Enantioselective Syntheses of Homopropargylic Alcohols via Asymmetric Allenylboration

Mengzhou Wang, Shahriar Khan, Evangelos Miliordos and Ming Chen*

Department of Chemistry and Biochemistry

Auburn University

E-mail: mzc0102@auburn.edu

Supporting Information: Experimental Procedures, Tabulated Spectroscopic Data, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of New Compounds

General Experimental Details. All reaction solvents were purified before use. Tetrahydrofuran, dichloromethane, diethyl ether and toluene were purified by passing through a solvent column composed of activated A-1 alumina. Unless indicated otherwise, all reactions were conducted under an atmosphere of argon using flame-dried or oven-dried $\left(120{ }^{\circ} \mathrm{C}\right)$ glassware. The term "concentrated under reduced pressure" refers to the removal of solvents and other volatile materials using a rotary evaporator with the water bath temperature below $30{ }^{\circ} \mathrm{C}$, followed by the removal of residual solvents at high vacuum (<0.2 mbar).

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were acquired on commercial instruments (400 and 600 MHz) at Auburn University NMR facility. Carbon-13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were acquired at 100 and 151 MHz . The proton signal for the residual non-deuterated solvent (87.26 for CHCl_{3}) was used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra. For ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are reported relative to the $\delta 77.36$ resonance of CHCl_{3}. Coupling constants are reported in Hz. Optical rotations were measured on a Perkin Elmer 241 Automatic Polarimeter. High-resolution mass spectra were recorded on a commercial high-resolution mass spectrometer via the Micro Mass/Analytical Facility operated by the College of Chemistry and Biochemistry, Auburn University.

Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. The TLC plates were visualized with UV light and/or by staining with Hanessian solution (ceric sulfate and ammonium molybdate in aqueous sulfuric acid) or KMnO_{4}. Column chromatography was generally performed using Kieselgel 60 (230-400 mesh) silica gel, typically using a 50-100:1 weight ratio of silica gel to crude product.

General procedure for syntheses of homopropargyl alcohols: To a reaction flask containing a stirring bar and freshly activated $4 \AA \mathrm{MS}(50 \mathrm{mg})$ was added phosphoric $\operatorname{acid}(R)-\mathbf{A}_{1}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$. Toluene $(0.3 \mathrm{~mL})$ was added to the flask followed by drop wise addition of freshly distilled aldehydes (0.1 mmol , if it is a liquid). The mixture was placed in a $-45^{\circ} \mathrm{C}$ cold bath and stirred for 15 min . Allenylboronate $\mathbf{1}^{1}$ (0.12 mmol) was added slowly to the reaction mixture via a microliter syringe. The mixture was kept at $-45{ }^{\circ} \mathrm{C}$ and stirred for 48 h . After complete consumption of the aldehydes, saturated $\mathrm{NaHCO}_{3}(1.0 \mathrm{~mL})$ was added to the reaction mixture followed by slow addition of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred vigorously for 2 h. Brine (1 mL) and $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash chromatography (gradient elution with hexane and $\mathrm{Et}_{2} \mathrm{O}$) provided the product.

2-(Buta-2,3-dien-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1a).
 Prepared according to the known procedure, ${ }^{1}$ colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.58(\mathrm{q}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27 (s, 12H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.8,84.1,70.5,25.1$, 15.6.

$$
\begin{aligned}
& \stackrel{\text { Et }}{\text { Et }}=\text { = 4,4,5,5-Tetramethyl-2-(penta-1,2-dien-3-yl)-1,3,2-dioxaborolane (1b). } \\
& \text { Prepared according to the known procedure, }{ }^{1} \text { colorless oil. }{ }^{1} \mathrm{H} \text { NMR } \\
& \text { (} 600 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } \delta 4.65 \text { (app. } \mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H} \text {), 2.03-2.07 (m, 2H), } \\
& 1.27(\mathrm{~s}, 12 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \text { NMR (} 151 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {) } \delta 214.9,84.0 \text {, } \\
& \text { 72.0, 25.1, 22.7, 13.9. }
\end{aligned}
$$

[^0]
(R)-1-Phenylpent-3-yn-1-ol (2a). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 15 mg product $\mathbf{2 a}$ as colorless oil in 94% yield. The enantiomeric excess was determined by HPLC analysis to be 95% ee (254 $\left.\mathrm{nm}, 25{ }^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=7.31 \mathrm{~min}, \mathrm{t}_{2}=7.82 \mathrm{~min}[($ Chiralpak IC $)$ hexane $/ i-\operatorname{PrOH}, 95: 5,1.0$ $\mathrm{mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=73.8^{\circ}\left(\mathrm{c} 0.67, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.38(\mathrm{~m}$, $4 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{br}$, $1 \mathrm{H}), 1.81(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,128.7,128.1$, 126.1, 79.1, 75.6, 73.0, 30.4, 3.9; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}$calcd. 160.0888, found: 160.0900 .

(R)-1-(P-tolyl)pent-3-yn-1-ol (2b). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 15 mg compound $\mathbf{2 b}$ as colorless oil in 86% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=10.5 \mathrm{~min}, \mathrm{t}_{2}=11.1 \mathrm{~min}$ [(Chiralpak IG) hexane $/ i-\mathrm{PrOH}, 95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=10.9^{\circ}\left(\mathrm{c} 1.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.57(\mathrm{~m}$, $2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.1$, 137.8, 129.4, 126.0, 78.9, 75.7, 72.8, 30.3, 21.5, 4.0; HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{12}$ [$\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 156.0939, found: 156.0947.

(R)-1-(4-Ethoxyphenyl)pent-3-yn-1-ol (2c). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 19 mg compound $\mathbf{2 c}$ as colorless oil in 93% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=12.0 \mathrm{~min}, \mathrm{t}_{2}=11.4 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=13.9^{\circ}\left(\mathrm{c} 1.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.75$ (app. t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.53-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{br}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,135.1,127.3,114.6,78.9,75.7,72.6,63.7$, 30.3, 15.2, 3.9; HRMS (EI): m / z for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 186.1045, found: 186.1046.

(R)-4-(1-Hydroxypent-3-yn-1-yl)benzonitrile (2d). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 17 mg compound 2d as colorless oil in 92% yield. The enantiomeric excess was determined
by HPLC analysis to be 98% ee ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=9.47 \mathrm{~min}, \mathrm{t}_{2}=9.98 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=26.9^{\circ}\left(\mathrm{c} 1.53, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.80-4.92 (m, 1H), 2.60-2.65 (m, 1H), 2.46-2.56 (m, 2H), $1.81(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3,132.6,126.8,119.1,111.8,80.0$, 74.4, 72.1, 30.3, 3.9; HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}[\mathrm{M}]^{+}$calcd. 185.0841, found: 185.0854.

(R)-4-(1-Hydroxypent-3-yn-1-yl)-methyl-benzoate (2e).

Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 20 mg product $\mathbf{2 e}$ as colorless oil in 92% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=10.9 \mathrm{~min}, \mathrm{t}_{2}=12.0 \mathrm{~min}[($ Chiralpak IE) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=16.5^{\circ}\left(\mathrm{c} 1.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=$ $7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.56\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,148.2,130.0,129.8$, 126.0, 79.5, 74.9, 72.4. 52.4, 30.3, 3.9; HRMS (EI): m / z for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}]^{+}$calcd. 218.0943, found: 218.0940.

(R)-1-(4-Nitrophenyl)pent-3-yn-1-ol (2f). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 20 mg compound $\mathbf{2 f}$ as colorless oil in 98% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=16.3 \mathrm{~min}, \mathrm{t}_{2}=17.7 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=19.2^{\circ}\left(\mathrm{c} 1.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.92 (app. s, 1H), 2.63-2.67 (m, 1H), 2.52-2.57 (m, 2H), $1.81(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 150.3,147.8,126.9,123.9,80.1,74.3,71.9,30.4,3.8 ;$ HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$calcd. 188.0712, found: 188.0714.

(R)-1-(4-Chlorophenyl)pent-3-yn-1-ol (2g). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 16 mg compound $\mathbf{2 g}$ as colorless oil in 82% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=9.10 \mathrm{~min}, \mathrm{t}_{2}=9.79 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=26.0^{\circ}\left(\mathrm{c} 1.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ (app. $\mathrm{s}, 4 \mathrm{H}), 4.79(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{br}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5$
$\mathrm{Hz}, 3 \mathrm{H}), 1.56\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.6,133.8,128.9,127.5,79.4$, 75.1, 72.2, 30.4, 3.9; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}[\mathrm{M}]^{+}$calcd. 194.0498, found: 194.0493.

