR/vocab-org/

