Supporting Information

Reductive Formation of a Vanadium(IV/V) Oxide Cluster Complex [V₈O₁₉(4,4'-^tBubpy)₃] Having a C₃-Symmetric Propeller-Shaped Nonionic V₈O₁₉ Core

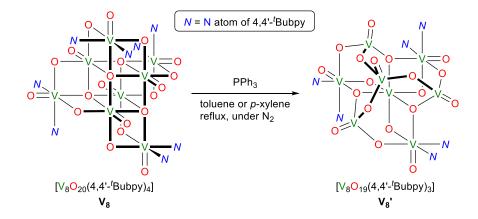
Yuta Inoue,[†] Shintaro Kodama,^{*,†,‡} Nobuto Taya,[†] Hirohiko Sato,[§] Katsuyoshi Oh-ishi,[†] and Youichi Ishii^{*,†}

[†]Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

[§]Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

[‡]Present address: Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan

Contents

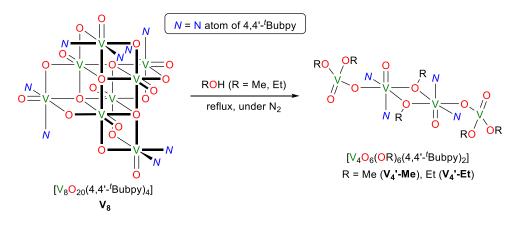

General Considerations	S2
Experimental Procedures	S2—S6
X-ray Diffraction Studies	S7—S14
Results of SQUID Measurements	S15
Results of TG-DTA analysis	S16
References	S17

General Considerations

Experimental manipulations for the reductive conversion of vanadium(V) oxide cluster complexes were carried out in a dried glass vessel under a nitrogen atmosphere by standard Schlenk techniques. ¹H (500 MHz) and ³¹P{¹H} (202 MHz) NMR spectra were recorded on a JEOL ECA-500 spectrometer. Chemical shifts are reported in δ , referenced to the residual ¹H signal of a deuterated solvent as an internal standard, to the ³¹P signal of PPh₃ (δ -5.65) as an external standard. IR spectra were recorded on a JASCO FT/IR-410 spectrometer using KBr pellets. Elemental analyses were conducted on a Perkin Elmer 2400 series II CHN analyzer. Magnetic susceptibility measurements were performed using a Quantum Design MPMS-XL superconducting quantum interference device (SQUID) magnetometer. Diamagnetic corrections were evaluated using Pascal's constants.^{S1} Vanadium(V) oxide cluster complexes, $[V_8O_{20}(4,4'-{}^tBubpy)_4]$ (V₈), $[V_4O_8(OMe)_4(4,4'-^tBubpy)_2]$ (V₄), and $[V_7O_{17}(OEt)(4,4'-^tBubpy)_3]$ (V₇-Et), were synthesized according to the previously reported procedures.^{S2} Unless otherwise noted, reagents were purchased from commercial source and used without further purification.

Experimental Procedures

Reductive Formation of Octanuclear Vanadium(IV/V) Oxide Cluster Complex V₈' from V₈

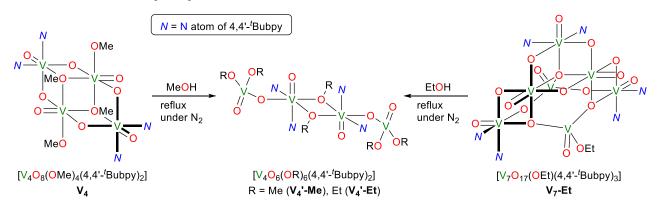


 $[V_8O_{19}(4,4'-{}^tBubpy)_3]\cdot 0.42C_7H_8$ ($V_8'\cdot 0.42C_7H_8$): Complex $V_8\cdot CH_2Cl_2$ (568.9 mg, 0.30 mmol) and PPh₃ (632.1 mg, 2.41 mmol) in toluene (30.0 mL) were heated at reflux for 5 min under N₂ to form a dark green suspension. This suspension was filtered and allowed to stand overnight at room temperature to deposit dark blue crystals suitable for X-ray analysis. The crystals were collected by filtration, washed with toluene, and dried under vacuum to give $V_8' \cdot 0.42C_7H_8$ (an empirical formula)