(R)-1-(4-Bromophenyl)pent-3-yn-1-ol (2h). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 20 mg compound $\mathbf{2 h}$ as colorless oil in 84% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=9.68 \mathrm{~min}, \mathrm{t}_{2}=10.6 \mathrm{~min}$ [(Chiralpak IA) hexane $/ \mathrm{i}-\mathrm{PrOH}, 95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=18.3^{\circ}\left(\mathrm{c} 1.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.78(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.48-2.54 (m, 1H), $2.42(\mathrm{br}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.1,131.8,127.8,121.9,79.5,75.0,72.3,30.3,3.9 ;$ HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}[\mathrm{M}]^{+}$calcd. 237.9993, found: 237.9999.

(R)-1-(4-Iodophenyl)pent-3-yn-1-ol (2i). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 20 mg compound $\mathbf{2 i}$ as colorless oil in 70% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee (254 $\left.\mathrm{nm}, 25{ }^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=10.4 \mathrm{~min}, \mathrm{t}_{2}=11.9 \mathrm{~min}[($ Chiralpak IA $)$ hexane $/ i-\operatorname{PrOH}, 95: 5,1.0$ $\mathrm{mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=21.4^{\circ}\left(\mathrm{c} 1.33, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.75-4.77(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.48-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,137.7,128.1,93.5,79.5,75.0,72.3,30.3,3.9$; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{IO}[\mathrm{M}]^{+}$calcd. 285.9855, found: 285.9853.

(R)-1-(3-Bromophenyl)pent-3-yn-1-ol (2j). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 22 mg compound $\mathbf{2 j}$ as colorless oil in 92% yield. The enantiomeric excess was determined by HPLC analysis to be 92% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=6.34 \mathrm{~min}, \mathrm{t}_{2}=6.95 \mathrm{~min}[($ Chiralpak IG) hexane $/ i-\mathrm{PrOH}, 90: 10$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha] \mathrm{D}^{25}=14.4^{\circ}\left(\mathrm{c} 1.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.76-4.79 (m, 1H), 2.57-2.62 (m, 1H), 2.49-2.54 (m, 1H), $2.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,131.1$, 130.3, 129.3, 124.7, 122.9, 79.6, 75.0, 72.2, 30.4, 3.9; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}$ $[\mathrm{M}]^{+}$calcd. 237.9993, found: 238.0002.

(R)-1-(3-Methoxyphenyl)pent-3-yn-1-ol (2k). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 17 mg compound $\mathbf{2 k}$ as colorless oil in 89% yield. The enantiomeric excess was determined by HPLC analysis to be 97% ee ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=9.78 \mathrm{~min}, \mathrm{t}_{2}=10.8 \mathrm{~min}$ [(Chiralpak IB) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=19.4^{\circ}\left(\mathrm{c} 1.47, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.41(\mathrm{br}, 1 \mathrm{H}), 1.82(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.0,144.8,129.8,118.3,113.6,111.5,79.1,75.5,72.9,55.6,30.4,3.9$; HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}$calcd. 190.0994, found: 190.1006.

(R)-1-(Naphthalen-2-yl)pent-3-yn-1-ol (21). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 20 mg compound $\mathbf{2 l}$ as colorless oil in 95% yield. The enantiomeric excess was determined by HPLC analysis to be 98% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=11.0 \mathrm{~min}, \mathrm{t}_{2}=12.2 \mathrm{~min}$ [(Chiralpak IG) hexane $/ i-\mathrm{PrOH}, 95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=20.1^{\circ}\left(\mathrm{c} 1.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.85$ (m, 4H), 7.45-7.50 (m, 3H), $4.99(\mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.52$ (br, 1H), $1.82(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5$, $133.5,133.4,128.5,128.3,128.0,126.5,126.2,124.9,124.1,79.2,75.5,73.0,30.3$, 3.9; HRMS (EI): m / z for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}$calcd. 210.1045, found: 210.1069.

(R)-1-(Benzo[d][1,3]dioxol-5-yl)pent-3-yn-1-ol (2m). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 19 mg compound $\mathbf{2 m}$ as colorless oil in 93% yield. The enantiomeric excess was determined by HPLC analysis to be 98% ee ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=9.21 \mathrm{~min}, \mathrm{t}_{2}=10.4 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i$ - $\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=10.9^{\circ}\left(\mathrm{c} 1.67, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.71-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.0, 147.4, 137.2, 119.5, 108.4, 106.6, 101.4, 79.1, 75.5, 72.8, 30.4, 3.9; HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 186.0681, found: 186.0677.

(R)-1-(3,4-Dichlorophenyl)pent-3-yn-1-ol (2n). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 16 mg compound

2n as colorless oil in 70\% yield. The enantiomeric excess was determined by HPLC analysis to be 98% ee $\left(254 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=6.32 \mathrm{~min}, \mathrm{t}_{2}=6.81 \mathrm{~min}$ [(Chiralpak ID) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=14.1^{\circ}\left(\mathrm{c} 0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.61(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{t}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(151$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,132.8,131.9,130.7,128.2,125.4,79.9,74.6,71.6,30.3,3.9$; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$calcd. 211.0081, found: 211.0088.

(R)-1-(Thiophen-3-yl)pent-3-yn-1-ol (20). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 15 mg compound $\mathbf{2 o}$ as colorless oil in 90% yield. The enantiomeric excess was determined by HPLC analysis to be 90% ee (254 $\left.\mathrm{nm}, 25^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=6.92 \mathrm{~min}, \mathrm{t}_{2}=7.43 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0$ $\mathrm{mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=18.8^{\circ}\left(\mathrm{c} 1.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{dd}, J=$ $5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.91(\mathrm{~m}$, $1 \mathrm{H}), 2.57-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,126.4,125.9,121.4,79.3,75.3,69.3$, 29.5, 4.0; HRMS (EI): m / z for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~S}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 148.0347, found: 148.0350 .

($\boldsymbol{R}, \boldsymbol{E}$)-1-(Furan-2-yl)hept-1-en-5-yn-3-ol (2p). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 14 mg compound $\mathbf{2 p}$ as colorless oil in 81% yield. The enantiomeric excess was determined by HPLC analysis to be 81% ee ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=7.06 \mathrm{~min}, \mathrm{t}_{2}=7.76 \mathrm{~min}$ [(Chiralpak IA) [(Chiralpak) hexane $/ i-\operatorname{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=9.87^{\circ}$ (c $1.73, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35$ (app. s, 1 H), $6.48(\mathrm{~d}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37$ (dd, $J=3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.8,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35-4.40(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,142.4$, 129.3, 119.4, 111.6, 108.7, 79.2, 74.9, 70.9, 28.5, 3.9; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}$ [$\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 158.0732, found: 158.0738.

(R, E)-1-(2-Methoxyphenyl)hept-1-en-5-yn-3-ol (2q). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 17 mg compound $\mathbf{2 q}$ as colorless oil in 79% yield. The enantiomeric excess was determined by HPLC analysis to be 88% ee ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=8.98 \mathrm{~min}, \mathrm{t}_{2}=9.56 \mathrm{~min}$ $\left[(\right.$ Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=6.00^{\circ}\left(\mathrm{c} 1.13, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=$ $16.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.49(\mathrm{~m}$, $1 \mathrm{H}), 2.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $(151$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,131.4,129.2,127.3,126.2,125.8,120.9,111.2,78.9,75.2$, 71.9, 55.8, 28.5, 4.0; HRMS (EI): m / z for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 198.1045, found: 198.1056.

(R, Z)-2-Bromo-1-phenylhept-1-en-5-yn-3-ol (2r). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 24 mg compound $2 \mathbf{r}$ as colorless oil in 91% yield. The enantiomeric excess was determined by HPLC analysis to be 98% ee $\left(254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=6.83 \mathrm{~min}, \mathrm{t}_{2}=7.30 \mathrm{~min}$ [(Chiralpak IB) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=0.324^{\circ}$ (c 1.87, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32$ (app. $\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.42($ app. q, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.45$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 135.4,129.5,129.0,128.51,128.50,127.8,79.7,76.1,74.2,27.3,3.9$. HRMS (EI): m / z for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 246.0044, found: 246.0051.

(\boldsymbol{R})-1-((S)-4-(Prop-1-en-2-yl)cyclohex-1-en-1-yl)pent-3-yn-1-o 1 (4a). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 17 mg compound $\mathbf{4 a}$ as colorless oil in 83% yield, d.r. $>20: 1 .[\alpha]_{\mathrm{D}}{ }^{25}=-9.15^{\circ}(\mathrm{c} 0.33$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73-5.76(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.10-$ $4.13(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.10-2,20(\mathrm{~m}, 3 \mathrm{H}), 1.91-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right), 1.44-1.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,138.4,123.8,109.0,78.7,75.9,74.5,41.4,30.7,27.7$, 26.6, 24.3, 21.1, 4.0; HRMS (EI): m / z for $\mathrm{C}_{14} \mathrm{H}_{18}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 186.1409, found: 186.1418.

