
Software Papers: improving the reusability and
sustainability of scientific software

Neil Chue Hong
Software Sustainability Institute

JCMB, Mayfield Road
Edinburgh, EH9 3JZ, UK

N.ChueHong@software.ac.uk

Brian Hole
Ubiquity Press

Gordon House, Windmill Street
London, W1T 2JB, UK

brian.hole@ubiquitypress.com

Samuel Moore
Ubiquity Press

Gordon House, Windmill Street
London, W1T 2JB, UK

samuel.moore@ubiquitypress.com

ABSTRACT
In this paper, we describe the Journal of Open Research Software,
a software metajournal which features peer reviewed software
papers describing research software with high reuse potential. We
posit that the use of software papers improves the sustainability of
scientific software by making them discoverable and citable, as
well as asking them questions about the metadata required to use
and reuse the software easily.

Keywords
Software papers, metajournals, software sustainability, software
reusability, bibliometrics.

1. INTRODUCTION
Until there is a radical change in the way that academic credit is
given, the principal record of scientific research is still the peer-
reviewed publication. Given that software is a fundamental part of
doing science in the digital age, the question we are often asked
is: where can someone publish papers which are primarily focused
on their scientific software?

There are many reasons for wanting to do this:

• as a record of a particular research object;
• to advertise the work that has been done;
• to allow scrutiny of your work;
• so that other can reproduce your methods;
• to enable reuse amongst other in your research

community;
• to build on your work to look at new kinds of studies;
• to allow its reuse for other purposes such as teaching,

journalism and citizen science;
• to describe your software such that it can be preserved;
• to enable recognition and reward of your work.

More generally, publishing software itself is considered
important for good science [6][7][8] and so enabling transparency
for scientific software is also important. There are a number of
traditional journals [3] that allow submissions that are primarily
about the software, and not necessarily on new algorithms or new
science.

One of these journals is the Journal of Open Research
Software (JORS) which publishes peer reviewed software papers
describing research software with high reuse potential. JORS
publishes software papers, which do not contain research results
but rather a concise description of scientific software, and where
to find it. Papers are only accepted for software which authors
agree to make freely available in a public repository. This means
that they have been deposited in a digital repository under an open
license (such as an Open Source Initiative approved license or

public domain Creative Commons Zero license), and are therefore
freely available to anyone with an internet connection, anywhere
in the world. The software paper itself is licensed under a Creative
Commons Attribution (CC-BY) license.

The concept of a software paper is a publication that is
designed to make other researchers aware of software that is of
potential use to them. In this respect, a software paper can be
considered a “metapaper” i.e. principally a paper recording
metadata about the software. It describes what problem the
software addresses, how it was implemented and architected,
where it is stored, and its reuse potential. It is important to note
that a software paper does not replace a research article, but rather
complements it. When mentioning the software behind a study, a
research paper should reference the software paper for further
details. The software paper similarly should contain references to
any research papers associated with the software. This also
enables the software paper to be published before the research
papers, if this is appropriate.

JORS submissions consist of a title, abstract and keywords;
overview of the software; details of the implementation,
architecture and quality control; requirements and dependencies;
repository, contributor and license details; and a section on reuse
potential. At the time of submission, the software described must
be available from a digital repository or source code repository
which is suitable for the type of software involved, sustainable
(i.e. it must have funding and plans in place to ensure the long-
term preservation of the data), allows open licenses and provides
persistent identifiers.

The remainder of this position paper considers the challenges
of peer reviewing software, the benefits of citation and cross-
referencing software, and what this means for the sustainability of
scientific software.

2. PEER REVIEW OF SOFTWARE
2.1 Challenges of peer review: judging
acceptability vs ensuring quality
A particular challenge for software papers is the concept of peer
review of software. Even after 300 years of peer review, the
debate continues as to whether peer review gets the balance
between judging novelty and acceptability versus ensuring
validity and quality (as expressed by Richard Horton’s exhortation
that “peer review was any more than a crude means of discovering
the acceptability — not the validity — of a new finding” [5]) for
traditional outputs such as papers. When we consider peer review
of scientific software, we must ask whether we can decouple these
two sides of scrutiny to make it possible to accomplish the review

in a reasonable length of time. It also questions what we are
aiming to achieve by peer reviewing software.

Two general principles guide the reviewing process at the
Journal of Open Research Software:

1. We are reviewing the accuracy and quality of the

metadata rather than the software, however there
will be a minimum level of quality of software
required so that it is possible to review.

2. We expect all metapapers to be able to pass after
revisions, unless the software is not openly
available and/or extremely difficult to reuse.