(85.2 mg, 18% yield based on vanadium). Comparison of this empirical formula with the structure obtained by the X-ray analysis ($V_8' \cdot 3C_7H_8$) indicates that most parts of solvent molecules (toluene) in the crystals were lost during the drying process. IR (KBr, cm⁻¹) 2964 (v_{CH}), 1619 ($v_{C=C, C=N}$), 1413 ($v_{C=C, C=N}$), 979 ($v_{V=O}$), 849 (v_{CH}), 812 (v_{CH}), 770 (v_{CH}); Anal. Calcd for $C_{54}H_{72}N_6O_{19}V_8 \cdot 0.42C_7H_8$: C, 43.97; H, 4.88; N, 5.40. Found: C, 43.96; H, 4.80; N, 5.20%.

 $[V_8O_{19}(4,4'-'Bubpy)_3]$ ·1.28C₈H₁₀ (V₈'·1.28C₈H₁₀): This complex was obtained by a procedure similar to that for the synthesis of V₈'·0.42C₈H₁₀ using V₈·CH₂Cl₂ (565.5 mg, 0.30 mmol), PPh₃ (636.7 mg, 2.43 mmol), and *p*-xylene (30.0 mL). Dark blue crystals (33.8 mg, 7% yield based on vanadium) deposited from the filtered reaction mixture were collected by filtration, washed with *p*-xylene, and dried in vacuo to give V₈'·1.28C₈H₁₀ (an empirical formula). Comparison of this formula with the structure obtained by the X-ray analysis (V₈'·3C₈H₁₀) indicates that most parts of solvent molecules (*p*-xylene) in the crystals were lost during the drying process. IR (KBr, cm⁻¹) 2966 (v_{CH}), 1619 (v_{C=C, C=N}), 1413 (v_{C=C, C=N}), 980 (v_{V=O}), 848 (v_{CH}), 811 (v_{CH}), 767 (v_{CH}); Anal. Calcd for C₅₄H₇₂N₆O₁₉V₈·1.28C₈H₁₀: C, 46.69; H, 5.17; N, 5.09. Found: C, 46.67; H, 5.25; N, 4.75%.

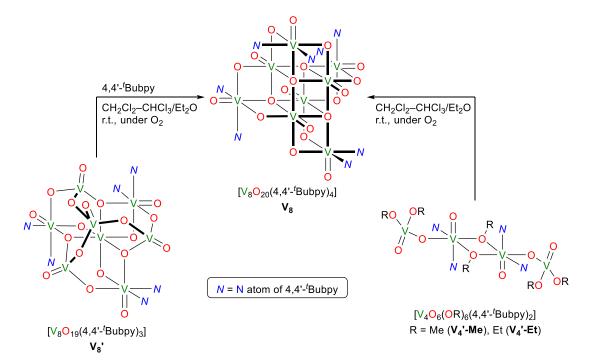
Reductive Formation of Tetranuclear Vanadium(IV/V) Oxide Cluster Complex V₄' from V₈


 $[V_4O_6(OMe)_6(4,4'-{}^tBubpy)_2]$ (V₄'-Me): Complex V₈·CH₂Cl₂ (541.8 mg, 0.29 mmol) in MeOH (30.0 mL) was heated at reflux for 24 h under nitrogen to generate a green suspension. The green powder deposited was collected by filtration and washed with MeOH to afford V₄'-Me (329.5 mg, 56% yield based on vanadium). IR (KBr, cm⁻¹) 2963 (v_{CH}), 1617 (v_{C=C, C=N}), 1410 (v_{C=C, C=N}), 962

(v_{V=0}), 956 (v_{V=0}), 886 (v_{CH}), 848 (v_{CH}), 800 (v_{CH}); Anal. Calcd for C₄₂H₆₆N₄O₁₂V₄: C, 49.32; H, 6.50; N, 5.48. Found: C, 49.07; H, 6.70; N, 5.47%.

Crystals of V_4' -Me suitable for X-ray analysis were obtained as follows: complex V_8 ·CH₂Cl₂ (44.6 mg, 0.024 mmol) in MeOH (5.0 mL) were heated at reflux for 19 h under nitrogen, and the resulting dark green suspension was filtered. The dark green filtrate was allowed to stand overnight at room temperature to deposit dark green crystals, which were suitable for X-ray analysis. The crystals were collected by filtration and washed with MeOH to afford V_4' -Me (4.9 mg, 10% yield based on vanadium).