(S)-1-((S)-4-(Prop-1-en-2-yl)cyclohex-1-en-1-yl)pent-3-yn-1-o \mathbf{l} (5a). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 16 mg compound 5a as colorless oil in 78% yield, d.r. $>20: 1 .[\alpha]_{\mathrm{D}}{ }^{25}=-33.8^{\circ}(\mathrm{c} 0.53$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74-5.77(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.73(\mathrm{~m}, 2 \mathrm{H})$, 4.07-4.13 (m, 1H), 2.33-2.45 (m, 2H), 2.14-2.20 (m, 2H), 1.91-2.12 (m, 4H), $1.82-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,138.2,122.6,109.0,78.8,75.7,74.2,41.3,30.6,27.6$, 26.9, 25.0, 21.2, 4.0; HRMS (EI): m / z for $\mathrm{C}_{14} \mathrm{H}_{18}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 186.1409, found: 186.1426.

(R)-1-((1R,5S)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)pent-3 -yn-1-0l (4b). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 15 mg compound $\mathbf{4 b}$ as colorless oil in 74% yield, d.r. $=12: 1 .[\alpha]_{\mathrm{D}}{ }^{25}=-9.25^{\circ}(\mathrm{c}$ $\left.0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49-5.53(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.14(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.43 (m, 1H), 2.28-2.37 (m, 3H), 2.19-2.27 (m, 2H), 2.07-2.12 (m, 1H), $1.96(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,119.1,78.7,75.7,73.3,42.1$, 41.2, 38.2, 32.1, 31.4, 26.5, 26.3, 21.7, 3.9; HRMS (EI): m / z for $\mathrm{C}_{14} \mathrm{H}_{18}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ calcd. 186.1409, found: 186.1421.

(S)-1-((1R,5S)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)pent-3$\mathbf{y n}-1-\mathbf{l}$ (5b). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 17 mg compound $\mathbf{5 b}$ as colorless oil in 83% yield, d.r. $=15: 1 .[\alpha]_{\mathrm{D}}{ }^{25}=-29.6^{\circ}(\mathrm{c}$ $0.53, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.51-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.10$ (app. t, $J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.12(\mathrm{~m}$, $1 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.79(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9,118.3,78.5,75.8,73.0,42.7,41.3,38.2$, 32.1, 31.4, 26.5, 26.1, 21.7, 3.9; HRMS (EI): m / z for $\mathrm{C}_{14} \mathrm{H}_{18}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 186.1409, found: 186.1417 .

(R)-1-Phenylhex-3-yn-1-ol (6a). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 14 mg compound $\mathbf{6 a}$ as colorless oil in 80% yield. The enantiomeric excess was determined by HPLC analysis to be 94% ee (254 $\left.\mathrm{nm}, 25{ }^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=6.45 \mathrm{~min}, \mathrm{t}_{2}=7.10 \mathrm{~min}[($ Chiralpak IC) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0$ $\mathrm{mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=10.9^{\circ}\left(\mathrm{c} 0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.39(\mathrm{~m}$, $4 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{br}$, $1 \mathrm{H}), 2.14-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.1,128.7,128.1,126.1,85.3,75.7,73.0,30.5,14.5,12.8 ;$ HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}$calcd. 174.1045, found: 174.1049.

(R)-1-(4-Nitrophenyl)hex-3-yn-1-ol (6b). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 20 mg compound $\mathbf{6 b}$ as colorless oil in 91% yield. The enantiomeric excess was determined by HPLC analysis to be 96% ee ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=8.11 \mathrm{~min}, \mathrm{t}_{2}=8.91 \mathrm{~min}[($ Chiralpak IA $)$ hexane $/ i-\operatorname{PrOH}, 90: 10$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=8.57^{\circ}\left(\mathrm{c} 1.67, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.69(\mathrm{~m}$, $1 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{qt}, J=7.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57\left(\mathrm{H}_{2} \mathrm{O}\right), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,147.7,127.0,123.9,86.2,74.4,71.9,30.4$, 14.4, 12.7; HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{OH}]^{+}$calcd. 202.0868, found: 202.0860.

(R)-1-(4-Methoxyphenyl)hex-3-yn-1-ol (6c). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 13 mg compound $\mathbf{6 c}$ as colorless oil in 64% yield. The enantiomeric excess was determined by HPLC analysis to be 95% ee ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=7.56 \mathrm{~min}, \mathrm{t}_{2}=8.17 \mathrm{~min}[($ Chiralpak IA $)$ hexane $/ i-\operatorname{PrOH}, 90: 10$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=8.10^{\circ}\left(\mathrm{c} 0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{dd}, J=7.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.55-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{br}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,135.4,127.3,114.1,85.2,75.8,72.6,55.6,30.4$, 14.5, 12.8; HRMS (EI): m / z for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$calcd. 204.1150, found: 204.1130.

(\boldsymbol{R})-1-Phenylnon-3-yn-1-ol (6d). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 16 mg compound $\mathbf{6 d}$ as colorless oil in 74% yield. The enantiomeric excess was determined by HPLC analysis to be 96% ee (254 $\left.\mathrm{nm}, 25{ }^{\circ} \mathrm{C}\right) ; \mathrm{t}_{1}=5.58 \mathrm{~min}, \mathrm{t}_{2}=5.98 \mathrm{~min}$ [(Chiralpak IC) hexane $/ i-\mathrm{PrOH}, 95: 5,1.0$ $\mathrm{mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=9.70^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.40(\mathrm{~m}$, 4H), 7.27-7.30 (m, 1H), 4.81 (dd, $J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{tt}, J=$ 7.1, $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{br}, 1 \mathrm{H}), 1.55\left(\mathrm{H}_{2} \mathrm{O}\right), 1.45-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.39(\mathrm{~m}, 4 \mathrm{H})$, $0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,128.7,128.1,126.1$, 84.0, 76.2, 72.9, 31.4, 30.5, 28.9, 22.6, 19.0, 14.4; HRMS (EI): m / z for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}$ calcd. 216.1514, found: 216.1527.

(R)-1-(4-Nitrophenyl)non-3-yn-1-ol (6e). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 24 mg compound $\mathbf{6 e}$ as colorless
oil in 92% yield. The enantiomeric excess was determined by HPLC analysis to be 95% ee ($254 \mathrm{~nm}, 25^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=7.05 \mathrm{~min}, \mathrm{t}_{2}=7.73 \mathrm{~min}[($ Chiralpak IA $)$ hexane $/ i-\mathrm{PrOH}, 90: 10$, $1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=8.10^{\circ}\left(\mathrm{c} 0.93, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.54-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{tt}, J=7.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.33$ $(\mathrm{m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,147.8,127.0$, 123.9, 85.1, 75.0, 71.9, 31.4, 30.4, 28.8, 22.5, 19.0, 14.3; HRMS (EI): m / z for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}]^{+}$calcd. 261.1365, found: 261.1364.

(R)-1-(4-Methoxyphenyl)non-3-yn-1-ol according to the general procedure. The crude mixture was purified by flash column chromatography to give 15 mg compound $\mathbf{6 f}$ as colorless oil in 61% yield. The enantiomeric excess was determined by Mosher ester analysis ${ }^{2}$ to be 90% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=4.64^{\circ}\left(\mathrm{c} 0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{dd}, J=7.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.25-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5$, 135.3, 127.4, 114.1, 83.9, 76.4, 72.6, 55.6, 31.4, 30.4, 29.0, 22.6, 19.1, 14.3; HRMS (EI): m / z for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 228.1514, found: 228.1532.

(R)-1-(p-Tolyl)non-3-yn-1-ol (6g). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 16 mg compound $\mathbf{6 g}$ as colorless oil in 70% yield. The enantiomeric excess was determined by Mosher ester analysis ${ }^{2}$ to be 93% ee; $[\alpha]_{\mathrm{D}}{ }^{25}=4.62^{\circ}\left(\mathrm{c} 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{dd}, J=7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.64(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{tt}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{br}, 1 \mathrm{H}), 1.44-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.24-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2$, $137.8,129.4,126.0,83.9,76.4,72.8,31.4,30.4,29.0,22.6,21.5,19.1,14.3$; HRMS (EI): m / z for $\mathrm{C}_{16} \mathrm{H}_{20}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 212.1565, found: 212.1578.