This means that the Journal of Open Research Software is
not directly concerned with novelty, but is concerned about the
quality of the metadata. This has some benefits for the objectivity
of the review. For instance, it is easy to ask reviewers to check
whether the software has an approved license, and whether that
license is correctly displayed. Other information that can be
checked in this way include checking the persistent identifier to
the software and whether sample input and output data is
provided. However most of the review is still somewhat
subjective: e.g. do the keywords give enough information for a
reader to search for the software.

2.2 JORS Review Criteria
Paper contents

a. Is the title of the paper descriptive and objective?
b. Does the Abstract give an indication of the software's

functionality, and where it would be used?
c. Do the keywords enable a reader to search for the

software?
d. Does the Introduction give enough background

information to understand the context of the software's
development and use?

e. Does the Implementation and Architecture section give
enough information to get an idea of how the software is
designed, and any constraints that may be placed on its
use?

f. Does the Quality Control section adequately explain
how the software results can be trusted?

g. Does the Reuse section provide concrete and useful
suggestions for reuse of the software, for instance: other
potential applications, ways of extending or modifying
the software, integration with other software?

h. Are figures and diagrams used to enhance the
description? Are they clear and meaningful?

i. Do you believe that another researcher could take the
software and use it, or take the software and build on it?

Deposited software

a. Is the software in a suitable repository?
b. Does the software have a suitable open licence?
c. If the Archive section is filled out, is the link in the form

of a persistent identifier, e.g. a DOI? Can you download
the software from this link?

d. If the Code Repository section is filled out, does the
identifier link to the appropriate place to download the
source code? Can you download the source code from
this link?

e. Is the software license included in the software in the
repository? Is it included in the source code?

f. Is sample input and output data provided with the
software?

g. Is the code adequately documented? Can a reader
understand how to build/deploy/install/run the software,
and identify whether the software is operating as
expected?

h. Does the software run on the systems specified? (if you
do not have access to a system with the prerequisite
requirements, let us know).

i. Is it obvious what the support mechanisms for the
software are?

2.3 Further thoughts on reviewing scientific
software
Others have also considered what peer review of software might
look like, in particular Carl Boettiger. He notes that he is
reviewing more and more “software papers”, particularly R
packages, from authors trying to hack the publication recognition
system. As such he comes up with the following ethos for a
reviewer [1]:

“I expect the paper to provide the journal’s audience with a
clear motivation for why the package is useful, and have at least
one functioning “wow” example that I can run (by copy-paste)
and understand without difficulty (e.g. without referring to code
comments or the package manual to understand the function calls
and their arguments).”

 This effectively asks for the transfer of effort from reader to
author: it is up to the author to ensure that the reader can
recognise the basic usefulness of the software. Taken to the
logical extreme, this would ensure that the software came with
full unit and system testing, preferably including checking against
some ground truth such as an experimental result. More
importantly, this shift of emphasis to the author doing more work
before submission to document their software improves the
maintainability and sustainability of the code. If it is easier for a
general reader to understand how the code functions, it is also
easier for an interested reader who intends to reuse or extend the
software. Likewise, by requiring software papers to include a
permanent identifier such as a digital object identifier (DOI) or
permalink to the version in the repository, it is aiding preservation
and sustainability of the software by forcing authors to consider
what makes a good repository.

A final possibility is to use techniques from software
engineering to assess the “quality” of the software objectively,
such as cyclometric complexity. Here we must consider the
usefulness of these metrics: low cyclometric complexity probably
indicates that the code will be easier to understand and change in
the future, but do not indicate whether a piece of software will be
reusable outside of its original scientific domain. A balance of
objective and subjective reviewing will always be required for
scientific software.

3. CITATION OF SOFTWARE
A significant feature of software papers is the ability to use the
existing publication citation and referencing systems to cite,
search, discover and cross-reference. By assigning an identifier to
both the software (in the repository) and the software paper (via a
DOI), the two are linked such that it becomes much easier to track
the usage of the software as it is now a full-blown citable object
placed in the references of a research publication, rather than just
a footnote to a URL.

With the Journal of Open Research Software we expect there
to be an identifier for the deposited software in the digital

repository or source code repository, we issue a DOI for the
software paper, and we expect authors to cite their own software
paper in research papers which are based on their work.
Importantly, as well as the DOI, the software now has a
“traditional format” citation which is important as some common
tools such as ISI Web of Science and Scopus appear to strip DOIs
and URLs out of citations as they import references into their
database [9]. DOIs and identifiers also make it easier to use Alt-
Metrics frameworks: JORS embeds information from
ImpactStory1 to show the audience engagement by a number of
alternative metrics such as Twitter in comparison to all articles
indexed in Web of Science that year. This helps authors
understand their articles reach, and along with standard article
metrics such as views and downloads gives a sense of the interest
in their software. The citations of the software paper itself
represents a direct measure of the usage of the code.