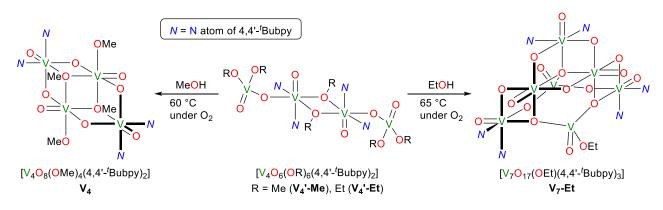
 $[V_4O_6(OEt)_6(4,4'-'Bubpy)_2]$ ($V_4'-Et$): Complex V_8 ·CH₂Cl₂ (542.0 mg, 0.29 mmol) in EtOH (30.0 mL) was heated at reflux for 24 h under nitrogen, and the resulting dark orange solution was filtered through a celite pad and allowed to stand for 4 days at room temperature to deposit dark orange crystals which were suitable for X-ray analysis. The crystals were collected by filtration and washed with EtOH to afford V_4' -Et (336.8 mg, 53% yield based on vanadium). IR (KBr, cm⁻¹) 2965 (v_{CH}), 1616 ($v_{C=C, C=N}$), 1410 ($v_{C=C, C=N}$), 968 ($v_{V=O}$), 956 ($v_{V=O}$), 888 (v_{CH}), 850 (v_{CH}), 799 (v_{CH}); Anal. Calcd for C₄₈H₇₈N₄O₁₂V₄: C, 52.08; H, 7.10; N, 5.06. Found: C, 51.97; H, 7.29; N, 5.01%.


Reductive Formation of V_4 ' from V_4 or V_7 -Et

Conversion of V₄ to V₄'-Me: Complex V₄·2H₂O (31.6 mg, 0.031 mmol) in MeOH (3.0 mL) was heated at reflux for 19 h under N₂. The resulting dark green solution was allowed to stand for 4 days at room temperature to deposit dark green crystals. The crystals were collected by filtration and washed with MeOH to afford V₄'-Me (13.6 mg, 43% yield based on vanadium).

Conversion of V₇-Et to V₄'-Et: Complex V₇-Et (149.9 mg, 0.10 mmol) in EtOH (5.0 mL) was heated at reflux for 21 h under N₂. The resulting dark orange solution was allowed to stand for 4 days at room temperature to deposit dark orange crystals. The crystals were collected by filtration and washed with EtOH to afford V₄'-Et (72.3 mg, 37% yield based on vanadium).

Oxidative Formation of V_8 from V_8' or V_4'



Conversion of V₈' to V₈: To a CHCl₃–CH₂Cl₂ (7.0 mL) solution (v/v = 1:1) of V₈'·0.42toluene (75.2 mg, 0.048 mmol) and 4,4'-^tBubpy (13.2 mg, 0.049 mmol) was added Et₂O (14.0 mL), and the resulting brown suspension was stirred at room temperature for 2 days under O₂. The resulting yellow suspension was evaporated and dissolved in CH₂Cl₂–Et₂O mixture (v/v = 1:1). The yellow powder thus obtained was collected and washed with CH₂Cl₂ to afford V₈·CH₂Cl₂ (70.0 mg, 77% yield based on vanadium).

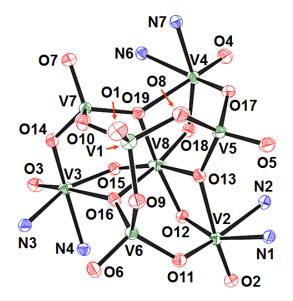
Conversion of V₄'-Me to V₈: To a CHCl₃–CH₂Cl₂ (7.3 mL) solution (v/v = 1:1) of V₄'-Me (51.2 mg, 0.050 mmol) was added Et₂O (14.6 mL), and the resulting brown solution was stirred at room temperature for 2 days under O₂. The yellow suspension was evaporated and dissolved in CH₂Cl₂–Et₂O mixture (v/v = 1:1). The resulting yellow powder thus obtained was collected and washed with CH₂Cl₂ to afford V₈·CH₂Cl₂ (36.5 mg, 77% yield based on vanadium).