(R,E)-1-(4-Chlorophenyl)oct-1-en-5-yn-3-ol (6h). Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give 16 mg compound $6 \mathbf{h}$ as colorless oil in 68% yield. The enantiomeric excess was determined by HPLC analysis to be 90% ee ($254 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$); $\mathrm{t}_{1}=7.19 \mathrm{~min}, \mathrm{t}_{2}=7.72 \mathrm{~min}$ [(Chiralpak IA) hexane $/ i-\mathrm{PrOH}, 90: 10,1.0 \mathrm{~mL} / \mathrm{min}] ;[\alpha]_{\mathrm{D}}{ }^{25}=4.65^{\circ}\left(\mathrm{c} 0.73, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60$
(d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=10.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.55 (ddt, $J=16.4,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddt, $J=16.4,6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.22$ $(\mathrm{m}, 2 \mathrm{H}), 1.58\left(\mathrm{H}_{2} \mathrm{O}\right), 1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.4$, 133.7, 131.4, 130.0, 129.1, 128.1, 85.6, 75.0, 71.1, 28.5, 14.5, 12.8; HRMS (EI): m / z for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}[\mathrm{M}]^{+}$calcd. 234.0811, found: 234.0811.

1 mmol-scale reaction: To a reaction flask containing a stirring bar and freshly activated $4 \AA$ MS (500 mg) was added phosphoric acid $(R)-\mathbf{A}_{\mathbf{1}}(38 \mathrm{mg}, 0.05 \mathrm{mmol})$. Toluene (5 mL) was added to the flask followed by drop wise addition of freshly distilled benzaldehyde ($106 \mathrm{mg}, 1 \mathrm{mmol}$). The mixture was placed in a $-45{ }^{\circ} \mathrm{C}$ cold bath and stirred for 15 min . Allenylboronate $\mathbf{1 a}(216 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added slowly to the reaction mixture via a microliter syringe. The mixture was kept at $-45^{\circ} \mathrm{C}$ and stirred for 48 h . After complete consumption of benzaldehyde, saturated $\mathrm{NaHCO}_{3}(10$ mL) was added to the reaction mixture followed by slow addition of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2.5 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred vigorously for 3 h . Brine $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10$ mL) were added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash chromatography (gradient elution with hexane and $\mathrm{Et}_{2} \mathrm{O}, 50: 1$ to $2: 1$) provided 141 mg product 2 a in 88% yield with 95% ee.

($\boldsymbol{R}, \boldsymbol{E}$)-1-Phenylpent-3-en-1-ol (7): To an oven-dried 25 mL round-bottom flask equipped with a stirring bar was added lithium aluminum hydride powder ($38 \mathrm{mg}, 1.0$ mmol, 3.3 equiv) and toluene (5 mL). The mixture was stirred for 5 minutes and a solution of alcohol 2a ($48 \mathrm{mg}, 0.30 \mathrm{mmol}$) in toluene $(5 \mathrm{~mL})$ was added slowly to the flask. Then the flask was equipped with a condenser, the apparatus was placed under an argon atmosphere and the reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 24 h . The reaction progress was monitored by TLC. After the complete consumption of alcohol $\mathbf{2 a}$, the mixture was cooled to ambient temperature and then placed in an ice bath. To the reaction mixture was added diethyl ether (10 mL), water ($230 \mu \mathrm{~L}$) dropwise via syringe, then $20 \mathrm{wt} \% \mathrm{KOH}(230 \mu \mathrm{~L})$, and then water $(690 \mu \mathrm{~L})$. The reaction mixture was stirred at room temperature for 1 h . The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), and the combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under
reduced pressure. The E / Z ratio $(E / Z=15: 1)$ was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. Purification of the crude product was performed by flash column chromatography to give allylic alcohol 7 in 88% yield (42 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.65(\mathrm{dqt}, \mathrm{J}=$ $15.2,6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.50(\mathrm{~m}$, $1 \mathrm{H}), 2.35-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{br}, 1 \mathrm{H}), 1.70(\mathrm{ddt}, J=6.4,1.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,129.9,128.7,127.7,127.1,126.1,73.7,43.2,18.5 ;$ HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{12}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 144.0939, found: 144.0938 .

(Z)-1-Phenylpent-3-en-1-ol (8): In an Ar-filled glove box, to a 20 mL oven-dried reaction flask equipped with a Teflon-coated magnetic stirring bar was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(231 \mathrm{mg}, 0.9 \mathrm{mmol})$. The flask was sealed with a rubber septum, removed from the glove box. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added to the reaction flask and the resulting suspension was stirred at ambient temperature for 5 minutes. To the suspension was added a solution of compound $\mathbf{2 a}(48 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 3 h to form a clear yellow solution. $\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$ was added to the reaction mixture and the reaction was stirred for 30 minutes. Then brine (5 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The E / Z ratio ($E / Z=1: 14$) was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. Purification of the crude product was performed by flash column chromatography to give allylic alcohol $\mathbf{8}$ in 78% yield (38 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.69(\mathrm{dqt}, J=$ $10.9,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.43-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{br}, 1 \mathrm{H}), 1.61$ (app. dt, $J=6.8,0.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,128.7,128.1,127.8,126.1,125.9,74.1,37.2,13.3 ;$ HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{12}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 144.0939, found: 144.0951.

(\boldsymbol{E})-3-Iodo-1-phenylpent-3-en-1-ol (9): In an Ar-filled glove box, to a 20 mL
oven-dried reaction flask equipped with a Teflon-coated magnetic stirring bar was added $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(154 \mathrm{mg}, 0.6 \mathrm{mmol})$. The flask was sealed with a rubber septum, removed from the glove box. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added to the reaction flask and the resulting suspension was stirred at ambient temperature for 5 minutes. To the suspension was added a solution of compound 2a ($32 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL). The resulting mixture was stirred at room temperature for 3 h to form a clear yellow solution. A solution of $\mathrm{I}_{2}(101 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added and the reaction mixture was stirred for 30 minutes. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, a solution of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and a solution of saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added sequentially. After stirring at ambient temperature for 1 h , the organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The E / Z ratio ($E / Z>50: 1$) was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. Purification of the crude product was performed by chromatography to give compound 9 in 56% yield (32 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 6.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=8.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.3$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddt, $J=14.3,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{br}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,139.6,128.8,128.1,126.2,97.6,73.2$, 48.4, 16.9; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{I}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd. 269.9892, found: 269.9886.

(R)-1-(4'-(Tert-butyl)-[1,1'-biphenyl]-4-yl)pent-3-yn-1-ol (10): In an Ar-filled glove box, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}, 0.005 \mathrm{mmol}, 3 \mathrm{~mol} \%)$, (4-(tert-butyl)phenyl)boronic acid ($77 \mathrm{mg}, 0.43 \mathrm{mmol}, 2.5$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(47 \mathrm{mg}, 0.34 \mathrm{mmol}, 2.0$ equiv), toluene $(1.0 \mathrm{~mL})$ and a Teflon-coated magnetic stirring bar were sequentially added into a 1-dram vial. The mixture was stirred for 15 min and alcohol $\mathbf{2 h}(40 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added. The vial was sealed with a cap containing a PTFE-lined silicone septum, removed from the glove box and stirred at $90{ }^{\circ} \mathrm{C}$ for 36 h . The reaction progress was monitored by TLC. After the complete consumption of alcohol $\mathbf{2 h}$, the reaction mixture was cooled to room temperature and EtOAc (1 mL) was added. The resulting mixture was filtered through a short pad of Celite. Brine (5 mL) and EtOAc (5 mL) were added; the organic layer was separated, and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous sodium
sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by chromatography to give compound 10 in 56% yield (28 mg) as colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.86$ (dd, $J=7.9,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.7,141.9,140.9,138.3,127.3,127.1,126.5,126.1,79.1,75.6$, 72.8, 34.9, 31.7, 30.3, 3.9; HRMS (EI): m / z for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}]^{+}$calcd. 292.1827, found: 292.1798.

Computational studies: The density functional theory was employed combined with the cc-pVDZ basis set. ${ }^{3}$ Implicit solvent effects were considered via the SMD solvation model with a dielectric constant of 2.3741 (toluene). Dispersion effects were incorporated in using the B97D functional which includes dispersion by construction. ${ }^{4}$ Harmonic vibrational frequencies were calculated to ensure that the existence of only one imaginary frequency for every transition state. The harmonic approximation was subsequently used to calculate free energies at $-40^{\circ} \mathrm{C}$. The Gaussian16 electronic structure package was invoked. ${ }^{5}$

Table S1. Cartesian coordinates and absolute electronic energies of the transition states TS-1, TS-2, TS-3, and TS-4 at the B97D/cc-pVDZ level of theory with temperature and solvent corrections.

