
Appendix A. Capillary time step criterion

In this section, we identify the cause of the numerical instabilities that explicit
methods suffer from at low flow rates when the capillary time step criterion (23) is not
obeyed. We also derive this criterion. The contents of this section are not intended
to constitute a formal proof of the stability of the presented time integration methods.
The results derived herein are based on a linearized approximation of the pore network
model. Although the application of results from a linearized analysis to general cases
is somewhat simplistic, it is useful for highlighting key difficulties, see e.g. [26] pp.
347., and for deriving results that can be found to work in practice. For evidence of the
actual stability of the time integration methods, it is therefore referred to the numerical
tests performed in Section 9.

Consider a single link i j in a network and assume that pi and p j are given. Then
the ODE (6) for the interface positions in the link is
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We further assume that the flow rate in this link is low. This means that the node
and capillary pressures almost balance at the current interface positions z∗i j, and thus

qi j

(
z∗i j

)
≈ 0. Also, we neglect the dependence of gi j on the interface positions. Now

rewrite (A.1) in terms ∆zi j = zi j − z∗i j and linearize the right hand side around z∗i j to get

d
dt
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= λ∆zi j. (A.4)

We can now read off the approximate ODE eigenvalue as
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Without loss of generality, we may assume that λ < 0. If this is not the case, we
interchange the indices i and j and redefine our spatial coordinate so that z→ −z to get
an ODE with negative λ. We therefore write the eigenvalue as
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If the forward Euler method is to be stable on the linearized ODE, λ∆t must lie in
the stability region of the forward Euler method [26],

−2 < λ∆t < 0. (A.7)



This is satisfied if we choose the time step such that
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The criterion (23) is obtained by demanding that (A.8) be satisfied for all links in the
network. If the advective criterion (22) is used by itself and the link flow rates are
low, then (A.8) is not necessarily satisfied for all links and we must expect numerical
instabilities from the forward Euler method.

As the midpoint method has the same real-space stability region as the forward
Euler method (A.7), the above reasoning and the criterion (23) can be applied for the
midpoint method also.

The backward Euler method, on the other hand, is stable if [26]

λ∆t < 0, (A.9)

and, because λ is negative, it is stable with any positive ∆t for this linearized problem.

Appendix B. Jacobian matrix for the semi-implicit method

In order to solve (35) using the numerical method described in Section 7, it is
necessary to have the Jacobian matrix of F. This matrix may be written as
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The derivative of q(n+1)
ik with respect to p(n+1)

i can be found by differentiation of (32)
with respect to p(n+1)

i and application of the chain rule,

∂q(n+1)
i j

∂p(n+1)
i

= −g(n)
i j + g(n)

i j

∂c(n+1)
i j

∂p(n+1)
i

, (B.2)
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This can be solved for the desired derivative to yield
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Herein, the derivative of capillary pressure with respect to flow rate is
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for the specific choice of capillary pressure model given by (9).
As the pore network model is linear in the node pressures, it is intuitive that the

effect on the link flow rate of increasing the pressure in the node at one end of a link is
the same as decreasing it, by the same amount, in the node at the other end. Thus we
may write
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This equation may be more formally derived by differentiating (32) with respect to
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j to get
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and, solving for the desired derivative,
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Comparison of (B.4) and (B.9) gives the intuitive result (B.6).
The addition of Fm (40) to the non-linear system for the specified flow rate bound-

ary condition, introduces some new terms in the Jacobian matrix of F. The derivatives
of Fm with respect to the node pressures are
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where link flow rate derivatives are calculated using (B.4) and (B.6) and the derivative
with respect to ∆P is
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The additional terms corresponding to the derivatives with respect to ∆P of the mass
balance equations for each node k with unknown pressures are
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