Conversion of V₄'-Et to V₈: To a CHCl₃–CH₂Cl₂ (7.3 mL) solution (v/v = 1:1) of V₄'-Et (55.3 mg, 0.050 mmol) was added Et₂O (14.6 mL), and the resulting brown solution was stirred at room temperature for 2 days under O₂. The resulting yellow suspension was evaporated and dissolved in CH₂Cl₂–Et₂O mixture (v/v = 1:1). The yellow powder thus obtained was collected and washed with CH₂Cl₂ to afford V₈·CH₂Cl₂ (30.5 mg, 65% yield based on vanadium).

Oxidative Formation of V_4 or V_7 -Et from V_4'

Conversion of V₄'-Me to V₄: V₄'-Me (51.0 mg, 0.050 mmol) in MeOH (2.5 mL) was heated at 60 °C for 2 days under O₂. The resulting brown solution was allowed to stand overnight at room temperature to deposit yellow crystals. The crystals were collected by filtration and washed with MeOH to afford V₄ (13.0 mg, 26% yield based on vanadium).

Conversion of V₄'-Et to V₇-Et: V₄'-Et (110.4 mg, 0.10 mmol) in EtOH (2.5 mL) was heated at 65 °C for 2 days under O_2 to form a yellow-green suspension. The yellow-green crystalline precipitates were collected, washed with EtOH, and dried in vacuo to afford V₇-Et as a yellow-green powder (64.4 mg, 76% yield based on vanadium).


X-ray Diffraction Studies

Diffraction data for V₈'·3C₇H₈, V₈'·3C₈H₁₀, V₄'-Me, and V₄'-Et were collected on a Rigaku VariMax with a Saturn CCD diffractometer using multilayer mirror monochromated Mo-Ka radiation ($\lambda = 0.71075$ Å) at -180 °C. Intensity data were corrected for Lorentz and polarization effects and for an empirical absorption.^{S3} All calculations were performed using the CrvstalStructure^{S4} crystallographic software package except for refinements, which was performed using SHELXL Version 2016/6.^{S5} The structures were solved by direct methods (SHELXS Version 2013/1)^{S6} and expanded using Fourier techniques. Non-hydrogen atoms were refined on F^2 anisotropically by full-matrix least-squares techniques. Hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. For $V_8' \cdot 3C_7H_8$, solvent molecules (toluene) were badly disordered, and the structure of $V_8' \cdot 3C_7H_8$ was refined without these solvents using PLATON Squeeze technique,^{S6} which reported that the volume of total potential solvent accessible void is 574 Å³ per unit cell, and estimated number of electrons within the void is 109 electrons/cell. Expected volumes for small molecules (e.g. toluene) are 100-300 Å³, and toluene has 50 electrons per molecule. From these results, we assumed that the unit cell contains 2 molecules of toluene (100 electrons). There is a level B alert due to the disorder of a solvent molecule (toluene), but it does not affect the final structure determination. For $V_8' \cdot 3C_8H_{10}$, there is a level B alert: Missing # of FCF reflections below Theta(Min). However, data completeness of 96.3% is enough for structure determination. For V_4 '-Et, hydrogen atoms of bridged ethoxide groups were not included in the refinements. Details of the X-ray diffraction study are summarized in Table S1. ORTEP drawings of $V_8' \cdot 3C_8H_{10}$, V_4' -Me, and V_4' -Et are shown in Figures S1–3 and selected interatomic distances and angles are listed in Tables S2-4. Results of bond valence sum (BVS) calculations for vanadium atoms of $V_8' \cdot 3C_7H_8$, $V_8' \cdot 3C_8H_{10}$, V_4' -Me, and V_4' -Et are shown in Table S5.