TS-1 (Energy			
	$\mathbf{- 3 4 9 2 . 3 8 3 0 2 9 0 9} \mathbf{a . u})$.		
C	-4.016666	-0.226088	0.350272
C	-3.984605	-1.254217	1.329805
C	-4.506155	-2.519696	0.995354
C	-5.034221	-2.800398	-0.274824
C	-5.011155	-1.778936	-1.239712
C	-4.512662	-0.495392	-0.954058
O	-1.522075	0.805420	-0.540394
P	-0.164511	0.199150	0.228839
C	-2.313365	1.667068	0.226606
O	0.694761	-0.304354	-1.012327
O	0.568846	1.589138	0.783217
C	-1.872462	2.976587	0.443558
C	-3.561994	1.161230	0.695979
C	0.577995	2.728952	-0.020421
C	-0.607352	3.450160	-0.193558
C	-4.362919	2.018507	1.439121
C	1.836919	3.126905	-0.561975
C	1.875009	4.308312	-1.291801

TS-2 (Energy			
TS	$\mathbf{- 3 4 9 2 . 3 7 7 4 3 3 6} \mathbf{a . u .)}$		
B	-0.129222	-3.857225	0.389115
C	0.995754	-4.262539	-0.898773
C	0.291289	-4.698699	-1.880590
C	-0.858288	-4.827730	-2.614613
C	2.462637	-4.091545	-0.634789
O	-0.359428	-5.025493	1.197916
C	-0.468188	-4.566624	2.571782
O	0.399649	-2.799605	1.263230
C	0.549358	-3.364854	2.611914
C	-1.918894	-4.113874	2.828365
H	-2.185321	-3.252371	2.192774
H	-2.598995	-4.951240	2.585009
H	-2.073118	-3.831335	3.886586
C	-0.107462	-5.724332	3.503999
H	-0.873530	-6.518408	3.424120
H	0.871913	-6.160046	3.241938
H	-0.076465	-5.378574	4.554997
C	0.228076	-2.279551	3.639349

C	3.071205	2.296665	-0.374178	H	-0.756798	-1.822953	3.458362
C	3.626739	1.609838	-1.488609	H	0.996422	-1.486292	3.602676
C	4.832386	0.902250	-1.321008	H	0.234716	-2.717533	4.655472
C	5.491944	0.832849	-0.083612	C	2.006625	-3.820707	2.770085
C	4.901617	1.485746	1.011286	H	2.227202	-4.670959	2.104553
C	3.704017	2.215166	0.895624	H	2.676164	-2.980934	2.514234
O	-0.408906	-0.721304	1.397203	H	2.207625	-4.128265	3.813197
H	-4.498415	-3.317320	1.747889	O	-1.336277	-3.292287	-0.315140
H	-5.401271	-1.982491	-2.243911	C	-2.059757	-4.084397	-1.074988
H	-5.343595	1.672167	1.784583	H	-2.260378	-5.096777	-0.680556
H	2.831666	4.655981	-1.696905	C	-3.121382	-3.447226	-1.887406
H	5.254328	0.378742	-2.184104	C	-4.202792	-4.230362	-2.345603
H	5.392410	1.424424	1.991078	C	-3.038335	-2.082061	-2.241455
H	0.714286	-1.374762	-1.071501	C	-5.194824	-3.654763	-3.153041
C	3.308276	-2.918764	-1.348772	C	-4.030179	-1.515005	-3.051379
C	3.592507	-2.141784	-0.363750	C	-5.107011	-2.297204	-3.510473
C	3.480048	-1.697121	0.926440	H	-4.260668	-5.289651	-2.064046
O	1.550296	-4.863786	-1.716156	H	-2.184668	-1.490389	-1.895361
B	1.800495	-3.715664	-0.909842	H	-6.038548	-4.262933	-3.500994
O	1.943572	-4.024046	0.556394	H	-3.960099	-0.457217	-3.322621
O	0.674099	-2.771116	-1.145682	H	-5.880395	-1.847238	-4.145107
C	1.906247	-2.996816	1.387974	O	-0.814190	1.532007	-0.687652
C	-0.231525	-3.351130	-2.141560	P	0.105145	0.193095	-0.305612
C	2.171641	-3.258508	2.819399	O	1.438530	0.885276	0.446361
C	2.898233	-4.388166	3.254740	O	0.375855	-0.608421	-1.547059
C	1.674585	-2.332053	3.763607	O	-0.618409	-0.482508	0.953565
C	1.905613	-2.534764	5.132202	H	-0.238237	-1.442475	1.092794
C	3.127147	-4.583853	4.623812	C	-0.906459	2.594835	0.212003
C	2.634992	-3.657724	5.564428	C	0.205011	3.414809	0.429346
C	0.127030	-4.880859	-2.019106	C	-2.189091	2.836293	0.793610
C	-0.614401	-5.559971	-0.852502	C	-2.312032	3.912601	1.662099
C	-0.082764	-5.676965	-3.307728	H	-3.289471	4.133683	2.105171
C	-1.661703	-2.973599	-1.755772	C	2.085233	1.908221	-0.244902
C	0.124470	-2.753574	-3.510177	C	1.482183	3.167846	-0.303293
C	3.868279	-3.173398	-2.716068	C	3.371028	1.621719	-0.794783
H	1.154291	-2.221009	1.181310	C	4.018020	2.640997	-1.481807
H	3.271348	-5.102613	2.512669	H	5.012472	2.454263	-1.903026
H	1.091628	-1.473390	3.409828	C	4.018970	0.284357	-0.603562
H	1.511899	-1.818517	5.863622	C	4.202562	-0.582911	-1.714488
H	3.689445	-5.462589	4.963170	C	4.486767	-0.099034	0.682527
H	2.816884	-3.815451	6.634775	C	4.895597	-1.791934	-1.520244
H	-0.515452	-4.971758	0.076309	C	5.153436	-1.330147	0.827024
H	-0.171076	-6.558377	-0.683433	C	5.377766	-2.187967	-0.262261
H	-1.689431	-5.683337	-1.081699	H	5.045378	-2.462382	-2.375365

H	0.177651	-6.737809	-3.134000	H	5.508426	-1.619222	1.822521
H	0.551290	-5.293368	-4.125504	C	-3.362527	1.971410	0.450055
H	-1.142468	-5.628542	-3.623308	C	-3.901339	1.082234	1.419586
H	-1.804467	-1.883466	-1.853208	C	-3.940581	2.048254	-0.844916
H	-1.893848	-3.255781	-0.716729	C	-5.011144	0.292239	1.071239
H	-2.380398	-3.469186	-2.431937	C	-5.046859	1.231012	-1.144379
H	1.135138	-3.062587	-3.827750	C	-5.591293	0.339379	-0.207248
H	0.091165	-1.651065	-3.445284	H	-5.422669	-0.398555	1.814762
H	-0.601002	-3.077891	-4.278992	H	-5.493085	1.284845	-2.145334
C	3.142116	2.897410	2.143385	C	3.657403	-0.257225	-3.105601
C	4.132721	3.939856	2.702941	C	2.836632	-1.424594	-3.692486
C	2.765759	1.860251	3.222677	C	4.800343	0.141340	-4.062472
H	2.220495	3.436732	1.865163	H	2.973261	0.603587	-3.012427
H	4.387847	4.698408	1.937536	H	2.017711	-1.704221	-3.007811
H	3.691769	4.459790	3.576457	H	2.393370	-1.118794	-4.661070
H	5.074061	3.457892	3.033547	H	3.472143	-2.312256	-3.883144
H	2.003299	1.158429	2.841327	H	5.368399	1.009607	-3.676259
H	3.653216	1.279133	3.543295	H	5.512084	-0.698823	-4.193059
H	2.352140	2.369174	4.116081	H	4.396902	0.406432	-5.060291
C	2.953818	1.601109	-2.862856	C	4.302814	0.772877	1.925770
C	2.893919	0.185267	-3.473821	C	5.660621	1.167651	2.543165
C	3.668734	2.565814	-3.832579	C	3.407930	0.064246	2.964368
H	1.914190	1.948894	-2.735729	H	3.794932	1.707596	1.634232
H	2.470088	-0.533979	-2.754752	H	6.293159	1.702009	1.807757
H	2.262873	0.195539	-4.384050	H	5.506808	1.830502	3.417833
H	3.899607	-0.168906	-3.772759	H	6.217781	0.274166	2.887730
H	3.673008	3.603136	-3.448923	H	2.431933	-0.194111	2.518443
H	4.722384	2.254152	-3.981330	H	3.887365	-0.865458	3.329852
H	3.167639	2.564718	-4.821389	H	3.232517	0.723164	3.837992
C	6.827941	0.117919	0.092112	C	6.147036	-3.496120	-0.112973
C	7.985261	1.122021	-0.112590	C	5.805297	-4.261654	1.179439
C	7.011880	-1.103142	-0.827043	C	7.666621	-3.229294	-0.194731
H	6.872397	-0.234223	1.143023	H	5.869859	-4.136914	-0.974206
H	7.892173	1.983632	0.576278	H	4.716220	-4.425173	1.277548
H	8.965166	0.634756	0.064371	H	6.310917	-5.247016	1.183839
H	7.974451	1.512625	-1.150138	H	6.149670	-3.709380	2.075740
H	6.178562	-1.823081	-0.718002	H	7.932910	-2.724254	-1.143348
H	7.068240	-0.800109	-1.891149	H	7.987597	-2.575599	0.641207
H	7.957273	-1.624921	-0.582124	H	8.236740	-4.177991	-0.130253
C	-3.416294	-1.018299	2.730092	C	-3.424281	3.003650	-1.921185
C	-2.581104	-2.208128	3.244354	C	-4.484806	4.074643	-2.253663
C	-4.547984	-0.696723	3.729882	C	-2.986714	2.249022	-3.192638
H	-2.740566	-0.147341	2.674616	H	-2.537922	3.531490	-1.530551
H	-1.815535	-2.499887	2.505580	H	-4.766922	4.650375	-1.350654

