Supporting Information –

Frequency-dependent photoconductivity (PC) spectra to show defect and near-band-edge transitions in $ZnS_{(1-x)}O_x$ with x=0, 0.06 and 0.12.

The Study of Near-Band-Edge Property in Oxygen-Incorporated ZnS for Acting as an Efficient Crystal Photocatalyst

Min-Han Lin, Perumalswamy Sekar Parasuraman, and Ching-Hwa Ho †, †, *

*E-mail: chho@mail.ntust.edu.tw.

[†]Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan

[†] Graduate Institute of Electro-Optical Engineering and Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

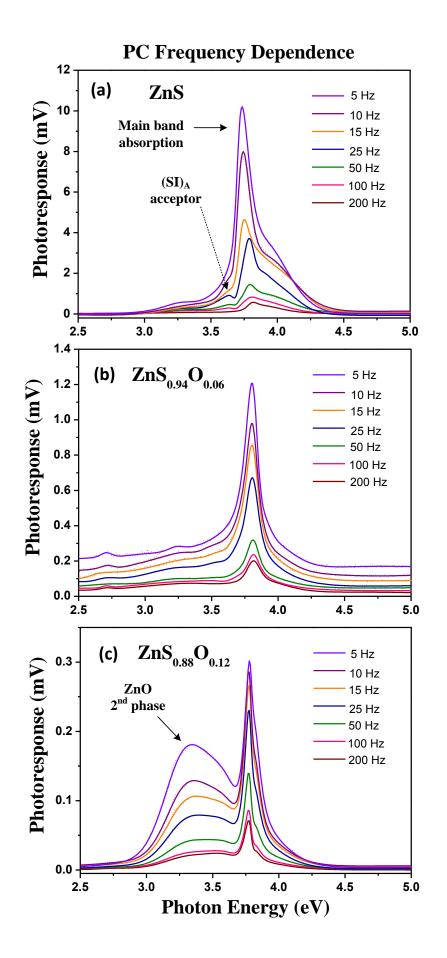


Figure S1. Frequency-dependent photoconductivity (PC) spectra of (a) undoped ZnS, (b) $ZnS_{0.94}O_{0.06}$, and (c) $ZnS_{0.88}O_{0.12}$ to observed the possible transitions of imperfection states and main-absorption band of $ZnS_{(1-x)}O_x$. As the chopped frequency of the incident light was increased from 5 to 200 Hz, the PC amplitudes of the ZnS, $ZnS_{0.94}O_{0.06}$, and $ZnS_{0.88}O_{0.12}$ were gradually decreased. At 25 Hz, the main band-edge absorption peak together with a clear below-band-edge transition [denoted as (SI)_A] have been detected by the undoped ZnS sample. The below-band-edge transition (SI)_A is maybe coming from an acceptor level that caused by CVT-grown $ZnS_{(1-x)}O_x$ with I₂ as the transport agent. Besides, an obvious ZnO related peak at ~3.3 eV can also be detected in the highest oxygen-doped $ZnS_{0.88}O_{0.12}$ sample. It is owing to a second phase of ZnO was existed in the higher oxygen-incorporated $ZnS_{(1-x)}O_x$ crystals. All the PC measurement results are implemented tend to be the characterization of defect transitions in the oxygen-incorporated ZnS.