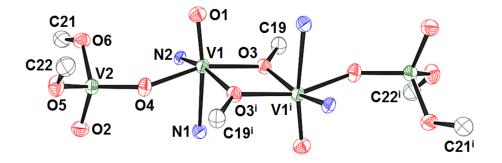

	V ₈ '·3C ₇ H ₈	$V_8' \cdot 3C_8H_{10}$	V ₄ '-Me	V ₄ '-Et
CCDC	1828015	1828016	1828017	1828019
chemical formula	$C_{75}H_{96}N_6O_{19}V_8$	$C_{78}H_{102}N_6O_{19}V_8$	$C_{42}H_{66}N_4O_{12}V_4$	$C_{48}H_{78}N_4O_{12}V_4$
formula weight	1793.14	1835.22	1022.77	1106.93
dimension of crystals	0.230×0.090×0.085	0.234×0.113×0.040	0.213×0.137×0.106	0.280×0.231×0.124
crystal system	trigonal	triclinic	monoclinic	monoclinic
space group	P-3 (#147)	P-1 (#2)	P2 ₁ /c (#14)	P2 ₁ /c (#14)
<i>a</i> , Å	20.323(3)	11.6193(17)	10.739(7)	10.609(4)
b, Å	20.323(3)	15.836(3)	21.314(12)	22.256(7)
<i>c</i> , Å	12.3450(18)	23.758(3)	10.433(7)	11.793(4)
α , deg	90.0000	85.348(5)	90.0000	90.0000
β , deg	90.0000	77.919(4)	98.259(10)	102.777(5)
γ, deg	120.0000	87.030(5)	90.0000	90.0000
$V, Å^3$	4415.5(11)	4257.8(11)	2363(2)	2715.5(16)
Ζ	2	2	2	2
$ ho_{ m calcd}, { m g~cm}^{-3}$	1.349	1.431	1.437	1.354
<i>F</i> (000)	1848.00	1896.00	1068.00	1164.00
μ , cm ⁻¹	8.719	9.059	8.283	7.265
trans. factors range	0.911-0.929	0.783-0.964	0.836-0.916	0.606-0.914
index ranges	$-26 \le h \le 26$	$-14 \le h \le 15$	$-13 \le h \le 13$	$-13 \le h \le 13$
	$-26 \le k \le 26$	$-20 \le k \le 20$	$-24 \le k \le 27$	$-27 \le k \le 27$
	$-16 \le l \le 15$	$-30 \le l \le 30$	$-13 \le l \le 13$	$-15 \le l \le 15$
no. rflns measured	36793	35310	18716	21853
no. unique rflns	6749	18777	5397	6117
R _{int}	0.0875	0.0555	0.0868	0.0643
no. rflns $(I > 2\sigma(I))$	5546	13300	4063	4576
no. params refined	325	1000	280	313
$R1 (I > 2\sigma(I))^{a}$	0.0793	0.0703	0.0916	0.0807
R (All cata)	0.0965	0.1014	0.1199	0.1012
wR2 (All cata) ^b	0.1839	0.1619	0.2126	0.2500
GOF ^c	1.133	1.086	1.120	1.069
max diff peak/hole, e Å $^{-3}$	0.60/-0.47	0.51/-0.68	0.73/-0.71	2.16/-1.37

Table S1. X-ray crystallographic data for V8'·3C7H8, V8'·3C8H10, V4'-Me, and V4'-Et

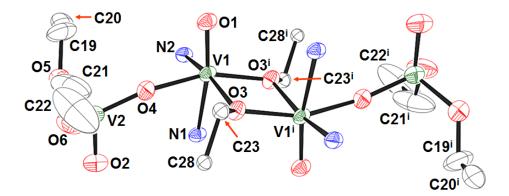

^a $RI = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^b $wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}$, $w = 1 / [\sigma^2 F_o^2 + (aP)^2 + bP]$ (*a* and *b* are constants suggested by the refinement program; $P = [max(F_o^2, 0) + 2F_c^2] / 3$). ^cGOF = $[\Sigma w(F_o^2 - F_c^2)^2 / (N_{obs} - N_{params})]^{1/2}$.

Figure S1. Crystal structure of $V_8' \cdot 3C_8H_{10}$ with numbered atoms. Ellipsoids are shown at the 50% probability level. H and C atoms are omitted for clarity.

Figure S2. Crystal structure of V_4 '-Me with numbered atoms. Ellipsoids are shown at the 50% probability level. H and C atoms except for C19, C21, C22, C19ⁱ, C21ⁱ, and C22ⁱ are omitted for clarity. Symmetry operators: (i) – X + 1, – Y, – Z.