H	-2.065537	-1.923752	4.182302	H	-4.096232	4.783558	-3.011942
H	-3.217948	-3.086369	3.470765	H	-5.403933	3.607828	-2.660717
H	-5.116959	0.201987	3.427943	H	-2.221457	1.488618	-2.955212
H	-5.258313	-1.545721	3.794859	H	-3.851081	1.747588	-3.672087
H	-4.131968	-0.518062	4.741844	H	-2.559319	2.956682	-3.930166
C	-4.523947	0.558949	-2.062492	C	-3.311612	0.950430	2.823991
C	-5.946250	0.787194	-2.615114	C	-3.143454	-0.521887	3.248842
C	-3.548469	0.179005	-3.197324	C	-4.178026	1.708041	3.852499
H	-4.180681	1.518798	-1.639138	H	-2.306945	1.407431	2.817875
H	-6.647171	1.076183	-1.807889	H	-2.590192	-1.082657	2.477229
H	-5.937710	1.593152	-3.375495	H	-2.582869	-0.578512	4.201873
H	-6.340261	-0.129064	-3.097729	H	-4.120929	-1.016855	3.409423
H	-2.514815	0.099903	-2.815930	H	-4.266033	2.781602	3.599632
H	-3.830633	-0.791184	-3.652455	H	-5.201405	1.282701	3.883672
H	-3.568236	0.949521	-3.993792	H	-3.739934	1.625079	4.867496
C	-5.635405	-4.166078	-0.591376	C	-6.777008	-0.548784	-0.563300
C	-4.914919	-4.860910	-1.764743	C	-8.069861	-0.030385	0.102369
C	-7.146551	-4.043993	-0.882551	C	-6.524008	-2.023174	-0.189487
H	-5.509776	-4.799862	0.308951	H	-6.911252	-0.492670	-1.661852
H	-3.840744	-5.003633	-1.544405	H	-8.284954	1.013721	-0.197789
H	-5.366851	-5.852927	-1.963724	H	-8.936980	-0.661312	-0.179173
H	-4.998953	-4.258286	-2.690849	H	-7.973361	-0.054012	1.206479
H	-7.680599	-3.575131	-0.033443	H	-5.576030	-2.387500	-0.623850
H	-7.320213	-3.418656	-1.780888	H	-6.471324	-2.147823	0.910345
H	-7.591319	-5.041866	-1.069057	H	-7.349738	-2.662570	-0.559373
H	-4.925893	6.072899	3.625084	C	3.417828	3.919004	-1.671735
C	-4.303475	5.439096	2.981761	C	2.126348	4.194930	-1.084142
C	-4.739788	4.174851	2.613816	C	1.530607	5.469878	-1.331339
H	-5.705530	3.790792	2.965949	H	0.540830	5.684459	-0.918275
C	-3.937334	3.334257	1.783350	C	2.185307	6.430275	-2.090890
C	-2.667528	3.824402	1.297473	H	1.703452	7.399002	-2.271292
C	-2.240206	5.122551	1.713300	C	3.470469	6.167594	-2.642095
H	-1.266683	5.493816	1.380385	H	3.978702	6.937242	-3.235771
C	-3.036726	5.908556	2.535234	C	4.069629	4.933328	-2.437543
H	-2.682890	6.899209	2.845929	H	5.053218	4.709160	-2.869571
H	-2.579466	7.014533	-2.484719	H	1.915177	6.873590	3.064275
C	-1.663316	6.476329	-2.212448	C	1.044254	6.281366	2.757836
C	-0.405444	6.935724	-2.693149	C	-0.230141	6.551511	3.329705
H	-0.354687	7.831914	-3.323418	H	-0.339911	7.357305	4.065758
C	0.749960	6.236627	-2.377030	C	-1.326119	5.783685	2.964458
H	1.725436	6.563945	-2.758574	H	-2.312431	5.966467	3.409570
C	0.698595	5.063527	-1.563565	C	-1.197310	4.727181	2.011932
C	-0.572516	4.620351	-1.037124	C	0.088085	4.474196	1.402388
C	-1.745067	5.349365	-1.405616	C	1.199431	5.270257	1.818855

H	-2.719958	5.006125	-1.048809
H	3.221485	-2.707264	-3.483096
H	3.883885	-4.259400	-2.918886
H	4.886531	-2.756916	-2.817130
H	4.243933	-2.015811	1.651357
H	3.038212	-0.709683	1.118892

TS-3 (Energy $=\mathbf{- 3 4 9 2 . 3 6 8 5 7 2 1 9}$ a.u.)

$\begin{array}{llll}\text { B } & -3.233149 & 2.676302 & -1.095800\end{array}$
C $\quad-2.320356 \quad 4.088039 \quad-0.595173$
$\begin{array}{llll}\text { C } & -1.960063 & 3.923086 & 0.629321\end{array}$
$\begin{array}{llll}\text { C } & -1.993117 & 3.332679 & 1.863683\end{array}$
$\begin{array}{llll}\text { C } & -2.099101 & 5.158890 & -1.624980\end{array}$
$\begin{array}{llll}\text { O } & -2.290174 & 1.714111 & -1.734171\end{array}$
$\begin{array}{lllll}\text { C } & -3.038610 & 1.103859 & -2.852787\end{array}$
$\begin{array}{llll}\text { O } & -4.228298 & 3.000645 & -2.068048\end{array}$
$\begin{array}{llll}\text { C } & -3.945811 & 2.305506 & -3.305685\end{array}$
C $\begin{array}{llll}-3.842722 & -0.079502 & -2.290525\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.604109 & 0.268930 & -1.571536\end{array}$
H $\quad-3.160446$-0.772575 -1.770722
H $\quad-4.350368$-0.629028 $\quad-3.104427$
$\begin{array}{llll}\text { C } & -2.033101 & 0.624569 & -3.898112\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.444348 & -0.216244 & -3.498493\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.338210 & 1.430559 & -4.188377\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.569854 & 0.273805 & -4.800058\end{array}$
$\begin{array}{llll}\text { C } & -5.278013 & 1.875314 & -3.929333\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.891443 & 1.305037 & -3.211332\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.847717 & 2.772829 & -4.235298\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.104310 & 1.253104 & -4.828369\end{array}$
$\begin{array}{llll}\text { C } & -3.215870 & 3.263731 & -4.264084\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.214791 & 3.521590 & -3.880340\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.808672 & 4.191520 & -4.362257\end{array}$
H $\begin{array}{llll}\text { H } & -3.102659 & 2.813379 & -5.267988\end{array}$
$\begin{array}{llll}\text { O } & -3.888676 & 2.143127 & 0.155153\end{array}$
$\begin{array}{llll}\text { C } & -3.112286 & 1.724956 & 1.134584\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.190662 & 1.197139 & 0.856280\end{array}$
$\begin{array}{llll}\text { C } & -3.761851 & 1.252103 & 2.375654\end{array}$
$\begin{array}{llll}\text { C } & -3.024733 & 0.398150 & 3.225231\end{array}$
$\begin{array}{llll}\text { C } & -5.092999 & 1.592773 & 2.699159\end{array}$
$\begin{array}{llll}\text { C } & -3.619964 & -0.118792 & 4.384860\end{array}$
$\begin{array}{llll}\text { C } & -5.680591 & 1.075792 & 3.861553\end{array}$
$\begin{array}{llll}\text { C } & -4.947911 & 0.218624 & 4.705358\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.993762 & 0.139367 & 2.958261\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.657736 & 2.244348 & 2.023863\end{array}$

H	2.186510	5.071009	1.392454
H	3.044549	-4.157387	-1.569294
H	2.819113	-4.872570	0.062822
H	2.644251	-3.113867	-0.160087
H	-1.301417	-5.821558	-2.782400
H	-1.041444	-4.090177	-3.411016

TS-4 (Energy $=\mathbf{- 3 4 9 2 . 3 8 1 1 5 4 4 7}$ a.u.)