The “traditional” way of writing a paper to recognize some
software would require the generation of new science to put in the
paper along with the description of the software used to generate
the results This decoupling of the software from the science
results means that each can be published and given an identifier at
a more suitable point. When the first version of a piece of
scientific software is made available, a software metapaper can be
written and published immediately. Once the scientific
experiments utilising the software are complete they can be
published in a research paper which cites the software paper. The
software paper can in turn be updated to reference the research
paper or to indicate a new version of the software has been
released. The ability of DOIs to “point” forwards and backwards
allows a much richer cross-referencing.

Of course the reason why we publish is to gain recognition
and credit within the academic community. The proof of the
effectiveness of journals like JORS will be if they are encouraging
the citation of software, and being accepted as evidence for
promotion committees. A final benefit might be identified in a
change of the citation usage. As Luke Harmon comments [2] the
difference is “Another cool method also exists (Weasel et al.
2008)." versus "We used Weasel et al. (2008) to do amazing
things" – i.e. software papers could encourage the reuse rather
than reinvention of software.

4. SUSTAINABILITY OF SOFTWARE
Ultimately, the sustainability of scientific software is based
around a few key qualities [4]:

• Community: There is a community infrastructure with
a common investment (required for sustainability)

• Open: Software has permissive license (required for
modification)

• Defined: Accurate metadata defines the software and its
functionality, dependencies and constraints (required
for preservation)

• Extensible: The software is usable, modifiable for
different data, pipelines, purposes (required for
reproducibility)

• Runnable: The software is available and provides the
information to operate it (required for publication)

To these we would add two more general points:

1 ImpactStory: http://impactstory.org/

• Discoverable: can I find it?
• Reusable: do I know if it useful for me?

We believe that software papers are a pragmatic way of ensuring
scientific software meets these criteria, by making other
researchers aware of software that might be useful to them. They
do this in ways that encourage openness, extensibility and
community, whilst checking that it is well defined and runnable.
By enforcing the use of suitable repositories, longer term access to
and preservation of the software is improved. We therefore posit
that software papers are a useful mechanism for improving the
reusability and sustainability of scientific software and will be
continuing to assess the impact of papers published in the Journal
of Open Research Software2.

5. ACKNOWLEDGMENTS
Our thanks to our colleagues at the Software Sustainability
Institute and Ubiquity Press, as well as all the JORS reviewers for
their support of the journal. The Software Sustainability Institute
is supported by EPSRC grant EP/H043160/1.

6. REFERENCES
[1] Boettiger, C. 2013. What I look for in ‘Software Papers’.

Accessed on 6th September from:
http://carlboettiger.info/2013/06/13/what-I-look-for-in-
software-papers.html

[2] Boettiger, C. 2013. Reviewing Software Revisited. Accessed
on 6th September from:
http://carlboettiger.info/2013/07/09/reviewing-software-
revisited.html

[3] Chue Hong, N. Which journals should I publish my software
in? Software Sustainability Institute Guide. Accessed on 6th
September 2013 from:
http://www.software.ac.uk/resources/guides/which-journals-
should-i-publish-my-software

[4] Chue Hong, N. 2013. The Five Stars of Research Software
Accessed on 6th September 2013 from:
http://www.software.ac.uk/blog/2013-04-09-five-stars-
research-software

[5] Horton, R. Genetically modified food: consternation,
confusion and crack-up. Med J Aust 2000; 172 (4): 148-149.
PMID: 10772580.

[6] Hsu, J. 2012. Secret Computer Code Threatens Science.
Scientific American. Accessed on 6th September 2013 from:
http://www.scientificamerican.com/article.cfm?id=secret-
computer-code-threatens-science

[7] Ince, D.C., Hatton, L., and Graham-Cumming, J. 2012. The
case for open computer programs. Nature 482, 485–488. doi:
10.1038/nature10836.

[8] Morin, A., Urban, J., Adams, P.D., Foster, I., Sali, A., Baker,
D., and Sliz, P. 2012. Shining Light Into Black Boxes.
Science. Vol. 336 no. 6078 pp. 159-160. DOI:
10.1126/science.1218263.

[9] Piwowar, H. 2010. Tracking Dataset Citations Using
Common Citation Tracking Tools Doesn’t Work. Accessed
on 6th September 2013 from:
http://researchremix.wordpress.com/2010/11/09/tracking-
dataset-citations-using-common-citation-tracking-tools-
doesnt-work/

2 JORS: http://openresearchsoftware.metajnl.com/