Figure S3. Crystal structure of V_4 '-Et with numbered atoms. Ellipsoids are shown at the 50% probability level. H and C atoms except for C19, C20, C21, C22, C23, C28, C19ⁱ, C20ⁱ, C21ⁱ, C22ⁱ, C23ⁱ, and C28ⁱ are omitted for clarity. Symmetry operators: (i) – X + 1, – Y, – Z + 1.

Table S2. Selected interatomic distances	(Å)) and angles	(deg)	for	V8'	$\cdot 3C_8H_{10}$
--	-----	--------------	-------	-----	-----	--------------------

	Interatomic distances (Å)				
V1-01	1.598(3)	V1-08	1.758(3)		
V1-O9	1.770(3)	V1-O10	1.766(3)		
V2-O2	1.607(3)	V2-011	1.865(3)		
V2-012	1.734(3)	V2-O13	2.269(3)		
V2-N1	2.169(4)	V2-N2	2.144(3)		
V3-O3	1.602(3)	V3-O14	1.906(3)		
V3-015	1.860(3)	V3-O16	2.294(3)		
V3-N3	2.143(4)	V3-N4	2.134(3)		
V4–O4	1.592(3)	V4-017	1.902(3)		
V4–O18	1.879(3)	V4-019	2.369(3)		
V4-N5	2.139(3)	V4-N6	2.132(4)		
V5-O5	1.601(3)	V5–O8	1.840(3)		
V5-O13	1.746(3)	V5-017	1.723(3)		
V6-O6	1.602(3)	V6-09	1.825(3)		
V6-011	1.766(2)	V6-O16	1.731(3)		
V7–O7	1.615(3)	V7–O10	1.824(3)		
V7–O14	1.729(3)	V7–O19	1.750(3)		
V8-012	1.951(2)	V8-013	2.070(3)		
V8-015	1.805(3)	V8-O16	2.104(3)		
V8-O18	1.794(3)	V8-O19	1.996(3)		
V2…V8	3.0779(11)	V3…V8	3.0912(11)		
$V4\cdots V8$	3.0857(11)				
	Angles (deg)			
V1-O8-V5	128.23(16)	V2-011-V6	124.05(16)		
V2-012-V8	113.13(15)	V2-013-V5	144.40(15)		

90.26(11)

89.19(11)

89.57(10)

V2-013-V8

V3-O16-V8

V4-019-V8

V3-015-V8

V4-018-V8

115.01(16)

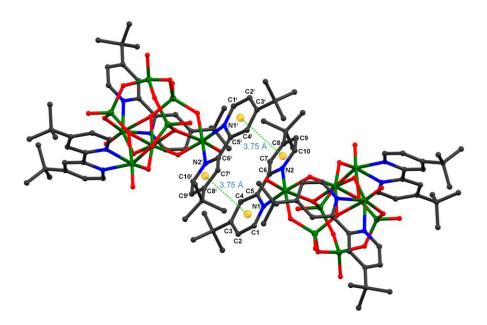
114.29(15)

Table S3. Selected interatomic distances (Å) and angles (deg) for V ₄ '-Me

	Interato	mic distances (Å)	
V1-01	1.609(4)	V1-O3	2.012(3)
V1–O3 ⁱ	1.968(4)	V1-O4	1.976(4)
V1-N1	2.309(4)	V1-N2	2.144(4)
V2-O2	1.617(4)	V2-04	1.687(4)
V2-O5	1.792(4)	V2-06	1.794(4)
$V1{\cdots}V1^{\rm i}$	3.140(2)		
	A	ngles (deg)	
O3-V1-O3 ⁱ	75.83(15)	V1-O3-V1 ⁱ	104.17(17)
V1-O4-V2	144.4(2)		
Symmetry operators	s: (i) $-X + 1, -Y, -Z.$		

		2		
Table S4.	Selected interatomic	distances (Å) an	id angles (deg) for	: V4'-Et

	Interatomic dista	nnces (Å)	
V1-O1	1.604(3)	V1-O3	1.970(3)
V1–O3 ⁱ	2.005(2)	V1-O4	1.973(3)
V1-N1	2.281(3)	V1-N2	2.164(3)
V2-O2	1.625(4)	V2-04	1.688(3)
V2–O5	1.770(4)	V2-06	1.792(4)
$V1{\cdots}V1^i$	3.1411(13)		


	А	ngles (deg)				
O3-V1-O3 ⁱ	75.57(11)	V1-O3-V1 ⁱ	104.43(13)			
V1-O4-V2	161.51(18)					
Symmetry operators: (i) $- Y + 1 - V - 7 + 1$						

Symmetry operators: (i) -X + 1, -Y, -Z + 1.