B	1.275224	-3.805388	-1.087581
C	2.601399	-4.112753	-2.213274
C	3.674742	-4.235604	-1.517321
C	4.435527	-4.080477	-0.387467
C	2.249967	-4.222561	-3.667649
O	0.645847	-5.052099	-0.767438

C	-0.775180	-4.771342	-0.619251
O	0.267354	-2.924632	-1.686422

$\begin{array}{llll}\text { C } & -1.024297 & -3.636234 & -1.690127\end{array}$
$\begin{array}{llll}\mathrm{O} & 1.892267 & -3.056004 & 0.062957\end{array}$
$\begin{array}{llll}\mathrm{C} & 2.778758 & -3.682015 & 0.804094 \\ \mathrm{H} & 2.596435 & -4.757636 & 0.979829\end{array}$
$\begin{array}{llll}\text { C } & 3.389987 & -2.917884 & 1.917020\end{array}$
$\begin{array}{llll}\text { C } & 4.237725 & -3.588790 & 2.827039\end{array}$
$\begin{array}{llll}\mathrm{C} & 3.124463 & -1.542584 & 2.090458 \\ \mathrm{C} & 4.823060 & -2.890819 & 3.891494\end{array}$
$\begin{array}{llll}\text { C } & 4.823060 & -2.890819 & 3.891494 \\ \text { C } & 3.706129 & -0.851011 & 3.161903\end{array}$
$\begin{array}{llll}\mathrm{C} & 4.559444 & -1.517721 & 4.059024\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.435671 & -4.659798 & 2.692146\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.443230 & -1.034175 & 1.404830\end{array}$

H	5.481930	-3.415767	4.593822

$\begin{array}{llll}\mathrm{H} & 3.487738 & 0.213217 & 3.292079\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.015039 & -0.970313 & 4.893468\end{array}$
$\begin{array}{llll}\mathrm{H} & -5.162465 & 2.174286 & 1.990080 \\ \mathrm{C} & -4.202562 & 2.387841 & 1.506070\end{array}$
$\begin{array}{llll}\text { C } & -3.535595 & 1.367780 & 0.841197\end{array}$
$\begin{array}{llll}\text { C } & -3.667871 & 3.705924 & 1.590094\end{array}$
$\begin{array}{llll}\text { C } & -2.312869 & 1.694836 & 0.181946\end{array}$
$\begin{array}{llll}\text { C } & -2.424181 & 4.014578 & 0.921530\end{array}$
$\begin{array}{llll}\text { C } & -1.773194 & 2.983694 & 0.151052\end{array}$
$\begin{array}{llll}\mathrm{O} & -1.679186 & 0.684318 & -0.538068 \\ \mathrm{C} & -0.535440 & 3.258086 & -0.636251\end{array}$
$\begin{array}{lllr}\text { C } & -0.535440 & 3.258086 & -0.636251 \\ \mathrm{P} & -0.238585 & 0.062173 & 0.059018\end{array}$
$\begin{array}{llll}\text { C } & 0.621331 & 2.509828 & -0.402390\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.484206 & 4.285615 & -1.647350 \\ \mathrm{O} & 0.581907 & 1.448733 & 0.505510\end{array}$

SI-20

H	-3.047343	-0.788527	5.037363	O	-0.349264	-0.859093	1.240504
H	-6.718056	1.332120	4.108694	O	0.433215	-0.438289	-1.299999
H	-5.414267	-0.188157	5.611162	C	1.892001	2.825008	-0.972677
H	5.728911	1.589314	0.930675	C	0.780544	4.585064	-2.279030
C	5.057627	0.761714	0.679849	C	-1.641763	5.004718	-2.076136
C	3.750714	1.041729	0.307387	H	0.351048	-1.477695	-1.423337
C	5.520265	-0.574353	0.840359	C	1.947685	3.865345	-1.889794
C	2.929587	-0.054418	-0.098406	C	0.840131	5.606859	-3.275003
C	4.627673	-1.674015	0.557764	H	2.913599	4.145783	-2.325369
C	3.331430	-1.392832	-0.022509	C	-1.552354	5.984221	-3.056322
O	1.691304	0.259100	-0.668534	C	-0.300993	6.297601	-3.656473
C	2.437795	-2.491596	-0.490744	H	-2.456832	6.517553	-3.373531
P	0.306870	-0.022407	0.215846	H	-2.610389	4.769276	-1.625520
C	1.100876	-2.551016	-0.085594	H	1.810148	5.827302	-3.738494
C	2.918881	-3.542187	-1.362084	H	-0.243577	7.077311	-4.425823
O	0.584402	-1.566203	0.760760	H	5.449879	-0.200299	-1.471167
O	0.037614	0.887068	1.386953	C	4.958123	0.554517	-0.848103
O	-0.794236	-0.134769	-0.932328	C	5.523844	0.888775	0.395221
C	0.225596	-3.638759	-0.397462	C	6.821098	0.245454	0.871498
C	2.086348	-4.699401	-1.592667	C	4.866453	1.846606	1.182509
H	-1.380244	0.718878	-1.157620	H	5.291255	2.110925	2.159221
C	0.762062	-4.726335	-1.069123	C	3.679725	2.475351	0.760408
H	0.129844	-5.597913	-1.270967	C	3.026424	3.506277	1.682436
C	2.578416	-5.768436	-2.401736	C	3.133679	2.126843	-0.503092
C	3.826284	-5.690304	-3.003019	C	3.767783	1.145700	-1.310764
C	4.624493	-4.526959	-2.824293	C	3.190035	0.731361	-2.663308
C	4.183383	-3.481902	-2.022987	C	3.911097	1.467551	-3.812266
H	1.934919	-6.643853	-2.556287	C	3.240885	-0.792660	-2.885033
H	4.190148	-6.512969	-3.630624	H	3.817450	2.565456	-3.712819
H	5.595741	-4.450024	-3.327989	H	3.483720	1.171671	-4.791520
H	4.806396	-2.591984	-1.898331	H	4.991125	1.216223	-3.817816
C	6.826408	-0.839863	1.354313	H	4.279756	-1.153150	-3.022153
C	7.232383	-2.136768	1.630654	H	2.676506	-1.056845	-3.799746
H	8.233649	-2.329371	2.034848	H	2.797043	-1.332614	-2.032847
C	6.333026	-3.217130	1.414540	C	6.757848	-1.293980	0.822946
H	6.638622	-4.239486	1.668309	C	8.021398	0.764842	0.051201
C	5.066223	-2.992231	0.891914	H	5.888593	-1.675413	1.388066
H	4.388595	-3.836055	0.738844	H	7.679394	-1.733500	1.253351
H	7.491465	0.010794	1.549949	H	6.679097	-1.646712	-0.224540
C	-5.434507	-3.093655	1.026045	C	2.530968	2.850998	2.988458
C	-3.966806	-3.319752	0.679952	C	3.981827	4.679458	1.983711
C	-2.976576	-3.484387	1.661765	H	4.882691	4.331743	2.526808
H	-3.264534	-3.519554	2.717719	H	3.475264	5.435623	2.615927
C	-1.615930	-3.607267	1.329149	H	4.315461	5.172740	1.050026

C	-0.615259	-3.847413	2.461621	H	1.832318	2.022061	2.774476
C	-1.223573	-3.562592	-0.037613	H	2.006912	3.597246	3.617973
C	-2.205694	-3.404210	-1.056077	H	3.383108	2.453597	3.575551
C	-1.970700	-3.371063	-2.578165	H	7.910356	0.486956	-1.016242
C	-3.555339	-3.291929	-0.661439	H	8.969473	0.326018	0.422215
H	-4.318153	-3.159446	-1.440939	H	8.099505	1.867881	0.109303
C	-5.897538	-3.847036	2.286011	C	-1.541863	-6.068538	-0.882254
H	-6.032528	-3.458947	0.166345	C	-1.040542	-4.279823	0.816263
C	-5.698964	-1.579343	1.181225	C	-2.134474	-2.647982	-1.336919
H	-5.106912	-1.173007	2.021694	C	-1.239662	-4.183282	-3.107154
H	-6.771056	-1.386386	1.387135	C	-4.333763	4.725292	2.336598
H	-5.412798	-1.026491	0.266576	C	-1.880938	5.326847	1.079897
H	-5.666620	-4.928138	2.222562	C	-2.546133	6.291413	1.824844
H	-6.990490	-3.729486	2.419078	C	-3.789631	5.996170	2.450164
H	-5.409610	-3.442513	3.194545	H	-5.281477	4.474915	2.829996
C	-0.848241	-5.237134	3.092975	H	-0.923260	5.567453	0.609586
C	-0.673795	-2.741371	3.534407	H	-2.104720	7.289417	1.935719
H	0.404588	-3.848319	2.041463	H	-4.307332	6.769611	3.030535
H	-1.857326	-5.299409	3.546783	C	-4.112449	-0.014308	0.748951
H	-0.101053	-5.431948	3.888099	C	-3.889093	-0.956741	1.787621
H	-0.766495	-6.038943	2.333373	C	-3.078855	-0.588370	3.031041
H	-1.661045	-2.725626	4.036386	C	-4.475547	-2.232171	1.674218
H	-0.488940	-1.749473	3.085713	H	-4.315560	-2.968846	2.470120
H	0.096104	-2.921908	4.310561	C	-5.264446	-2.597752	0.570540
C	-0.670825	-2.741909	-3.124465	C	-5.921281	-3.972843	0.504543
H	-2.795209	-2.741369	-2.964898	C	-5.459422	-1.649641	-0.447840
C	-2.177405	-4.778400	-3.183146	H	-6.064946	-1.918360	-1.320765
H	-1.381221	-5.470095	-2.847781	C	-4.897098	-0.361852	-0.382233
H	-2.140973	-4.729142	-4.290230	C	-5.123197	0.610160	-1.541943
H	-3.153548	-5.206309	-2.883814	C	-5.645200	-4.699506	-0.826515
H	-0.365867	-1.854872	-2.546785	C	-7.441353	-3.854488	0.749259
H	-0.846405	-2.430713	-4.172833	H	-4.559022	-4.811795	-1.003965
H	0.171539	-3.452483	-3.132506	H	-6.074953	-4.142845	-1.682327
H	2.272624	5.076695	-1.572842	H	-6.101631	-5.708850	-0.818292
C	2.490840	4.510178	-0.659773	H	-7.651837	-3.366262	1.720492
C	2.913605	3.174955	-0.775567	H	-7.919431	-4.854711	0.748553
C	3.069741	2.585652	-2.178080	H	-7.915435	-3.246498	-0.047088
C	3.216962	2.435970	0.402392	C	-2.280596	-1.764283	3.624165
C	3.044307	3.032802	1.684395	C	-4.007960	0.011415	4.109600
C	3.284639	2.372607	3.056851	H	-4.540050	0.906168	3.738426
C	2.620935	4.378256	1.736029	H	-3.422875	0.303944	5.004611
H	2.487286	4.848279	2.720418	H	-4.766760	-0.734610	4.421831
C	2.353175	5.138464	0.589324	H	-1.657329	-2.250765	2.855883
C	1.926380	6.597199	0.698626	H	-2.948320	-2.520344	4.083960

C	4.173828	3.322684	-2.965636	H	-1.611343	-1.388215	4.422055
C	1.734880	2.611255	-2.952846	C	-6.614049	0.741964	-1.913375
H	3.382371	1.532136	-2.088398	C	-4.284896	0.195224	-2.770003
H	3.913665	4.390354	-3.107947	H	-7.222137	1.030355	-1.033940
H	4.304784	2.866530	-3.967227	H	-7.019088	-0.208865	-2.312207
H	5.143399	3.276303	-2.432380	H	-6.744350	1.514537	-2.696598
H	1.408627	3.653027	-3.144432	H	-3.209520	0.169006	-2.519812
H	0.937919	2.093928	-2.390368	H	-4.435309	0.914025	-3.600442
H	1.852094	2.109195	-3.933885	H	-4.585827	-0.810061	-3.126958
C	0.520697	6.814532	0.105418	H	-4.776372	1.610397	-1.227328
C	2.951341	7.531479	0.022047	H	-5.490850	-4.583813	1.323023
H	1.888840	6.851797	1.776465	H	-2.347784	0.184296	2.734500
H	0.515690	6.577925	-0.975872	H	6.971401	0.548191	1.926936
H	0.201403	7.869108	0.225709	H	2.144547	3.927693	1.170604
H	-0.223769	6.161822	0.599614	H	2.126631	1.025770	-2.676556
H	3.019216	7.317000	-1.063045	H	-2.632902	-5.887175	-0.859840
H	3.960666	7.402339	0.458678	H	-1.299641	-6.803432	-0.091571
H	2.651125	8.591690	0.141234	H	-1.270700	-6.506723	-1.858235
C	2.909010	0.886205	3.226286	H	-2.232631	-4.662099	-3.193009
H	2.612299	2.927434	3.741503	H	-0.466581	-4.925389	-3.368051
C	4.718996	2.637106	3.569979	H	-1.192275	-3.348479	-3.830664
H	5.465299	2.057406	2.996181	H	-3.107343	-3.169099	-1.326881
H	4.802425	2.331555	4.632546	H	-2.186123	-1.852138	-2.099940
H	4.981695	3.710417	3.495835	H	-1.988993	-2.185195	-0.349320
H	1.918714	0.672675	2.791001	H	-2.124474	-4.154210	0.993954
H	2.867481	0.658356	4.310491	H	-0.548118	-3.311379	1.006524
H	3.650152	0.203319	2.778070	H	-0.649424	-5.031443	1.527264
H	-1.817686	6.116813	-1.156814	H	1.569076	-3.399869	-3.945959
H	-3.017340	5.287034	-2.223073	H	1.709112	-5.171298	-3.851584
H	-1.290695	4.854592	-2.317926	H	3.150490	-4.195438	-4.306739
H	-1.112933	2.782835	2.223444	H	5.028339	-3.159162	-0.283934
H	-2.652224	3.767845	2.631159	H	4.845423	-4.963696	0.125258

References Cited in Supporting Information:

1. Allenylboronates 1a-c were prepared according to the reported procedures:
(a) Ito, H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 15774.
(b) Zhao, T. S. N.; Yang, Y.; Lessing, T.; Szabó, K. J. J. Am. Chem. Soc. 2014, 136, 7563.
2. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
3. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 6378.
4. Grimme, S. J. Comp. Chem. 2006, 27, 1787.
5. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Ce=
($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

®
$\stackrel{y}{n}$
$\stackrel{1}{1}$
$\begin{array}{ll}\text { oे } \\ \text { n } \\ \text { in } \\ 1 & 1\end{array}$

1a
$\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1c
$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2a
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-143.180

128.747
128.118
126.064

n
in
in
$\stackrel{\odot}{\infty}$

骎莩等

$\underset{\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}{\mathbf{2 b}}$

橗算

$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2d
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\left[\begin{array}{r}80.027 \\ 77.571 \\ 77.350 \\ 77.147 \\ 74.419 \\ 72.089\end{array}\right.$
-30.340
$\stackrel{\square}{\infty}$

$\underbrace{\infty}_{\substack{\infty \\ \infty \\ \infty}}$

2 e
$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underset{\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}{\mathbf{2 f}}$

気造蒔

（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\infty}{\stackrel{\infty}{n}} \stackrel{+}{\circ}$
$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\infty}{i}}$

$\begin{array}{ll}\bar{m} & \infty \\ \stackrel{\infty}{\infty} & \infty \\ \cdots & \text { i }\end{array}$
（ $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-142.783
-137.747
-128.057

$\stackrel{8}{N}$
$\stackrel{\rightharpoonup}{1}$
1
∞
∞
∞
i

($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{n}{\stackrel{n}{\square}}$
N
\vdots
i

$\mathbf{2 m}$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{O}{\circ}$

-30.323
0
\vdots
\cdots
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

堓

20
$\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2p
$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2p
$\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \stackrel{\circ}{\overleftarrow{\circ}} \\ & \stackrel{\text { ® }}{1} \end{aligned}$

$\underset{\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}{\text { 2q }}$

-157.117
$\left[\begin{array}{r}131.437 \\ 129.174 \\ 127.313 \\ 126.241 \\ -125.833 \\ -120.943 \\ -111.156\end{array}\right.$

N
$\underset{\sim}{N}$

-3.953

$$
\begin{gathered}
\text { 2q } \\
\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
\end{gathered}
$$

$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\mathbf{2 r}}{\mathrm{MHz}, \mathrm{CDCl}_{3}}$

-27.316
-3.972

4a
$\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-3.976

-148.922
-118.316

$\stackrel{\circ}{\infty}$

$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-143.122

$\int_{128.720}^{128.107}$
126.078

$\underset{\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}{\mathbf{6 a}}$

-126.952
~ 123.875

疗

-159.508
-135.351
-127.338
-114.077
-85.161
-77.360
$\begin{aligned} & 75.842 \\ & 72.596\end{aligned}$
-55.629

$151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-143.036

$\int_{128.711}^{128.100}$
126.063

31.375
-30.461
-28.920
-19.038
-14.371

6d
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

㙰算

$\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-28.540

-14.539
12.790

($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{8}{\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)}$

8
$\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underset{\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}{(}$

-143.275
-139.625
-128.786
-128.123
-126.248

-48.419
-16.919

$\underset{\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}{\mathbf{9}}$

$\underbrace{\text { ®. }}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]:

 4,4,5,5-Tetramethyl-2-(octa-1,2-dien-3-yl)-1,3,2-dioxaborolane (1c). Prepared according to the known procedure, ${ }^{1}$ colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.62$ (app. $\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.01-2.04 (m, 2H), $1.41-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.2,83.9,71.4,31.7,29.4,29.1,25.0,22.8,14.4$.