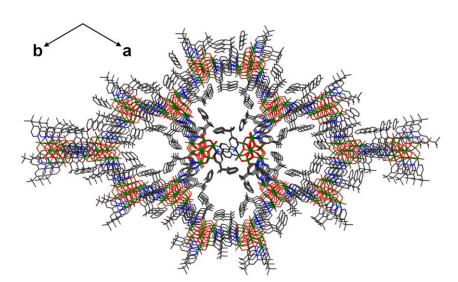

V complex		V1	V2	V3	V4	V5	V6	V7	V8
V₈' ·3C ₇ H ₈	V(IV)	4.82	4.54	4.72	4.01	_	_	_	_
	V(V)	5.08	4.74	4.97	4.22	_	_	_	_
$V_8' \cdot 3C_8H_{10}$	V(IV)	4.81	4.73	4.36	4.34	4.79	4.73	4.73	4.00
	V(V)	5.07	4.93	4.54	4.51	5.04	4.98	4.98	4.21
V4'-Me	V(IV)	4.10	4.82	_	_	_	_	_	_
	V(V)	4.29	5.08	_	_	_	_	_	_
V4'-Et	V(IV)	4.14	4.85	_	_	_	_	_	_
	V(V)	4.32	5.11	_	_	_	_	_	_

Table S5. BVS calculations for vanadium atoms of $V_8' \cdot 3C_7H_8$, $V_8' \cdot 3C_8H_{10}$, V_4' -Me, and V_4' -Et^a

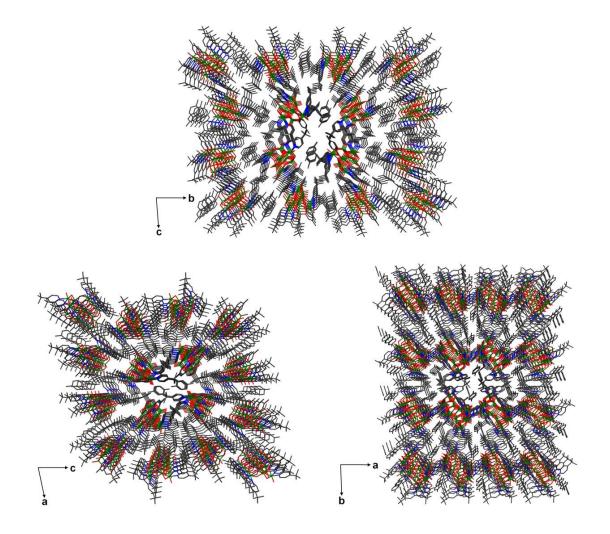

^{*a*} BVS calculations were conducted using X-ray data of $V_8' \cdot 3C_7H_8$ (Figure 2 in the manuscript), $V_8' \cdot 3C_8H_{10}$ (Table S2), V_4' -Me (Table S3), and V_4' -Et (Table S4). Bond valence parameters: V(IV)-O (1.784 Å), V(V)-O (1.803 Å), and V-N (1.86 Å).^{S7}

Figure S4. π - π interactions between pyridine rings of V₈'·3C₇H₈ with a centroid–centroid distance of 3.75 Å. Symmetry operators: (i) 1 – X, 1 – Y, – Z.

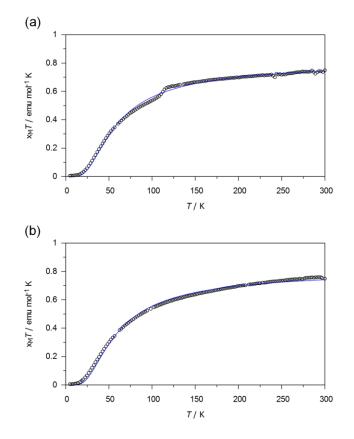


Figure S5. Crystal packing view of $V_8' \cdot 3C_7H_8$ along the *c*-axis.

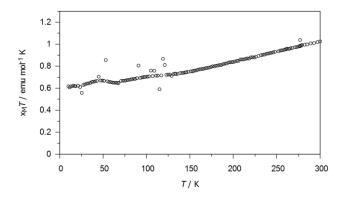


Figure S6. Crystal packing view of $V_8' \cdot 3C_8H_{10}$ along the *a*-axis (top), *b*-axis (bottom left), and *c*-axis (bottom right).

Results of SQUID Measurements

Figure S7. $\chi_M T$ versus T plots for (a) V_4 '-Me and (b) V_4 '-Et. The solid blue lines represent the theoretical fitting with eq 1 in the manuscript.

Figure S8. $\chi_M T$ versus *T* plots for $V_8' \cdot 1.28C_8H_{10}$.

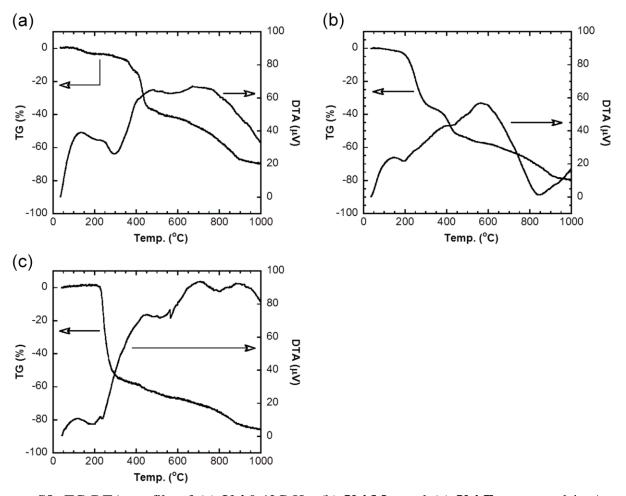


Figure S9. TG-DTA profile of (a) $V_8' \cdot 0.42C_7H_8$, (b) V_4' -Me, and (c) V_4' -Et measured in Ar gas atmosphere. Heating rate: 50 °C/min.

The weight loss of $V_8' \cdot 0.42C_7H_8$ (2.94%) observed at 100–170 °C is attributed to the release of 0.42 toluene molecules (calcd. 2.49%) per empirical formula unit. The next weight loss (32.29%) at 200–460 °C is considered to be due to the loss of two coordinated 4,4'-^{*t*}Bubpy molecules (calcd. 34.51%) (Figure S9a). In addition, the weight losses of V_4' -Me and V_4' -Et were observed at 150–450 °C (50.44%) and at 200–300 °C (54.16%), respectively, which may result from the loss of two 4,4'-^{*t*}Bubpy molecules (calcd. 52.48% for V_4' -Me; calcd. 48.49% for V_4' -Et) (Figures S9b and S9c).

References

- (S1) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal's Constants. J. Chem. Educ. 2008, 85, 532–536.
- (S2) Kodama, S.; Taya, N.; Inoue, Y.; Ishii, Y. Synthesis and Interconversion of V₄, V₇, and V₈ Oxide Clusters: Unexpected Formation of Neutral Heptanuclear Oxido(alkoxido)vanadium(V) Clusters [V₇O₁₇(OR)(4,4'-^tBubpy)₃] (R = Et, MeOC₂H₄). *Inorg. Chem.* 2016, *55*, 6712–6718.
- (S3) Jacobson, R. A. *REQAB: Private Communication to Rigaku Corporation*; Rigaku Corporation: Tokyo, Japan, 1998.
- (S4) CrystalStructure 4.2.4: Crystal Structure Analysis Package, Rigaku Corporation: Tokyo, Japan, 2000–2016.
- (S5) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112–122.
- (S6) van der Sluis, P.; Spek, A. L. BYPASS: an Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. *Acta Crystallogr., Sect A.* **1990**, *46*, 194–201.
- (S7) Brese, N. E.; O'Keeffe, M. Bond-Valence Parameters for Solids. Acta Crystallogr. Sect. B 1991, 47, 192–197.